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Invarian
e in the 
lass of weighted quasi-arithmeti
 meansby Justyna Jarczyk (Zielona Góra) and
Janusz Matkowski (Zielona Góra and Katowi
e)

Abstra
t. Under the assumption of twi
e 
ontinuous di�erentiability of some of thefun
tions involved we determine all the weighted quasi-arithmeti
 means M, N,K su
hthat K is (M, N)-invariant, that is, K◦(M, N) = K. Some appli
ations to iteration theoryand fun
tional equations are presented.1. Introdu
tion. In the whole paper I ⊂ R denotes an interval. Afun
tion M : I2 → R is said to be a mean on I if
min(x, y) ≤M(x, y) ≤ max(x, y), x, y ∈ I.If M : I2 → R is a mean, then M is re�exive, that is, M(x, x) = x forall x ∈ I and, 
onsequently, for every interval J ⊂ I we have M(J2) = J ; inparti
ular, M(I2) = I.If α : I → R is a 
ontinuous stri
tly monotoni
 fun
tion and p ∈ (0, 1)then A[α]

p : I2 → I, given by
A[α]
p (x, y) := α−1(pα(x) + (1 − p)α(y)), x, y ∈ I,is a mean; it is 
alled a weighted quasi-arithmeti
 mean with generator α andweight (p, 1 − p). In the 
ase α = id|I the mean A[α]

p be
omes the weightedarithmeti
 mean and is denoted by Ap; thus Ap(x, y) = px + (1 − p)y. Wewrite simply A instead of A1/2.Let M,N : I2 → I be means. A mean K : I2 → I is said to be invariantwith respe
t to (M,N), brie�y (M,N)-invariant, or K is 
alled the Gauss
omposition of M and N (
f. [3℄, [5℄), if K ◦ (M,N) = K.Fix p, q, r ∈ (0, 1). Assuming twi
e 
ontinuous di�erentiability of someof the fun
tions involved we determine all triples (α, β, γ) and (p, q, r) for2000 Mathemati
s Subje
t Classi�
ation: Primary 26E60; Se
ondary 39B22.Key words and phrases: mean, fun
tional equation, invariant mean, quasi-arithmeti
mean. [39℄



40 J. Jar
zyk and J. Matkowskiwhi
h the weighted quasi-arithmeti
 mean A[α]
p is (A

[β]
q , A

[γ]
r )-invariant, i.e.

A[α]
p ◦ (A[β]

q , A[γ]
r ) = A[α]

p(1)(see Theorem 2 in Se
tion 4).The 
ase when p = q = r = 1/2 (
alled simply the 
ase of quasi-arithmeti
 means) has a long history. The analyti
 solutions were foundby O. Sut� in 1914 [7℄. The twi
e 
ontinuously di�erentiable solutions aregiven in [5℄. Moreover, 
ontinuously di�erentiable solutions were found byZ. Daró
zy and Zs. Páles [2℄, and �nally, without any regularity assumption,the problem was solved by Z. Daró
zy and Zs. Páles [3℄ (
f. also [1℄ as wellas [3℄ for further referen
es).The fundamental role for Theorem 2 will be played here by Theorem 1in Se
tion 4, 
on
erning the 
ase of α being the identity fun
tion. In theproof of Theorem 1 we need a 
hara
terization of 
onditionally homogeneousweighted quasi-arithmeti
 means given by Proposition 1 proved in Se
tion 2and by the lemmas of Se
tion 3.In Se
tion 5 we also apply Theorem 1 to establish the limit of the iterationsequen
e of some mean type mappings (Remark) and to solve a fun
tionalequation (Theorem 3).2. Conditional homogeneity of the quasi-arithmeti
 mean. De-note by CM(I) the 
lass of all 
ontinuous stri
tly monotoni
 fun
tions de-�ned on I. In the proof of Theorem 1 we need the followingProposition 1. Assume that I ⊂ (0,∞). Let q ∈ (0, 1) and σ ∈ CM(I).The mean A[σ]
q is 
onditionally homogeneous, i.e.

A[σ]
q (sx, sy) = sA[σ]

q (x, y)for all x, y ∈ I and s > 0 with sx, sy ∈ I if , and only if , there are a ∈ R\{0}and b ∈ R su
h that either
σ(x) = axη + b, x ∈ I,for some η ∈ R \ {0}, or
σ(x) = a lnx+ b, x ∈ I.Before proving this proposition we will �nd the form of so-
alled 
ondi-tional lo
al groups of 
ontinuous a�ne maps.Proposition 2. Let {Xs}s∈S , where S ⊂ R is an interval 
ontaining 0,be a family of subsets of R and let F :

⋃

s∈S{s} × Xs → R. Assume that
F (·, u) and F (·, v) are 
ontinuous for some di�erent u, v ∈

⋂

s∈S Xs and
F (s, ·) is 
ontinuous a�ne for every s ∈ S. Assume also that for every
s, t ∈ S with s+ t ∈ S there is an at least two-element set Us,t ⊂ Xs ∩Xs+t
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h that
F ({s} × Us,t) ⊂ Xt(2)and

F (s+ t, u) = F (t, F (s, u)), u ∈ Us,t.(3)Then either F is 
onstant , or there is an interval S0 ⊂ S 
ontaining 0 andsu
h that
F (s, u) = cs+ u, s ∈ S0, u ∈ Xs,(4)with a c ∈ R, or

F (s, u) = cs1(u− c2) + c2, s ∈ S0, u ∈ Xs,(5)with some c1 ∈ (0,∞) and c2 ∈ R.Proof. Let m : S → R and k : S → R be su
h that
F (s, u) = m(s)u+ k(s), s ∈ S, u ∈ Xs.(6)Taking any u, v ∈

⋂

s∈S Xs, u 6= v, su
h that F (·, u) and F (·, v) are 
ontin-uous we see that m and k are 
ontinuous as linear 
ombinations of F (·, u)and F (·, v).Fix any s, t ∈ S with s + t ∈ S and 
hoose a Us,t ⊂ Xs ∩Xs+t with atleast two points, satisfying (2) and (3). Taking an arbitrary u ∈ Us,t andusing (6), (3), and again (6), we get
m(s+ t)u+ k(s+ t) = F (s+ t, u) = F (t, F (s, u))

= m(t)(m(s)u+ k(s)) + k(t)

= m(s)m(t)u+m(t)m(s) + k.Consequently,
m(s+ t) = m(s)m(t)(7)and

k(s+ t) = m(t)k(s) + k(t)(8)for all s, t ∈ S with s+ t ∈ S.Assume that m(s0) = 0 for some s0 ∈ S with −s0 ∈ S. By (7) we get
m(0) = m(s0)m(−s0) = 0,when
e, again a

ording to (7), we have m(s) = m(s)m(0) = 0 for all s ∈ Sand, 
onsequently, k is 
onstant by (8). Then, on a

ount of (6) also F is
onstant. Now we 
an assume thatm does not vanish in a subinterval S0 ⊂ S
ontaining 0 and, in addition, satisfying S0 + S0 ⊂ S. Then, by (7), m|S0

ispositive.Sin
e (7) is a multipli
ative version of the restri
ted Cau
hy equation,with the use of 
ontinuity arguments and making use of [4, Theorem 2,



42 J. Jar
zyk and J. Matkowskip. 327℄ we infer that there exists a c1 ∈ (0,∞) su
h that m(s) = cs1 for all
s ∈ S0.If c1 = 1 it follows from (8) that k(s + t) = k(s) + k(t) for all s, t ∈ S0and, again by [4, Theorem 2, p. 327℄, we �nd a c ∈ R su
h that k(s) = csfor all s ∈ S0. Consequently, on a

ount of (6) we have F (s, u) = cs+ u forall s ∈ S0 and u ∈ Xs.Now assume that c1 6= 1. Then, by (8), k(s + t) = ct1k(s) + k(t) for all
s, t ∈ S0. By symmetry k(s+ t) = cs1k(t) + k(s) and

k(s)

1 − cs1
=

k(t)

1 − ct1
, s, t ∈ S0 \ {0}.Thus there exists a c2 ∈ R su
h that k(s) = c2(1 − cs1) for all s ∈ S0.Consequently, by (6), we have F (s, u) = cs1(u − c2) + c2 for all s ∈ S0 and

u ∈ Xs.Proof of Proposition 1. Without loss of generality we may assume that
int I 6= ∅.Assume that A[σ]

q is 
onditionally homogeneous, that is,
σ−1(qσ(sx) + (1 − q)σ(sy)) = sσ−1(qσ(x) + (1 − q)σ(y))(9)for all x, y ∈ I and s > 0 with sx, sy ∈ I. Fix an x0 ∈ int I and put

u0 = σ(x0). Then u0 ∈ intσ(I) and there exist δ > 0 and δ0 > 1 su
h that
σ(sx0) ∈ (u0 − δ, u0 + δ)(10)for all s ∈ (1/δ0, δ0) and sσ−1(u) ∈ I for all s ∈ (1/δ0, δ0) and u ∈ (u0 − δ,

u0+δ). In parti
ular, (u0−δ, u0+δ) ⊂ σ(I). Put S = (− ln δ0, ln δ0). De�ning
F : S × (u0 − δ, u0 + δ) → R by

F (s, u) = σ(esσ−1(u))we 
an rewrite (9) in the form
F (s, qu+ (1 − q)v) = qF (s, u) + (1 − q)F (s, v),(11)

s ∈ S, u, v ∈ (u0 − δ, u0 + δ).Fix an s ∈ S. Then, applying the Daró
zy�Páles identity
q

(

(1 − q)
u+ v

2
+ qu

)

+ (1 − q)

(

q
u+ v

2
+ (1 − q)v

)

= qu+ (1 − q)v,we get
F

(

s, q

(

(1 − q)
u+ v

2
+ qu

)

+ (1 − q)

(

q
u+ v

2
+ (1 − q)v)

))

= qF (s, u) + (1 − q)F (s, v)



Weighted quasi-arithmeti
 means 43for all u, v ∈ (u0 − δ, u0 + δ). Now, applying (11) twi
e to the left-hand sideexpression, for all u, v ∈ (u0 − δ, u0 + δ) we have
q2F (s, u)+2q(1−q)F

(

s,
u+ v

2

)

+(1−q)2F (s, v) = qF (s, u)+(1−q)F (s, v)and, 
onsequently,
2F

(

s,
u+ v

2

)

= F (s, u) + F (s, v), u, v ∈ (u0 − δ, u0 + δ).By the 
ontinuity of F and the Jensen theorem we 
an �nd m(s), k(s) ∈ Rsu
h that
F (s, u) = m(s)u+ k(s), u ∈ (u0 − δ, u0 + δ).Thus we have shown that F (s, ·) is 
ontinuous a�ne for every s ∈ S. More-over, if s, t, s + t ∈ S then, by (10), we have F (s, u0) ∈ (u0 − δ, u0 + δ),when
e

F (s, u) ∈ (u0 − δ, u0 + δ)for u from a neighbourhood Us,t ⊂ (u0 − δ, u0 + δ) of u0 and
F (t, F (s, u)) = σ(etσ−1σ(esσ−1(u)))) = σ(es+tσ−1(u)) = F (s+ t, u)for all u ∈ Us,t. Sin
e F is not 
onstant, on a

ount of Proposition 2 thereis an interval S0 ⊂ S 
ontaining 0 and su
h that F is of the form (4) or (5),where c1 ∈ (0,∞) and c2, c ∈ R.In this way we have shown that every point x of intI has a neighbourhoodin whi
h σ has one of the following forms:

σ(x) = a lnx+ b, σ(x) = axη + bwith a ∈ R\{0}, b ∈ R and η ∈ R\{0} depending on that point. By standardarguments we dedu
e that one of these forms holds on the whole interval I.The 
onverse assertion is obvious.3. Auxiliary results. Denote by CnM(I) the sub
lass of CM(I) 
on-sisting of fun
tions whi
h are n-times 
ontinuously di�erentiable.Lemma 1. Let p, q, r ∈ (0, 1). If ϕ, ψ ∈ C1M(I) satisfy
pA[ϕ]

q (x, y) + (1 − p)A[ψ]
r (x, y) = px+ (1 − p)y(12)and ϕ′(x) 6= 0, ψ′(x) 6= 0 for all x ∈ I, then

p =
r

1 − q + r
.Proof. Di�erentiation of both sides of (12) with respe
t to x gives

p
qϕ′(x)

ϕ′(A
[ϕ]
q (x, y))

+ (1 − p)
rψ′(x)

ψ′(A
[ψ]
r (x, y))

= p, x, y ∈ I.(13)



44 J. Jar
zyk and J. MatkowskiLetting y → x and taking into a

ount the re�exivity of the means we obtainthe desired equality.Lemma 2. Let p, q, r∈(0, 1). If ϕ, ψ∈C1M(I) satisfy (12) and ϕ′(x) 6=0and ψ′(x) 6= 0 for all x ∈ I, then f := ϕ′ ◦ ϕ−1 and g := ψ′ ◦ ϕ−1 satisfy theequation
(14) f(qu+ (1 − q)v)[(1 − r)g(v) − (1 − q)g(u)]

= q(1 − r)f(u)g(v)− r(1 − q)f(v)g(u)for all u, v ∈ ϕ(I).Proof. Di�erentiating both sides of (12), �rst with respe
t to x and thenwith respe
t to y, we get (13) and
p

(1 − q)ϕ′(y)

ϕ′(A
[ϕ]
q (x, y))

+ (1 − p)
(1 − r)ψ′(y)

ψ′(A
[ψ]
r (x, y))

= 1 − p, x, y ∈ I.(15)Multiplying (13) by (1 − r)ψ′(y) and (15) by rψ′(x) we get
pq(1 − r)ϕ′(x)ψ′(y)

ϕ′(A
[ϕ]
q (x, y))

+
(1 − p)r(1 − r)ψ′(x)ψ′(y)

ψ′(A
[ψ]
r (x, y))

= p(1 − r)ψ′(y),

p(1 − q)rϕ′(y)ψ′(x)

ϕ′(A
[ϕ]
q (x, y))

+
(1 − p)(1 − r)rψ′(x)ψ′(y)

ψ′(A
[ψ]
r (x, y))

= (1 − p)rψ′(x),for all x, y ∈ I. Subtra
ting these equalities we obtain
pq(1 − r)ϕ′(x)ψ′(y) − p(1 − q)rϕ′(y)ψ′(x)

ϕ′(A
[ϕ]
q (x, y))

= p(1 − r)ψ′(y) − (1 − p)rψ′(x)for all x, y ∈ I. Setting here x := ϕ−1(u) and y := ϕ−1(v) we have
pq(1 − r)f(u)g(v) − p(1 − q)rf(v)g(u)

f(qu+ (1 − q)v)
= p(1 − r)g(v) − r(1 − p)g(u)for all u, v ∈ ϕ(I). Now Lemma 1 yields the assertion.Lemma 3. Let q, r ∈ (0, 1) and let J ⊂ R be an interval. If f, g : J →

(0,∞) are 
ontinuously di�erentiable and satisfy (14) for all u, v ∈ J, thenthere exists a number c > 0 su
h that
f(u)qg(u)1−r = c, u ∈ J.Proof. Di�erentiating both sides of (14) with respe
t to u we get

qf ′(qu+ (1 − q)v)[(1 − r)g(v) − (1 − q)g(u)] − (1 − q)f(qu+ (1 − q)v)g′(u)

= q(1 − r)f ′(u)g(v) − (1 − q)rf(v)g′(u)for all u, v ∈ J. Letting v → u we obtain
qf ′(u)g(u) = −(1 − r)f(u)g′(u), u ∈ J.
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 means 45Consequently,
f(u)qg(u)1−r = c, u ∈ J,for some c > 0.Lemma 4. Let q, r ∈ (0, 1) and let J ⊂ R be an interval. If f : J →

(0,∞) is 
ontinuous and satis�es the equation
(16) f(qu+ (1 − q)v)[(1 − r)f(v)−q/(1−r) − (1 − q)f(u)−q/(1−r)]

= q(1 − r)f(u)f(v)−q/(1−r) − r(1 − q)f(v)f(u)−q/(1−r)for all u, v ∈ J, then either f is 
onstant , or q + r = 1 and there exist
λ ∈ R \ {0} and b ∈ R su
h that

f(u) = λ(u− b), u ∈ J.Proof. First assume that f is not one-to-one. Fix u0, v0 ∈ J, u0 < v0,su
h that f(u0) = f(v0). We will show that f is 
onstant on [u0, v0]. Suppose,on the 
ontrary, that
f(v) 6= f(u0), v ∈ (u0, v0).(17)By (16) we have

(q − r)f(qu0 + (1 − q)v0) = (q − r)f(u0),when
e (17) gives q = r. Thus (16) takes the form
(18) f(qu+ (1 − q)v)[f(u)q/(1−q) − f(v)q/(1−q)]

= q[f(u)1/(1−q) − f(v)1/(1−q)]for all u, v ∈ J . In parti
ular, with the use of (17) and inter
hanging u and v,we arrive at
f(qu0 + (1 − q)v) = f((1 − q)u0 + qv), v ∈ (u0, v0).(19)If q = 1/2 equality (18) gives

f

(

u+ v

2

)

=
f(u) + f(v)

2
, u, v ∈ J,when
e f is a�ne, whi
h is impossible in the 
ase of (17) with f(u0) = f(v0).So we may further assume that q 6= 1/2. Let, for instan
e, q ∈ (0, 1/2). Fixa u ∈ (u0, qu0 + (1 − q)v0). Put u1 := u and

un+1 := (1 − q)u0 + q
un − qu0

1 − q
, n ∈ N.(20)Clearly,

un = qu0 + (1 − q)
un − qu0

1 − q
, n ∈ N.(21)
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zyk and J. MatkowskiUsing indu
tion we dedu
e from (20) that un > u0 for all n ∈ N. This impliesthat un − qu0

1 − q
> u0, n ∈ N.Hen
e, from (20), (21) and the 
ondition q < 1/2 we infer that the sequen
e

(un)n∈N is de
reasing and, in parti
ular,
un − qu0

1 − q
∈ (u0, v0), n ∈ N.Consequently, by (20) the sequen
e (un)n∈N 
onverges to u0 and, a

ordingto (19)�(21),

f(u0) = lim
n→∞

f(un) = f(u1) = f(u),whi
h, by (17), is impossible. This 
ontradi
tion shows that there are amaximal interval J0 ⊂ J with nonempty interior and a positive c su
h that
f(u) = c, u ∈ J0.We will show that J0 = J. Suppose this is not the 
ase. For instan
e let

supJ0 < supJ . Fix a u ∈ J0, u < supJ0. Then it follows from (16) that we
an �nd an ε > 0 with
c[(1 − r)f(v)−q/(1−r) − (1 − q)c−q/(1−r)]

= q(1 − r)cf(v)−q/(1−r) − r(1 − q)f(v)c−q/(1−r),that is,
f(v)q/(1−r) =

c1+q/(1−r)(1 − r)

c− rf(v)for all v ∈ (supJ0, supJ0 + ε). Putting here d := c1+q/(1−r)(1 − r) and
y := f(v) we see that

yq/(1−r) =
d

c− ryfor all y from an interval with nonempty interior, whi
h is impossible. Thus
J0 = J. In other words, f is 
onstant.Now 
onsider the 
ase when f is one-to-one. Putting x = f(u) and y =
f(v) in (16) we get, for all x, y ∈ f(J),

f(qf−1(x) + (1 − q)f−1(y))[(1 − r)y−q/(1−r) − (1 − q)x−q/(1−r)]

= q(1 − r)xy−q/(1−r) − r(1 − q)yx−q/(1−r),whi
h shows that the quasi-arithmeti
 mean A[f−1]
q on f(J) is 
onditionallyhomogeneous. On a

ount of Proposition 1 there are a ∈ R \ {0} and b ∈ Rsu
h that either

1◦ f−1(x) = axη + b, x ∈ f(J), for some η ∈ R \ {0},or
2◦ f−1(x) = a lnx+ b, x ∈ f(J).
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 means 47Suppose that 
ase 2◦ holds. Then we 
an �nd c ∈ R \ {0} and µ > 0, µ 6= 1,su
h that
f(u) = cµu, u ∈ J,when
e, by (16),

µqu+(1−q)v[(1 − r)µ−qv/(1−r) − (1 − q)µ−qu/(1−r)]

= q(1 − r)µuµ−qv/(1−r) − r(1 − q)µvµ−qu/(1−r)for all u, v ∈ J and, 
onsequently, for all u, v ∈ R. Taking here v = 0 andputting w := µu we obtain
(1−r)wq− (1− q)w−qr/(1−r) = q(1−r)w−r(1− q)w−q/(1−r), w ∈ (0,∞).Thus, sin
e q > 0, −qr/(1 − r) < 0 and −q/(1 − r) < 0, we get q = 1 and
−qr/(1 − r) = −q/(1 − r), whi
h is impossible. Therefore 
ase 1◦ is satis�edand it follows that

f(u) = c|u− u0|
ξ, u ∈ J,(22)with some u0 ∈ R \ J and c ∈ (0,∞), ξ ∈ R \ {0}. By (16) we get

|qu+ (1 − q)v − u0|
ξ[(1 − r)|v − u0|

−qξ/(1−r) − (1 − q)|u− u0|
−qξ/(1−r)]

= q(1 − r)|u− u0|
ξ|v − u0|

−qξ/(1−r) − r(1 − q)|v − u0|
ξ|u− u0|

−qξ/(1−r)for all u, v ∈ J, when
e
(23) (qu+ (1 − q)v)ξ[(1 − r)v−qξ/(1−r) − (1 − q)u−qξ/(1−r)]

= q(1 − r)uξv−qξ/(1−r) − r(1 − q)vξu−qξ/(1−r)either for all u, v ∈ J − u0, or for all u, v ∈ u0 − J, depending on whether
u0 < u, u ∈ J, or u0 > u, u ∈ J. If ξ < 0, then (23) gives

u−ξv−ξ[(1 − r)v−qξ/(1−r) − (1 − q)u−qξ/(1−r)]

= (qu+ (1 − q)v)−ξ(q(1 − r)v−(1+ q

1−r
)ξ − r(1 − q)u−(1+ q

1−r
)ξ)for all u, v ∈ [0,∞), when
e, by setting u = 0,

q(1 − r)(1 − q)−ξv−(2+ q

1−r
)ξ = 0, v ∈ [0,∞),whi
h is impossible. Therefore ξ > 0 and now (23) gives

(24) (qu+ (1 − q)v)ξ[(1 − r)uqξ/(1−r) − (1 − q)vqξ/(1−r)]

= q(1 − r)u(1+ q

1−r
)ξ − r(1 − q)v(1+ q

1−r
)ξfor all u, v ∈ [0,∞). Putting here v = 0 we arrive at

qξuξ(1 − r)uqξ/(1−r) = q(1 − r)u(1+ q

1−r
)ξ, u ∈ [0,∞).Hen
e qξ = q, i.e. ξ = 1. Thus, putting u = 0 in (24), we get

−(1 − q)v(1 − q)vq/(1−r) = −r(1 − q)v1+q/(1−r), v ∈ [0,∞),
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zyk and J. Matkowskiand, 
onsequently, r = 1−q.Moreover, a

ording to (22) we have the desireda�ne form of f.4. Main results. Now we are in a position to prove the main resultof the paper. It 
on
erns the 
ase of α = id, when equation (1) takes theform (12).Theorem 1. Fun
tions ϕ, ψ ∈ C2M(I) and numbers p, q, r ∈ (0, 1)satisfy (12) if , and only if , the following two 
onditions are ful�lled :(i)
p =

r

1 − q + r
,(ii) there exist a, c ∈ R \ {0} and b, d ∈ R su
h that

ϕ(x) = ax+ b, ψ(x) = cx+ d, x ∈ I,or p = 1/2, q + r = 1 and
ϕ(x) = aeλx + b, ψ(x) = ce−λx + d, x ∈ I,with some λ ∈ R \ {0}.In that 
ase Ap is the unique (A

[ϕ]
q , A

[ψ]
r )-invariant mean. Moreover , the it-erates of (A

[ϕ]
q , A

[ψ]
r ) approa
h Ap.Proof. Assume that ϕ, ψ satisfy equation (12) and put f := ϕ′◦ϕ−1, g :=

ψ′◦ϕ−1. First assume additionally that ϕ′(x) 6= 0 and ψ′(x) 6= 0 for all x ∈ I.Without loss of generality we may assume that ϕ′ and ψ′ are positive. ByLemmas 2 and 3 there is a c0 ∈ (0,∞) su
h that
f(u)qg(u)1−r = c0, u ∈ ϕ(I),(25)and, moreover, f satis�es (16). A

ording to Lemma 4 either

1◦ f(u) = a, u ∈ ϕ(I), for some a ∈ (0,∞),or
2◦ f(u) = λ(u − b), u ∈ ϕ(I), with some λ ∈ R \ {0}, b ∈ R, and

q + r = 1.First 
onsider 
ase 1◦. Then, by (25), there is a c ∈ (0,∞) su
h that
g(u) = c, u ∈ ϕ(I).Thus

ϕ′(x) = a, ψ′(x) = c, x ∈ I,whi
h 
ompletes the proof in 
ase 1◦. Now assume 2◦. Then, by Lemma 1,we get p = 1/2. Moreover, from the de�nition of f , we obtain
ϕ′(x) = λ(ϕ(x) − b), x ∈ I,when
e
ϕ(x) = aeλx + b, x ∈ I,
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 means 49with an a ∈ R \ {0}. Now, by (25),
g(u) = −cλ

a

u− b
, u ∈ ϕ(I),with a c ∈ R \ {0}, whi
h gives

ψ′(x) = g(ϕ(x)) = −cλe−λx, x ∈ I,that is,
ψ(x) = ce−λx + d, x ∈ I,with a d ∈ R.For the proof in the general 
ase denote by Zϕ and Zψ the sets of zerosof ϕ′ and ψ′, respe
tively. It is enough to show that these sets are empty.Sin
e they are 
losed sets with empty interiors, I \ (Zϕ ∪Zψ) is a nonemptyopen subset of I. Let I0 be any of its 
omponents and suppose that I0 6= I.Then at least one end of I0, say x0, belongs to I. Clearly, x0 ∈ Zϕ∪Zψ, thatis, either ϕ′(x0) = 0, or ψ′(x0) = 0. On the other hand, applying the justproved 
ase of the theorem to ϕ|I0 and ψ|I0 , and the 
ontinuity of ϕ′ and

ψ′ at x0, we infer that ϕ′(x0) 6= 0 and ψ′(x0) 6= 0. This 
ontradi
tion showsthat I0 = I and, 
onsequently, Zϕ = Zψ = ∅.The 
onverse impli
ation 
an be easily veri�ed. The last paragraph ofTheorem 1 is an immediate 
onsequen
e of Theorem 1 in [6℄.Theorem 1 implies the following result 
on
erning equation (1) for gen-eral α.Theorem 2. Let α, β, γ ∈ CM(I). Assume that β ◦ α−1, γ ◦ α−1 ∈
C2M(I). The fun
tions α, β, γ and numbers p, q, r ∈ (0, 1) satisfy (1) if ,and only if , the following two 
onditions are ful�lled :(i)

p =
r

1 − q + r
,(ii) there exist a, c ∈ R \ {0} and b, d ∈ R su
h that

β(x) = aα(x) + b, γ(x) = cα(x) + d, x ∈ I,or p = 1/2, q + r = 1 and
β(x) = aeλα(x) + b, γ(x) = ce−λα(x) + d, x ∈ I,with some λ ∈ R \ {0}.In that 
ase A[α]
p is the unique (A

[β]
q , A

[γ]
r )-invariant mean. Moreover , theiterates of (A

[β]
q , A

[γ]
r ) approa
h A[α]

p .Proof. It is enough to observe that α, β, γ satisfy (1) if, and only if,
ϕ := β ◦ α−1 and ψ := γ ◦ α−1 satisfy (12) and next use Theorem 1.
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ation
Remark. It 
an be seen from Theorem 1 (or by a dire
t substitution)that for q ∈ (0, 1) and ϕ, ψ : I → R given by

ϕ(x) = eλx, ψ(x) = e−λx(26)with arbitrary λ ∈ R \ {0} we have
A[ϕ]
q (x, y) +A

[ψ]
1−q(x, y) = x+ y, x, y ∈ I,(27)that is, the arithmeti
 mean is the (unique) (A

[ϕ]
q , A

[ψ]
1−q)-invariant mean.Moreover, we have

lim
n→∞

(A[ϕ]
q , A

[ψ]
1−q)

n(x, y) =

(

x+ y

2
,
x+ y

2

)

, x, y ∈ I.(28)The above Remark allows us to obtainTheorem 3. Let q ∈ (0, 1) and let ϕ, ψ : I → R be given by (26).A fun
tion F : I2 → R is a solution of the equation
F (A[ϕ]

q (x, y), A[ψ]
r (x, y)) = F (x, y),(29)
ontinuous at every point of the diagonal {(x, y) ∈ I2 : x = y}, if , and onlyif , there is a 
ontinuous fun
tion f : I → R su
h that

F (x, y) = f

(

x+ y

2

)

, x, y ∈ I.Proof. Assume that F : I2 → R satis�es (29) and is 
ontinuous on thediagonal. By indu
tion we get
F (x, y) = F ((A[ϕ]

q , A[ψ]
r )n(x, y)), x, y ∈ I, n ∈ N.Letting n → ∞ and making use of (28) and of the 
ontinuity of F at thediagonal we obtain

F (x, y) = F (A(x, y), A(x, y)), x, y ∈ I.Putting
f(u) := F (u, u), u ∈ I,we get the desired form of F . In view of (27) the 
onverse is 
lear.A
knowledgements. The authors are indebted to the referee for hisvaluable 
omments and remarks, espe
ially those 
on
erning Se
tion 2.
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