ANNALES
POLONICI MATHEMATICI
90.3 (2007)

Quasilinearization methods for
nonlinear differential-functional
parabolic equations: unbounded case

by AGNIESZKA BARTLOMIEJCZYK (Gdansk)

Abstract. We consider the Cauchy problem for nonlinear parabolic equations with
functional dependence represented by the Hale functional acting on the unknown function
and its gradient. We prove convergence theorems for a general quasilinearization method
in natural subclasses of unbounded solutions.

Introduction. The quasilinearization method belongs to the most ef-
fective analytical approximation techniques for a given nonlinear problem.
It produces sequences of solutions to problems which are linear with respect
to the unknown function. A classical version of quasilinearization methods,
known as the Chaplygin method, defines two sequences of upper and lower
solutions of the nonlinear problem (see [1]-[3], [7]). One of these sequences
coincides with the quasilinearization method. The theory of monotone iter-
ative techniques has been extensively described in the monograph [12].

In order to illustrate the convergence rate of the quasilinearization
method, let us consider a simple nonlinear parabolic Cauchy problem with-
out functional dependence.

ExXAMPLE 0.1. Let n = 1. We consider the Cauchy problem
Opu(t, x) — Oggu(t,x) = sinu(t, x),
U(O, 'r) = So(x)v

where ¢ is a bounded continuous function. Assume that «(?) is any function
such that
1

uO(t, z) = ENCDD Rsn exp <—

Moreover, if u(*) is already defined then u(

(z —y)?

ym ) e(y) dy.

v+1) is a solution of the following

2000 Mathematics Subject Classification: 35K10, 35K15, 35R10.
Key words and phrases: quasilinearization, iterative method, Cauchy problem.

[247] © Instytut Matematyczny PAN, 2007



248 A. Bartlomiejczyk

linear Cauchy problem:
dyu(t, x) — Ogpu(t, z) = sinu® (t,2) + cosu) (¢, z) - (u — u™)(t, z),
u(0,z) = ¢(z).

It is obvious that there exists a unique bounded continuous solution v =
w1 Since u(® satisfies the homogeneous equation

Pu® = 0, where P =09 — Oy,
we get the differential inequality
P — u@)(t,2)] < |sinu®(t, 2)] + |cos ul® (¢, z)| | () — uD)(t, z)|
<1+ (™ = uO) (¢, z)|.
Hence |(u") — u®)(t,z)] < et — 1 < tet on [0,a] x R. Similarly, we derive
the differential inequalities
’P(u(u+2) - u(l/-i-l))(t7 x)‘
< |sinu® (¢, 2) — sinu® (¢, z) + cos u™ (¢, ) (WY — uM) (L, z))|
+ [eosu TVt 2)] |(wF) — u V) (¢, )]
< @ —u) ()P 4 | (@) — D) (8, ).
This leads to the integral inequalities

1@ =) (e, )|
< @ = @) (s ) 4 | (@FD =) (s, )12} ds,
0

where || - || stands for the supremum norm. Applying the Gronwall lemma
we get

t

(2 —atF) () < F T = u®) (s, )7 e ds
0
te' max [|(u®+D —u)(s, )%

s€[0,t]

From this recurrent inequality, one can prove by induction on v that
@) —u®) (2, )| < (teh)* T P =e, forv=0,1,....

Let us recall that fast convergence of the approximating sequence {u(*)}
to the solution u* means that

(v+1) _ %
lu ”—>0 as v — oo,

lul) — ||

where || - || is the supremum norm.
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It is easily seen that the last estimate in Example 0.1 shows fast conver-
gence of successive approximations for ¢ € [0, a], provided that the interval
[0, a] is sufficiently small.

In [5] we have generalized the result sketched in our simple Example 0.1
to differential-functional equations with bounded data and bounded solu-
tions. In the present paper we give sufficient conditions for convergence in
the unbounded case with typical a priori estimates of solutions |u(t, z)| <
C exp(K|z|?).

The paper is organized as follows. Section 1 contains the formulation
of the Cauchy problem and theorems on the existence and uniqueness of
solutions in the class of continuous functions satisfying the growth condition
lu(t, )] < Cexp(K|z|?). We consider three cases:

(i) the unknown function appears in the functional argument u . in
the equation:
Pu(tv ZZ?) = f(tv Ly u(t,:c))a
and the fast convergence rate e,41/e, — 0 refers to the weighted

norms
Wt z) — u)(t,2)|

exp(¢(B)]z?)
(ii) the functional dependence concerns both the unknown function and
its derivative:

€, = sup

Pu(ta $) = f(tv T, U(t,z), 823”(1‘,,:1:))7
and the fast convergence rate €,41/e, — 0 refers to the weighted
norms

[ w) —u )| 0 () = ,u ) ()|
sup )
exp((t)]z[?) exp((t)|z[?)
(iii) the functional dependence involves the unknown function, but its
derivative has the classical form

€, =sup

Pu(t,z) = f(t, 2, ugp ), Ozult, ),
and the fast convergence rate €,11 /¢, — 0 refers to a weighted norm
analogous to (ii), but taking into account the singularities of d,u at
t=0".
Note that there is a significant difference between cases (ii) and (iii): in
case (ii) due to nontrivial functional dependence on Oyt q), the assumptions
on f and ¢ are stronger, and the solutions obtained are more regular; in
case (iii) the assumptions on f and ¢ are weaker, and the derivatives d,u
may admit singularities at t = 0.
Similar results concerning the existence and uniqueness of bounded so-
lutions can be found in [6]; compare also, e.g., [17] or [18].
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Section 2 contains convergence theorems for the quasilinearization
method in cases (i)—(iii) of unbounded solutions of problem (1)—(2). The
results of this paper are a natural continuation of [5] and [14].

1. Preliminaries

1.1. Formulation of the problem. Set R, = [0,00). The Euclidean norm
in R™ will be denoted by |- |. Let a > 0, 79, 71,...,7n € Ry, 7 = (71,...,7n)
and [—7, 7] = [—71,71] X -+ X [=Ty, Ty]. Define

E=(0,a]xR", Ey=[-7m,0]xR", E=FEyUE, B=]|—7,0x[-77]

The functional dependence in differential equations will be expressed in terms
of Hale’s operator. If u : Eg UE — R and (t,x2) € E, then the Hale-type
functional u; ;) : B — R is defined by

Ugg)(8,y) = u(t + s, +y) for (s,y) € B.

An analogous one-dimensional model z,(s) = z(t + s) for s € [—79,0] is
well known for ordinary differential-functional equations (see [9]). Using it,
one can generalize differential equations with delays, integrals and deviated
arguments (see [11]).

Let C(X) (resp. [C(X)]") be the set of all continuous functions from a
metric space X into R (resp. R"), and C'B(X) the continuous and bounded
functions from X into R. The supremum norm in C'B(X) will be denoted by
I - ||, and the norms and seminorms in function spaces by || - || with suitable
indices. Let u(t,z) = u(t, z1,. .., x,) be a sufficiently regular function. Write
Oy = 0/0t, 8; = 9/0zj, 0 = 8?/0x;0x; (j,l = 1,...,n). We also set 9, =
(01,...,0n).

Suppose that f : E x C(B) — R and ¢ : Ey — R are given functions.
Denote by w an unknown function of the variables (¢,2) = (¢,21,...,zy),
and by P the differential operator

n
Pu(t,z) = Owu(t,z) — Z aji(t, x)0ju(t, x).

Ji=1

In this paper we consider the Cauchy problem for a nonhomogeneous dif-
ferential-functional nonlinear parabolic equation

(1) ’Pu(t,:c) = f(t’xvu(t,x))
with the initial condition
(2) u(t,x) = o(t,z) on Ejy.

Condition (2) will be briefly written as u > ¢, to be read as “u extends ¢”
or “o is the restriction of u to Ey.”
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Among particular cases of equation (1) we distinguish the equation
(3) Pu(t,z) = 0.

We give a basic assumption on the coefficients of the differential opera-
tor P, which will be needed throughout the paper.

AsSSUMPTION 1.1.

(1) The operator P is uniformly parabolic, i.e. there is ¢/ > 0 such that

n

> ajlt,x)g6 > € forall (t,z) € E, £ € R™
Jl=1
(2) The coefficients aj; € CB(E) for j,l = 1,...,n satisfy the Hélder
condition

laji(t,w) —ap(@ @) < ([t + e =F*)  (,l=1,...,n)
for some constants ¢’ > 0, a € (0, 1].

Under Assumption 1.1, there exists the fundamental solution I'(¢, x; s, y)
of (3) (see [8], [13]) and we have estimates of I" and its derivatives.

LEMMA 1.1 ([8, p. 24]). If Assumption 1.1 holds, then there are kg, co,
c1,c2 > 0 such that

2
IT(t35,9)| < colt — 5)/? eXp<_M>7
2
10,1 (t, 5 5,9)] < er(t — s)~ T 2 exp <_M)7

2
DTt 7 5,9)), 103 (25 5, )| < calt — 5~ D/2 e [~ FolZ = U]
| (7 ) ’y)|7| jl ) ? ’y p

forall0<s<t<aandz,y eR" jl=1,...,n.
From Lemma 1.1 the following inequalities can be derived:
V In(tass,y)ldy<co, | 10,0(t 28,y dy <a(t—s)?
R” R
for j =1,...,n, where ¢y = co(47/ko)™?, € = c1(47/ko)™?. The constants
¢p and ¢; will be frequently used.
The Cauchy problem (1)-(2) is transformed to the integral equation
t

4) ult,z)= | T(t,2;0,9)0(0,9) dy + | | T(t,255,9)f(s,y,u(sy) dyds,
Rn OR"

where I'(t,x; s,y) is the fundamental solution of (3).
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1.2. Ezistence and uniqueness. We recall the main result of [4]. Let
L'[0,a] be the set of all real integrable functions on [0,a]. If x,y € R",
then we denote by (z,y) their standard scalar product.

DEFINITION 1.1. Let u € C(E).

1° The function u is called a C° solution of problem (1)-(2) if u coincides
with ¢ on Ep and it satisfies the integral equation (4) on E.

2° The function u is called a C%! solution of problem (1)—(2) if u is a C°
solution whose derivatives 0ju (j = 1,...,n) are continuous on E.

The integral equation (4) is known as the Cauchy formula and in those
terms our C” solutions can be seen as weaker than so called “mild solutions”
of the differential-functional problem (1)-(2) (see [10], [16]).

Let C* be the set of all functions 9 : [—70,a] — (0, 00) such that

(a) 9 is continuous and nondecreasing,
(b) ¥(t) = ¢(0) for t € [=79,0].
For any 1 € CT define the linear space
Koy = {u € C(B) 1 3u0 Y,y o5 lult, )] < ¢ exp((t)]o)}
and the corresponding weighted norm

lullay = sup —LABDL
(t,:c)EE‘ exp(¢(t)|a:| )

The set X, with the norm |[Ju|s,, is a Banach space.
Now, we formulate our fundamental assumption.
ASSUMPTION 1.2.
[¢)] The function v € CT satisfies the inequality
kot (s)
ko — 4y (s)(t — s)

where kg is the same constant as in Lemma 1.1.
[f] f(,2,w) € LY0,a], f(t,-,w) € C(R™) and there is a function my €

L1[0, a] such that

[ (t,2,0)| < ms(t) exp(y(t)]z*)  on E,

[¢] ¢ € C(Ep) and |p(t,z)| < K, exp(y(0)|z|?) for some K, > 0.

(5)

<¢Y(t) for0<s<t<a,

EXAMPLE 1.1. A simple example of a function v € C" satisfying (5) is

koC ko
— for0<t< —
b(t) =4 ko—4ct O =" a0

C for t <0,
where C' > 0 is such that ko/4C > a (see [15]).
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We start with a theorem on existence and uniqueness in case (i), i.e.
without dependence on 9,u.

PROPOSITION 1.1 ([4, Theorem 2.3|). Suppose that Assumption 1.2 is
satisfied and there are functions A\, A € L0, a] such that

|f(t7 z, w) - f(tv €, w)|
+ A1) lw — @] exp(~20(t)(|z].7))  on E x C(B).

Then there exists a unique C° solution u of problem (1)-(2) in the class Xa,y.

Now, we consider equations (1) with functionals of the derivatives, which
means that the right-hand side may contain not only u( ,, but also d;u );
in particular d;u(a(t, ), 8(t,z)) and §5 K(t,x,s,y, dju(s,y)) dy ds.

Define a new Banach space Xy, = {u € C(E) : u,d1u,...,00u € Koy}
with the norm

[Jullyy = max{[lullzy, O1ull2;p, - -, [|Onull2;p}-

PROPOSITION 1.2 ([4, Theorem 3.1|). Suppose that Assumption 1.2 is
satisfied and

(1) Oxp €[C(Ep)]™ and |0,p(t, z)| < K exp(p(0)|x|?) for some K >0,

(2) there are functions A\, \, \1, \1 € L[0,a] such that

(a) on E x C(B) we have the estimates
[f(t, @, w) = f(t,2z,w)| < At)]w(0,0) —w(0,0)]
+3(t) o — ] exp(~20(e) ], 7))
+ A1(8) |0z (w — w) (0, 0)]
+ M (0)[|02(w — W) || exp(—20 (1) (|, 7))
(b) there are 6 € (0,1) and v € C* such that for all t € [0, a],

fauat2(t = 925 { ) + Ko exp(u(s)l )
0

C

a2 2 () + T s) ()T | ds < 020,

1
Co
Then there ezists a unique C%' solution of problem (1)—(2) in the class Xy

Now, we give a theorem on the existence and uniqueness of solutions of
problem (1)—(2) with the Volterra functional dependence on u(-) and point-
wise dependence on J,u(t,x).
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We define an operator S : {v € C(FE) : lim;_,o+ \/'E’U(t,l‘) =0} —

C(E) by
Vtu(t,z) fort >0,
0 fort <0

Sv(t,z) = {

and a new Banach space X2";w ={u¢€ C(E) tu € Aoy, 0jSu € Xy} with
the norm

lullg,y = max{|[ullaw, 10ey Stullz, - -, 10k, Sull2i }-

PROPOSITION 1.3 ([4, Theorem 3.5|). Suppose that Assumption 1.2 is
satisfied and there are functions A\, A1, X € L'[0,a] such that

(1) on E x C(B) we have the estimates
|f(tv$a U}): f(ta ‘T’m)’ < )‘(t)|w(0’0) - w(0,0)‘
(0w — ] exp(~2(8) [z, 7)) + M (D)} (e — W) (0,0)],
(2) there are 6 € (0,1) and v € CT such that for all t € [0, a],

[V (0 52 (){ A(s) + As) expu (o)l

0

+ z—[l) (Ai(s) + A(s) 6Xp(¢(8)|ry2))} ds < 0~(t).

Then there exists a unique C*' solution u of problem (1)—(2) in X
Now we state an auxiliary lemma.

LEMMA 1.2 ([15, Lemma 1.2]). If 0 < B < A, then

n/2

s AB

X exp(—Alz — y’2 + B|y|2) dy = (m) eXP(A _ B |$|2>
]Rn

2. The quasilinearization method. In the quasilinearization method
one constructs a sequence {u()} such that u(?) € C(E) is given and v €
C(E) is a solution of the Cauchy problem
(6)  Pult,m) = f(t,z,uly ) + Ouf(tw,ufy ) - (u—u) )

(7) u(t,x) = p(t,z) on Ep,

where 0, f(t, x,ugty)m)) stands for the Fréchet derivative with respect to the
functional variable. Observe that equation (6) is still differential-functional,
but its right-hand side is linear with respect to u.

The convergence of the sequence {u(*)} depends on the initial function
19 and regularity of the operator d,,f.
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The functions v = u**1) defined as the solutions of (6)—(7) satisfy the
integral formula
t

®) u™(t2) =\ It 20,9)00,y)dy+ | | I'(t,2;5,9)
<{f(s,9u) )+ Ouf(s,y,ul)) - (@D —u) )Y dy ds.
We obtain the above equation by replacing the function f in (4) by the
right-hand side of (6).
We are now able to state the main result on the convergence of the
quasilinearization method. First, we make further assumptions on 9, f. They
feature a functional A : C'(B) — R that may have one of the forms below:

(f1) A(t, x)h = A()[1(0, 0)] + X(t) | All exp(~2¢(t)(|z], 7))
for h € C(B) and for some A, A € L0, al;
(£2)  A(t,2)h = A()|R(0,0)] + X(t) || All exp(~2¢(t) ||, 7))
+ A(0)[19:1(0, 0)|| + X(t)|9zh]] exp(=20 (1) (||, 7))
for h € C(B), 8;h(0,-) € C([—,7]) and for some A, A € L1[0, a;
(f3) At z)h = A(#)[h(0,0)]
X0 bl exp(=20(E) 2], 7)) + A (D1]8:A(0, 0)]
for h € C(B), 9;h(0,-) € C([-7,7]) and for some A, X\, \; € L1[0, a).
Therefore we obtain three different assumptions on 0y, f:
ASSUMPTION 2.5. There is a functional A : C(B) — R such that

(1) A has the form (f7),

(2) [Owf(t,z,w)h| < A(t,z)h for h € C(B), (t,z,w) € E x C(B),

(3) there is a function o : [0,a] x Ry — R, integrable with respect to
the first variable, continuous and nondecreasing with respect to the
last variable, such that o(¢,0) = 0 and
|[Ow f(t, 2, w) = O f (L, 2, W)]h]

< A(t,2)h- ot exp(—(®) o) Alt, 2) (w — )
on E x C(B).
THEOREM 2.1. Suppose that Assumptions 1.2 and 2.1 are satisfied and

there exists a continuous, nondecreasing function g : [0,a] — Ry which
satisfies the inequalities

9) o) 2 1 = u)[p, |25,
t

(10)  wo(t) > G [w(t)]™* [0 (s)[b(s)] ™ Ms){1 + o (s, v0(s)A(s))} ds,

0
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where X(s) := A(s)+A(s) exp(1p(s)|7]2). Then the sequence {u™)} of solutions
of problem (6)—(7) is well defined and almost uniformly fast convergent to u™*,
where u* is the unique unbounded C° solution of (1)-(2). The convergence
rate is characterized by the condition

() — w*) g, |20

—0 asv— o0
[ (™) —u*)| g, |2

(11)

fort €10, al.

REMARK 2.1. Recall that the almost uniform fast convergence means
uniform convergence on compact subsets with the convergence rate satisfying
evt1/ey — 0 as v — oo.

Proof of Theorem 2.1. The proof will be given in several stages. First,
we observe that the existence and uniqueness of a solution of (6)—(7) follows
from Proposition 1.1. Now, we estimate the differences u*+1) — ) for
v =20,1,.... Put o = o@D — ) Since u*+1) satisfies the integral
identity (8), and so also does u(**2), we have the integral error equation

t

WD (t2) = | § Dtswis, ) {5y, u(0h)) = s,y
OR"

+ 0 f (5,9, ul ) — 0 f s,y ul) ) Y dy ds.

By the Hadamard mean-value theorem, we get
1
v+1 v v v v
Fos i) = S0 C) = D00 lorwuily 4 ) e
Hence, we rewrite the error equation as follows:

t

S0 = | P 0 o) 0
0 Rn
1

(S) Owf(s,y,u E —i—Cw ) ((syy)y)d(—awf(s,y,ug)y)) g:)y)}dyds

From this equation, based on Assumption 2.1, we derive

t
v v v+1
WD (¢, 2)| < § (s, ) {10uf (2l O] )l
Rn

1
o)1 100 (50 4+ Col) = Duf (bl dC | dy ds
0
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< § 110335, 9) A (s5,9)] + X(3)lwls )l exp(=20(s)lyl, 7))
0OR"
1
+ §A6) @ (5,9)] + M) (), [l exp(~2e(s) [yl 7))
0

o (5. A($)|Cw® (s, 9)] exp(—(s)|ul) + A(s) [Cw ) |

x exp(—(s)| [yl + 712)] dc } dy ds.
By the monotonicity of o and the inequalities

[u(s, )| < llulp.llzw exp(@($)|y),  |ugsyl < lul, 2y exp(@(s)] 1yl +7I),

we have
t

W) < § 51T w5 5,)] exp((s)ly*)A(s)
ORm

< {w g, o + 05, 2 0 (5, X() [0 |, | 256) } dy ds,

where }\\(S) = A(s) + A(s) exp(1p(s)|7|2). Using the estimate of I" and Lemma
1.2 we get the recurrent integral inequality
t
1wVl < o[ (0] § [ ()] 72X I+ 2, Nl
0
1w, s (5, 100, g M) s < 11 (0),
where 9,41 : [0,a] — (0,00) for v =0,1... is defined by
t
(12)  uar(t) = QO [ [0(5)] A (5), Y (s) o (s, tu(5)A(s))
0
¢

< exp(@w(0)]"2 §[w(r)] /() dr ) ds.
Applying the Gronwall lemma, we get
¢
o g lap <Gl (0] § [1()] A |0, |20 0 (5, M(5) [0 3, | 2:0)
0
t

x exp (@ [w()]"/2§ [w(r)] 7 N(r) dr ) ds.

S
We now show that {w(”)} is uniformly convergent to 0. It is easy to

verify that the sequence {1, } of continuous nondecreasing functions is non-
increasing as v — 00. This can be verified by induction on v, applying the
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inequality
t

Do) (O] = T §do(s) [ (5)] > A(s){1 + o (s, d0(5)A(s))} ds.

0
Furthermore, using once more induction on v and (13) we have
(13) ||w(y+1)|Et ||2;w < ¢V+1(t) for all v = 07 1a s

From this we deduce that {1} converges to a limit function 1), where 0 <
P(t) < 1o(t). Letting v — oo in (12), we get

< P(t) = ol ()] {P(s) [ (s)) /2 X(s)o (s, 1 (a)A(s))

0
x exp (Gl [w(r)] /A7) dr ) ds.

By Gronwall’s lemma, we have 1) = 0. Since v, are nondecreasing functions
and (12) holds, we have
t

) P <O ] R ()06 (5)3()
v 0

x exp (@l (0] [w())A(r) dr ) d.

Recalling that o(s,-) is continuous and monotone, we observe that
o(s,(s)) \N0=0(s,0) asv— 0.
Since 1, \, 0 as v — o0, passing to the limit in (14) we get
Yu11(t)
Yo (t)

Hence by d’Alembert’s criterion, the series » 2, (t) is uniformly conver-

—0 asv— oo.

gent. Since ||w™)|g, [l2.p < 1 (t), {u")} is a Cauchy sequence. Indeed,

1 =), |12

< J|(u® - "H))lEtsz o TR — TR o,
S %(t) -+ wzﬂrk( )

Consequently, {u(*)} uniformly converges to a continuous function u*. We

now prove that u* satisfies (1). The initial condition (2), that is, u* = ¢, is
fulfilled, because u*) > ¢ and u*) — u* as v — oco. It suffices to make the
following observation. The integral equation (8) for the functions u*) and
u = u**Y is equivalent to problem (6)-(7). Then letting v — oo in (8) we
obtain the integral equality (4) with u = u*. By Proposition 1.1, u* is the
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unique solution of problem (1)—(2). The convergence rate is determined by
estimate (13) and condition (14). This convergence is faster than geometric.

Now, we show that condition (11) is satisfied. Subtracting (4) with u = u*
from (8) and performing similar estimations as in the case of Wt we get

1@ )l < Gl (02§ ()] 2A(6) {1 (@D = )] sy

O ey

+ 11 =), Nl o (5, M) | () =) s, [l2;)} dls.
By Gronwall’s lemma, we have

t

1(@®*Y — )|, N2 < Gl @] ()] 21w — u*)E, |2
0

x (s, | () = u)m, lazw) exp (Gl ()] | (1) /2 (7) dr ) ds.

Since the seminorm scale || - |g,||2;y is nondecreasing in ¢, we get
||(U(V+1) _ U*)|Et||2; B . t RPN ) .
O L <G [ [ [ ()] 2N (s)a (s, (™) — u)| g, l2w)
H(u —u )’EtHZﬂ) 0

t

x exp (& ()] [w(r)]/2X(r) dr ) ds — 0

s

as v — oo. This completes the proof of (11) and of Theorem 2.1. =

REMARK 2.2. Inequality (10) has a local solution. If the interval [0, a] is
sufficiently small, then there exists a solution of (10) which satisfies (9). In
particular, if we put o(s,r) = L (or L(s)), then a solution of (10) exists on
the whole interval [0, a]. If o(s, ) = Lr, then condition (10) has the Riccati
form.

Now, we discuss case (ii).
THEOREM 2.2. Suppose that Assumptions 1.2 and 2.2 are satisfied and

1) 9pp€[C(Ep)]" and |0x¢(t, )| < K exp(1(0)|z]?) for some Ky >0,
2) there are 6 € (0,1) and v € CT such that for all t € [0, a,

t

[ {eova(t — )72 + & y(s)A(s) ds < 07(1),
0

3) there exists a nondecreasing, continuous function o : [0,a] — R4
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which satisfies the inequalities

o) = | = u )|, |5y,

Yo(t) > [W®)]"2 [ {20 + &t — s) 72w ()] 2 X(s)
0
X {1+ 0 (s, %0(s)\(s)) }o(s) ds
where A(s) == A(s) + A(s) exp(yp(s)|7]2).
Then the sequence {u")} of solutions of (6)—(7) is well defined and uniformly

fast convergent to u* with respect to the seminorms || - |g,||5.,, where u*

is a unique unbounded C%' solution of problem (1)—(2) in the class Xy
Furthermore,

(Y — )|l

1(ut) = w*)]k, 15,y

—0 asv—

fort € (0,al.
Proof. We only give the main ideas of the proof. Observe that

o+, |2
t

< GO § ()] A 5, 2 + 10205, 1270
0

+ o £, N2 + [0:0®| 2, 2o (s, W] 5, ]2 A(5)
+ 1020 1, |29 A ()} ds.

Introducing the seminorms

iz = 11 122 + 102 (| 2) 250

we can write the above inequalities in the following way:

~+

w5 oz < Gl ()] [ [8(5)] /> X(s)
0

AV, g + 1002, Vg0 (s, 0|, o A())} ds

and

o~

102w |, 12 < & [0 (O]2 ] (£ = )7 2[p(5)] 2 A(s)
0

X w5l + 102 g0 (5, 100|515, A(5))} ds.
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Adding these inequalities and applying the definition of || - |g, H’2w we get

t

w5 1 < (O] § {20 + 21t = )M ()] 2 A(s)
0

X AV, o + 10|, s o (5, 10|, i X))} ds.

Now, we define 9,41 : [0,a] — Ry by

Y1 () = ()] {G0 + 1 (t — 5)7 2} (s)] /2 X(s)

O e

X {thu11(8) + o (s)o (s, u(5)A(s)) } ds,

and repeat the arguments in the proof of the previous theorem. m

REMARK 2.3. The function A of Theorem 2.2 can be replaced by a more
general one,

At )h = A1) |h(0,0)] + X(75)||h||~e><p(—21/)(1t)<I9E!, 7))
+ A ()[1021(0, 0) | + M () [|0h]| exp(=2¢ () (|, 7))

for A\, A1, X,Xl € L'[0, a]. The proof of such a generalization of Theorem 2.2
is more technical and complicated. In fact, it can be reduced to Theorem 2.2
on a shorter interval [0,a] by taking a new A, equal to the sum of A\, Ay,

X AL

It is easy to formulate results on the convergence of the quasilinearization
method for unbounded solutions in case (iii). The proof is based on the same
idea as for the previous theorems, the main difference being that the weaker
assumptions on ¢ and f lead to singularities of 9,u at t = 0 and the norm
|| - Il5,, takes account of these singularities.

THEOREM 2.3. Suppose that Assumptions 1.2 and 2.3 are satisfied and

1) there are 0 € (0,1) and v € C such that for all t € [0, al,

t

[V (e )22 {As) + o) exp(u(s) )

0

+ z_[l) (M(s) + X(S) exp(¢(3)|7]2))} ds < 0y(t),

2) there exists a nondecreasing continuous function iy : [0, a] — Ry such
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that

do(t) = 11 = )| 5,15y,
dolt) > (]2 | (5o + VA (t — 5) V2 [(s)] "R (5)

0
x {1+ o (s, o(s)M (s)) }o(s) ds,
where A1 (t) = AE)VE and A (t) = A(t) + A(t) exp((t)]z]2) 4+ AL (t).

Then the sequence {u™} of solutions of (6)—(7) is well defined and uniformly

fast convergent to u* with respect to the seminorms || - |g,|3.,, where u*

is a unique unbounded C*' solution of problem (1)—(2) in the class é’w

Moreover,
() — )5, |15,

—0 asv— o0
[(u®) —u*)|g,|[5,,

for t € (0,al].

The proof of the above theorem is similar to the proof of Theorem 2.1.
We omit the details.

REMARK 2.4. Theorems 2.1-2.3 have a similar structure with different
functionals A which estimate the derivative 0,,f. If A has the form (f1),
then 0, f is weighted Lipschitzean with respect to u(t,r) and w4 If A
has the form (f2) or (f3), then the right-hand side is additionally Lipschitz
continuous with respect to d,u(t, x), and (only in the case (f2)) it is weighted
Lipschitzean with respect to d,u( ;). The same comment is valid concerning

the differences of 0, f.
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