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Sufficient conditions for starlike and convex functions

by S. PoNNUSAMY and P. VASUNDHRA (Chennai)

Abstract. For n > 1, let A denote the class of all analytic functions f in the unit
disk A of the form f(z) = z + > 70, arz". For Rea < 2 and v > 0 given, let P(v, )
denote the class of all functions f € A satisfying the condition

7'(z) —af?

z
We find sufficient conditions for functions in P(7, @) to be starlike of order 8. A general-
ization of this result along with some convolution results is also obtained.

+a—-1/<v, z€A.

1. Introduction and main results. Let A and S represent the classes
of all normalized analytic functions f (f(0) = f/(0)—1 = 0) and all univalent
functions in the unit disk A = {z : |z| < 1}, respectively. Also, let $*(53)
and C(3) represent the subclasses of S consisting of the starlike and convex
functions of order g (0 < 8 < 1), respectively. Analytically, for 0 < g < 1,
these are defined as follows:

2f'(2)
S*ﬁz{féS:Re( >>6,z€A}
) )
and K(8) ={f €S :z2f'(z) € S*(B)}. Also, let
R(B)={feA:Ref(2) >3, 2€ A}.

Consider the linear transformation A on A defined by

[ 9(t2)
Ag(z) :=G(z) = S J tz dt.
0
Here Ag is often referred to as the Alexander transform of g, and we have
2G'(z) = g(z). Since zg' € §*(B) if and only if g € K(3), Ag(z) := G(z)
provides a one-to-one correspondence between $*(3) and (). At this point
it is interesting to recall a well known result [4, Theorem 8.11] that there
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exists a function go € S such that Agp(z) = Sé t~1go(tz)dt ¢ S. Note that
if G(z) is the Alexander transform of g, then G satisfies the differential
equation
G'(2) +2G"(2) = ¢'(2).
The following weighted integral operator has been considered by a num-
ber of researchers (e.g. [7, 10, 11]):

(1.1) Va(9)(2) = | A() dt, geA,

where A(t) is a non-negative real-valued function on [0, 1] normalized by
S[l) A(t) dt = 1. In the special case of A(t) = 1, V\(g)(z) reduces to the Alexan-
der transform of g. A natural problem is:

PROBLEM 1.1. Do there exist conditions on A(t) and a family G C A so

that g € G implies that V\(g) is in S or 8* or K or any other interesting
subclass of §¢

The above question is motivated by a general result due to Fournier and
Ruscheweyh in [7] which has already been extended in a number of ways
(see [10, 2, 1, 11]). For example, one has

COROLLARY 1.1 ([7]). Let B =1 —1/2(1 —log2) ~ —0.6294 and let
g € A satisfy the condition Re{e’®(¢'(z) — B)} > 0 in A for some ¢ € R.
Then the Alexander transform Ag is starlike, and the value of 3 is sharp.

It is interesting to look at a perturbed version of Corollary 1.1. In this
case,
AMt) = (1)t o >0,

for which the corresponding Vy(g)(z) = f(z) in (1.1) is known as the
Bernardi integral operator [3] and it satisfies the first order differential equa-
o f(z) (2)
z 9(z
1— )2 "(2) = 2222
(- Py =22
which in turn implies that

f'(2) + azf"(z) = ¢'(2).
Thus, we have the following reformulated version of a result from [7].

COROLLARY 1.2. Let a« > 1/3 and 3 be given by

1
_ 1 St—l—i-l/a 1-1 it

(12) o 1+t

B _
1-0 o
If f € A satisfies the condition Re{e'®(f'(z) + azf"(z) — B3)} > 0 in A for
some ¢ € R, then f is starlike, and the value of (8 is sharp.
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We remark that the above two corollaries coincide in the case of oo = 1.
Now, for a € C and v > 0, define

PW¢0:{f€A:

In a recent paper, Ponnusamy and Singh [12] obtained the following result,
which is in fact a reformulation of their result via a simple transformation
a— —af(l—a).

THEOREM 1.1 ([12, Corollary 2, p. 143]). If a < 0 and f € P(v, ),
then f € 8* provided

f’(z)—a@—i—a—l

S*y,zGA}.

2 -« , 1—3
L) 20a) ifos——,

Our main aim is to extend Theorem 1.1 and the results of [6]. We state
our first result.

THEOREM 1.2. Let o € C with Rea < 2. Define

Y1(e, B) =sup{y > 0: P(y,a) C S*(3)}.
Then

B ' |1+ 4T
n(a,B) = [2 - al(1 —ff%%{\z_a\ Fla— B+ —mm}'

For real values of «, Theorem 1.2 takes the following simple form.

COROLLARY 1.3. Let o < 2 and
36+ 2— /982 — 208 + 12

B =
4
Then P(vy,a) C S*(B) for 0 <~y <y (e, ), where
W if ﬁ <a<2
2—a)(1 = p)
7 (o, B) = 2(1?01)_'_5 if o< p,
2-—a)y/1-—a)l+a—-28) 1
Vbh —4da —26(1 - a) ZfﬁléaSQ—ﬁ'

The result is sharp.

The proofs of Theorem 1.2 and Corollary 1.3 are presented in Section
2 and we adopt the approach of Fournier and Mocanu [6]. If we let zf" €
P(v, a), then Corollary 1.3 takes the following equivalent form.
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COROLLARY 1.4. Let o < 2, 31 and vy1(a, 3) be as in Corollary 1.3. If
0 <7 <l(a,pB) and f € A satisfies the condition

2" (2) + (1= a)f'(z) +a =1l <y  forz €A,
then f € K(B). The result is sharp.

REMARK. When g = 0, Theorem 1.2 and Corollary 1.3 give recent re-
sults obtained in [6, Theorem 1 and Corollary 1], which indeed extend The-
orem 1.1. Moreover, for « = 1, Corollary 1.4 yields the following:

(i) HO<~y<(1-p)/(2—0), then |zf"(z)| <~ implies f € (). The
result is sharp as seen by considering the function f(z) = z+(7v/2)z2.

(i) If
2v1-28 if0<p@<1/4,
5—20
e 20=5) 1< 1
T A

then |f’(2) — 1| < v implies that f € S*(8). The result is sharp. In

particular, we have the following well known result [14]:
{feA:|f'(z) -1 <2/V5,z2€ A} C &

and 2/4/5 cannot be replaced by a larger number (see Fournier [5]).

Our next theorem gives sufficient conditions for the derivative of a func-
tion in A to have real part positive.

THEOREM 1.3. If a € C with Rea < 2 and y2(a,3) = sup{y > 0 :
P(v,a) C R(B)}, then

_(1=-8)2-q

72(0‘7/8) - ’2—Oé|+|0é| .

The result is sharp.

The proof of Theorem 1.3 is given in Section 2. For the proof of the sharp-
ness parts of our results we need the following lemma due to Ruscheweyh [5].

LEMMA 1.1. Given 0 €R, there exists a sequence {Wy} C By of functions
analytic in the closed unit disk A such that Wi(1)=1 and limy_, Wi(2) =
ez uniformly on compact subsets of A\{1}. Here By = {f € H : |f(2)| <1,
f(0) =0}, and H denotes the family of analytic functions in A.

For f(z) =Y 2 yanz" and g(z) = > 2 bp2™ analytic in the unit disk,
let

(f*xg)(z Zanbz z € A.

Finally, we recall the well known fact observed by Ruscheweyh:
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LEMMA 1.2. Define

s ={

~n+1—3+(1—-73)iT .

;) 1-p)A+iT)

An analytic function f(z) =z + > 0" 5 anz™ belongs to S*(B3) if and only if
z

z

:TGR}.

#0 inz€ A foral he (S*p)).

For our final application, we require the following result.

LEMMA 1.3. If p is analytic in A, p(0) = 1, and Rep(z) > 1/2 in A
then for any function F analytic in A, the function px F' takes values in the
conver hull of the image of A under F'.

The conclusion of Lemma 1.3 readily follows by using the Herglotz rep-
resentation for functions with positive real part.

2. Proof of main results. The proofs of our theorems mainly rely
on [6].

Proof of Theorem 1.2. Suppose that f € P(v,«). Then, by definition,
we have
f(z)

f’(z)—a7+a—1:7w(z)

for some w € By. Let w(z) = > 7 an(w)z", z € A. Then

(2.1) _z_'_fyzn—i—l—a +

To show that f € §*(3), by Lemma 1.2, it suffices to prove that

1+y) ( YT )z £0 inA

which is clearly true if yM (o, 3) < 1, where v1(, 8) ' = M (o, B) with

_ o~ _n(w) (m+l-f+ (10T
M(a,8)= sup z_:ln—i-l—a( 0 B)(1+iT) )z,
z€eA N
weBg

Define a functional I over By as

I(w) = Z M‘

:ln—i—l—a

As observed in [6], the functional I is well defined and continuous on By.
Thus, by the compactness of the class By, there exists a function B, in By
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such that

[1(Ba)| = sup [I(w)].

weEBy

For a fixed z € A, we have
Z n+1—-p0+1-p):T n
n+1—a (1-0)(1+:T)

a—pF+(1-p
(1-p83)1+4T) Hzn+1—a ’

e P

< 1 a— B+ (1-p)iT
~ (1 =B 44T (1=08)(1+4T)

which gives the following upper bound for M («, (3):

a—pB+(1- )zT‘
[(Ba)l -
(1= pB)(1L+iT) ¢
It is now easy to prove that equality holds in the above inequality, that is,
the bounds are sharp, which proves the sharpness of the result. Proceeding

as in the proof of [6, Theorem 1], we deduce that there exist T, € RU {o0}
and o € R with

17501

1
o) < e { i

Ba(l) O‘_ﬁ—f—(l_ﬂ)iTa = an(BOé) eig
1-B)(1+iTs)  (1=-P)(1+iT) “n+l-a
B 1 oz—ﬁ+(1 B)iT, B
- (1 _ ﬁ)|1 +iTa| ( )(1 + 4T, ) ’I(Ba)‘v |Ba(1)| =1

Observe that if T,, = co, then the value of the above expression tends to 1
and therefore the corresponding 1 (v, 3) is |2—«/|. Now, by Lemma 1.1, there
exists a sequence {W},} in By such that Wy, (1) = 1 and limy_.o, Wi(2) = %z
in By. Then w(z) = By (2)Wg(z)/z does the job. This proves the required
result by observing that |I(w)| < 1/|2 — «|. Indeed, we have equality in the
last inequality, which is proved exactly as in the proof of Theorem 1 in [7]. m

Proof of Corollary 1.3. If « is real and o < 2, then v1(«, 3) defined in
Theorem 1.2 becomes

) [0 VT ]
N e
It is clear that 1 (a, ) = (1 — B8)(2 — «) infy>0 ¥(z), where
Vite
2—a+/(a=p)2+ (15

P(x) =




Starlike and convex functions 283

and
v(a) = Al
2Ttz (a—B)2+ (1 -082z[2—a+/(a—B)2+ (1— )%
where N(z) = (2 — a)y/(a—B)2+ (1 = B)2z — (a +1—28)(1 — a).
Since a < 2, N'(z) > 0 for all z > 0 so that N(z) is increasing function
of .

CASE (i). Let @ > 1/(2 — ). This implies that o > § and we have
N(z)>N(O0)=(2-a)(a=p) = (a+1-28)1-a)=a2-0) -1,
so that N(0) > 0 as @ > 1/(2 — 3). This in turn implies that ¥ (x) is an

increasing function for all x > 0 when o > 1/(2 — 3). Therefore,

1
g%iﬂ@) =(0) = -5

Cask (ii). Let a < 31 = [33+2 — /982 — 208 + 12]/4. Then a compu-

tation shows that 8 > o and
N(0) =20 — a(36+2) +45 — 1.
Therefore, N(0) > 0 if and only if o < 3. This implies that
1

CASE (iii). In the case of N(0) < 0, since N(z) is an increasing function
and N(x) > 0 for large x, we see that there exists a unique zy such that
N(xzg) = 0. Thus, ¢(x) is decreasing for x € (0,x¢) and ¢ (z) is increasing
for x € (xp,00). Therefore, a minimum is attained at z¢. Now, solving for
o gives

2

Nian) =0 & (a5 + (18P = (322 ) (1+a - 20

from which we can easily obtain the relation
(I-a)(14+a—-20) [5 —4da—245(1 —a)}

(1- 97 e-a® |
A simple computation shows that
(o) = VA—a)1+a—-28)(5—-4a—28(1- )

1=0)2-a)?+ 1 -a)l+a-20]
It is important to note that o > 31 implies a > 23 — 1, so that
VI—a)(1l+a-28)

(1-73)y/5—4a—26(1—a)
and therefore inf, >0 ¢(z) = ¥(z0). =

1+x29=

Y(z0) =
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Proof of Theorem 1.3. We know that Re f/(z) > 3 if and only if

, J—
M # —iT  forall T € R.
1-p
Let f € P(v, «). Then by the above, f € R(3) if and only if
gl o~ (n+ Dag(w)
2.2 —1.
(2:2) U—5XL+HUZ; nil—a © 7
Let
n+ 1)a,(w
M = "
(. 8) = sup 77 \1+zTy'Z ntl—a E
z€EA
weEBy

so that M (a, B) < 1 is necessary for (2.2) to hold. Now, observe that

|1+2T|‘Z
o]

|1+le Zn+1—a

1 1 [1+ la }
sup , .

1= per [L+iT] 2 -«

M(a, ) < ——

1-— ﬁ TeR weBo [

IN

Hence, we have
(1 +4T)|2 - af (1-p)[2—qf
a,B) < (1—0) inf = .
2 B) < 5)T€R( lal + |2 — ¢ la| + 12 — af

Following the proof of Theorem 1.2 for sharpness, we can easily see that
equality holds in the above relation. m

3. Another generalization and applications. As a motivation for
our next result, we consider

(a+DO+1) , —ay
(3.1) A(t) = Wt (1—t"%) if b+#a,
(14 a)?t*log(1/t) if b=aq,

which means that (1.1) has the form

( 1

D(b+1)
(a+ i St“ L1 — $=9)g(tz) dt
0

Wa(9)(2) = : ifb#£a,b>—-1,a>—1.

(14 a)? S t" log(1/t)g(tz) dt ifb=a,a>-1.
0
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We define Hy(a, b; z) := Vi(g)(2) when A(t) is as in (3.1). If we let
H(z) = Hy(a,b; 2),

then the function H satisfies the second order differential equation

(3.2) 2Z2H"(2) + (a+ b+ 1)2H'(2) + abH(2) = (1 + a)(1 + b)g(z).

Clearly, letting b — oo in Hg(a, b; z) we get the Bernardi operator. Properties
of Hy(a,b; z) have been studied recently in [9] by the method of differential
subordinations (see also [10, 2, 1]). In some cases the integral transform (1.1)
leads to convolution involving classical special functions. For example, if we
consider the differential equation (3.2) for complex values of a and b, then
the solution to (3.2) in series form is given by

(@t DB+ ,
(a+n (b+n)

- (z—i—z Zj:;?) z")*g(z).

We observe the symmetry Hy(a,b; z) = Hy(b, a; z), and note that the series
form of H represents an analytic function on A if Rea > —2 and Reb > —2.
Thus, an important question is to decide for which values of ¢ and b the
function g € A satisfying the condition

‘9(2) _1‘ <4
z

(3.3) Hy(a,b; 2) —z+Zan

has the property that H, given by (3.3) is starlike of order 3. Now, we are
in a position to formulate our final result, which answers this question.

THEOREM 3.1. Let a,b € C with Rea > —2, Reb > —2, and let f € A
satisfy the condition

f2)

(3.4) :

2f"(2) + (a+b+1)f(2) + ab

—(1+a)(1+b)'§7

Then:

(i) f € S*(B) whenever a # b and 0 < v < 73, where
f[ 12+ al|2+0||b—al(l—B)V1+T? ]
Ter 24+0blla+ 08— (1—=B)iT|+ |2+ allb+ 6 — (1 —B)iT||
(ii) f € §*(B) whenever a =b and 0 < v < 74, where
)[ V14172 ]
2+al++/(a+B)2+ (1-p)°T2]

Y3 =

= inf 212(1 —
Y4 %ER’“+ °(
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In particular, if a is real and a > —2, then

(2+a)%(1 - B) .
2(1+a)+ 3 $az-h,
_ ) C+a)VA+a)(d-a-23) . -1
e V5 +4a—28(1+a) v ﬁlzaz?—ﬂ’
2+ a)’(1— ) .-l
[ 2-5 Vemprest

Proof. Ifw(z) =Y 77 1 an(w)z" € By and f(z) =Y .2, an(f)z" satisfies
(3.4) then

2f(2) + (a+b+1)2f(2) + abf(2) — (14 a)(1 4 b)z = yw(2),
from which one obtains

_ - an(w) n
/) _z”;(nm)(mb)z '

By Lemma 1.2, f € §*(3) if and only if

(3.5)

Y 2 (n+1=6+(1=p0)iT)ans1(w)z"
(1_5)(1‘HT)Z (n+1+4a)(n+1+0) # -1

(i) Let a # b. Then, by (3.5), f € §*(/) if and only if the series

/(b —a) ~[—(a+8)+ (1= B)iT —(b+8)+(1-B)iT n
(1+4T) 2 [ n+1+a)i—8)  (n+1+b)(1-5) }“”“(w)z
does not assume the value —1. Repeating the proof of Theorem 1.2, for

Rea > —2 and Reb > —2, we see that the above holds for 0 < v < 73,
where

i:sup 1 [\G-Fﬁ—(l—ﬁ)m ’b‘i‘ﬁ—(l—ﬁ)iﬂ]
¥ Ter|b—alV1+ T2 [2+a|(1-p5) 2+0[(1-6) |

This in turn implies that

~ inf [ 2+ al 24 b][b—al(1 - B)VI T T2 ]
= R 240b|la+B—(1—=B)T|+[2+allb+ B— (1— B)iT]|

and the proof of the first part is complete.
(ii) Let a = b. Then

—z—l—’yz n+a

and so (3.5) may be rewritten as

[e.e]

? L (et B)- (1= BT .
(1—,3)(1—}—1"1—’)712::1 |:n+1+a_ (n+1+a)2 :|an+1(w)2’ # —1.




Starlike and convex functions 287

As in part (i), this holds for Rea > —2 if 0 < v < 74, where 74 is given by

1 < 1 1 la+ 03— (1—p3)iT|
— up
Y4 rer (1 —B)V1+T2|[2+a] |2 + al?
Finally, if a is real and a > —2 then, since the square-bracketed term
in the expression for 74 is similar to the function ¢(z) defined in the proof
of Corollary 1.3, the desired conclusion is easy to obtain. So, we omit the

details. =

In the case of a # b with a and b real, if we replace a by —a, v by
v|(a+1)(b+1)], and allow b — oo, then f satisfying (3.4) is equivalent to
saying that f € P(v,«). Thus, Theorem 3.1(i) extends Theorem 1.2 from
two-parameter to three-parameter families.

Our final application is a consequence of Lemma 1.3 and Theorem 1.2.

THEOREM 3.2. Let o € C with Rea < 2, and let v1 = v1(a, 3) be as in
Theorem 1.2. Suppose that f € P(y1,a), g € A and h= fxg.

(1) If Re(g(2)/z) > 1/2 in A, then h € S*(B).

(2) If Reg'(2) > 1/2 in A, then h € K(3).

Proof. It is a simple exercise to see that

h
h'(z)—aﬁjta—l: (f’(z)—a&+a—1> *M
z z z

and

2h"(2)+ (1 —a)h(2)+a—1= <f’(z) -« @ +a-— 1> * g (2).

The desired conclusion follows from Lemma 1.3. =

Using the theorems proved in [8], it is possible to state several results
similar to Theorem 3.1, by requiring g to be an element of various classical
subclasses of functions analytic in A.

We conclude the paper with a final remark. The general principle be-
hind the problems discussed in this paper is essentially a simple differential
subordination of the form

2p'(2) +ap(z) < a+7vz, z€ A.

Consequences of this subordination have been studied in detail, along with
a number of similar subordination results, for example by Ponnusamy and
Singh [12, 13].
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