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Invariance in the class of weighted quasi-arithmetic means

by JUSTYNA JARCZYK (Zielona Gora) and
JANUSZ MATKOWSKI (Zielona Gora and Katowice)

Abstract. Under the assumption of twice continuous differentiability of some of the
functions involved we determine all the weighted quasi-arithmetic means M, N, K such
that K is (M, N)-invariant, that is, K o(M, N) = K. Some applications to iteration theory
and functional equations are presented.

1. Introduction. In the whole paper I C R denotes an interval. A
function M : I? — R is said to be a mean on I if

min(z,y) < M(z,y) < max(z,y), z,y€l.

If M : I? — R is a mean, then M is reflexive, that is, M (z,z) = x for
all z € I and, consequently, for every interval J C I we have M (J?) = J; in
particular, M (I?) = I.

If «: I — R is a continuous strictly monotonic function and p € (0,1)
then Az[,a] : I? — I, given by

All(@,y) = a7 (pa(x) + (1 - pla(y), wz,yel,

is a mean; it is called a weighted quasi-arithmetic mean with generator o and
weight (p,1 — p). In the case a = id|; the mean Az[ga] becomes the weighted
arithmetic mean and is denoted by Ay; thus Ap(z,y) = px + (1 — p)y. We

write simply A instead of Ay ;.

Let M, N : I? — I be means. A mean K : I?> — [ is said to be invariant
with respect to (M, N), briefly (M, N)-invariant, or K is called the Gauss
composition of M and N (cf. [3], [5]), if Ko (M,N) = K.

Fix p,q,r € (0,1). Assuming twice continuous differentiability of some
of the functions involved we determine all triples (o, 3,v) and (p,q,r) for

2000 Mathematics Subject Classification: Primary 26E60; Secondary 39B22.
Key words and phrases: mean, functional equation, invariant mean, quasi-arithmetic
mean.

[39]



40 J. Jarczyk and J. Matkowski

which the weighted quasi-arithmetic mean ALO‘} is (A([IB ], A[ﬂ])—mvariant, ie.

(1) A}[)Od o ( A([lﬁ}’ Ably = A}[Da]

(see Theorem 2 in Section 4).

The case when p = ¢ = r = 1/2 (called simply the case of quasi-
arithmetic means) has a long history. The analytic solutions were found
by O. Sut6 in 1914 [7]. The twice continuously differentiable solutions are
given in [5]. Moreover, continuously differentiable solutions were found by
Z. Daroczy and Zs. Pales [2], and finally, without any regularity assumption,
the problem was solved by Z. Daroczy and Zs. Pales [3] (cf. also [1] as well
as [3] for further references).

The fundamental role for Theorem 2 will be played here by Theorem 1
in Section 4, concerning the case of a being the identity function. In the
proof of Theorem 1 we need a characterization of conditionally homogeneous
weighted quasi-arithmetic means given by Proposition 1 proved in Section 2
and by the lemmas of Section 3.

In Section 5 we also apply Theorem 1 to establish the limit of the iteration
sequence of some mean type mappings (Remark) and to solve a functional
equation (Theorem 3).

2. Conditional homogeneity of the quasi-arithmetic mean. De-
note by C'M (I) the class of all continuous strictly monotonic functions de-
fined on I. In the proof of Theorem 1 we need the following

PROPOSITION 1. Assume that I C (0,00). Letq € (0,1) ando € CM(I).
The mean Agﬂ 18 conditionally homogeneous, i.e.
A[qa](sx, sy) = SA[qU] (z,y)
forallx,y € I and s > 0 with sz, sy € I if, and only if , there are a € R\ {0}
and b € R such that either
o(x)=az"+0b, x€l,
for some n € R\ {0}, or
o(x)=alnx+0b, x€l.
Before proving this proposition we will find the form of so-called condi-

tional local groups of continuous affine maps.

PROPOSITION 2. Let {X}scs, where S C R is an interval containing 0,
be a family of subsets of R and let I : |J,cg{s} x Xs — R. Assume that
F(-,u) and F(-,v) are continuous for some different u,v € (\,cq Xs and
F(s,-) is continuous affine for every s € S. Assume also that for every
s,t € S with s+t € S there is an at least two-element set Usy C X N Xopy
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such that

(2) F({s} x Usy) C Xy

and

(3) F(s+t,u) = F(t, F(s,u)), ué€ Ug.

Then either I is constant, or there is an interval Sy C S containing 0 and
such that

(4) F(s,u) =cs+u, s€Sy uc X,
with a c € R, or
(5) F(s,u) =ci(u—c2)+c2, s€8p uelX,,
with some ¢ € (0,00) and c2 € R.

Proof. Let m:S — R and k: S — R be such that
(6) F(s,u) =m(s)u+k(s), seS, ueX,.

Taking any u,v € (),cg Xs, u # v, such that F(-,u) and F(-,v) are contin-
uous we see that m and k are continuous as linear combinations of F'(-, u)
and F(-,v).

Fix any s,t € § with s +¢ € S and choose a Us; C XN X 44 with at
least two points, satisfying (2) and (3). Taking an arbitrary u € U,; and
using (6), (3), and again (6), we get

m(s + B+ k(s + ) = F(s +t,u) = F(t, F(s,u))
=m(t)(m(s)u + k(s)) + k(t)
=m(s)m(t)u + m(t)m(s) + k.

Consequently,

(7) m(s+t) = m(s)m(t)
and

(8) kE(s+t) =m(t)k(s) + k(t)

for all s,t € S with s+t € S.
Assume that m(sg) = 0 for some so € S with —sg € S. By (7) we get

m(0) = m(so)m(—sp) =0,

whence, again according to (7), we have m(s) = m(s)m(0) =0 for all s € S
and, consequently, k is constant by (8). Then, on account of (6) also F' is
constant. Now we can assume that m does not vanish in a subinterval Sy C S
containing 0 and, in addition, satisfying Sp + So C S. Then, by (7), m|g, is
positive.

Since (7) is a multiplicative version of the restricted Cauchy equation,
with the use of continuity arguments and making use of [4, Theorem 2,



42 J. Jarczyk and J. Matkowski

p. 327] we infer that there exists a ¢; € (0,00) such that m(s) = ¢f for all
s € .5p.

If ¢; =1 it follows from (8) that k(s +t) = k(s) + k(t) for all s,t € Sy
and, again by [4, Theorem 2, p. 327], we find a ¢ € R such that k(s) = cs
for all s € Sy. Consequently, on account of (6) we have F'(s,u) = c¢s + u for
all s € Sp and u € Xj.

Now assume that ¢; # 1. Then, by (8), k(s + t) = clk(s) + k(t) for all
s,t € Sp. By symmetry k(s +t) = cjk(t) + k(s) and

k(s) _ k(t)
1—¢f 1-cf’
Thus there exists a ¢z € R such that k(s) = co(1 — ¢f) for all s € Sp.

S

Consequently, by (6), we have F(s,u) = ¢f(u — ¢2) + ¢2 for all s € Sy and
u € X5 m

s,t € .85p \ {0}

Proof of Proposition 1. Without loss of generality we may assume that
int I # 0.

Assume that Agﬂ is conditionally homogeneous, that is,
(9) o Hgo(s2) + (1 = g)o(sy)) = so " (go(z) + (1 = q)o(y))

for all z,y € I and s > 0 with sx,sy € I. Fix an zg € intI and put
ug = o(xp). Then uy € int o(I) and there exist § > 0 and §y > 1 such that

(10) o(sxg) € (ug — d,up + 9)

for all s € (1/d9,00) and so~t(u) € I for all s € (1/80,80) and u € (ug — 6,
up+0). In particular, (ug—0d,up+9) C o(I). Put S = (—Indp,1Indp). Defining
F:S5x (UO—(S,Uo+5)—>Rby

F(s,u) = a(e®o " (u))
we can rewrite (9) in the form
(11) F(s,qu+ (1= q)v) = qF(s,u) + (1 — ) F(s,v),
s€S, u,v € (ug—0,ug+9).

Fix an s € S. Then, applying the Dar6czy—Pales identity

o(0-0" 5 o)+ -0 (a 4 000 ) —qut (- a.

we get

Fsa(-0"5 " a) +a-o (a5 + 0= an))
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for all u,v € (ug — d,up + ¢). Now, applying (11) twice to the left-hand side
expression, for all u,v € (ug — 0, ug + 0) we have

ut ) T (1-g)F(s,v) = F(s,u) + (1—q)F(s,v)

QQF(SaU)+2Q(1—Q)F<S,

and, consequently,

2F<s, u—;v) = F(s,u) + F(s,v), u,v € (ug—d,up+9).

By the continuity of F' and the Jensen theorem we can find m(s), k(s) € R
such that

F(s,u) =m(s)u+k(s), ue€ (ug—0,ug+9).
Thus we have shown that F(s,-) is continuous affine for every s € S. More-
over, if s,t,s +t € S then, by (10), we have F(s,ug) € (ug — d,up + 9),
whence

F(s,u) € (ug — 6,ug +9)
for u from a neighbourhood U, C (ug — 8, ug + 6) of ug and
F(t,F(s,u)) = o(elo to(e*o 1 (u))) = o(e* o™ (u)) = F(s + t,u)

for all uw € U,;. Since F' is not constant, on account of Proposition 2 there
is an interval Sy C S containing 0 and such that F' is of the form (4) or (5),
where ¢; € (0,00) and ¢, ¢ € R.

In this way we have shown that every point x of int/ has a neighbourhood
in which ¢ has one of the following forms:

o(x)=alnz+0b, o(z)=ax"+b
with @ € R\{0},b € R and n € R\{0} depending on that point. By standard

arguments we deduce that one of these forms holds on the whole interval I.
The converse assertion is obvious. =

3. Auxiliary results. Denote by C" M (I) the subclass of CM (I) con-
sisting of functions which are n-times continuously differentiable.

LEMMA 1. Let p,q,r € (0,1). If p,9p € C*M(I) satisfy

(12) PAF (@, y) + (1= p)A¥ (2, y) = pr + (1~ ply
and ¢'(x) #0, '(x) #0 for all x € I, then
r
Lo g

Proof. Differentiation of both sides of (12) with respect to x gives
/ /
qp' (z ri’ (x
3 p— D g W)

———=p, x,yel.
o' (A (2, y)) (A (2, y))
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Letting y — z and taking into account the reflexivity of the means we obtain
the desired equality. m

LEMMA 2. Letp,q,r€(0,1). If p,9p€C*M(I) satisfy (12) and ¢'(x)#0
and ' (x) # 0 for all z € I, then f := ¢ o~ and g := ¢’ o o~ satisfy the
equation
(14)  flqu+ (1 =q)v)[(1 =r)g(v) — (1 = q)g(u)]

=q(1 =7)f(u)g(v) —r(1 —q)f(v)g(u)
for all u,v € o(I).

Proof. Differentiating both sides of (12), first with respect to « and then
with respect to y, we get (13) and

(1-9)¢¥'(y) QA-—r¥'ly) . .
iy T T @y T e
Multiplying (13) by (1 — r)¢’(y) and (15) by r¢’'(x) we get

pg(1 =)' (@)Y (y) | (1—p)r(1 —r)' (@)’ (y) /
+ =p(1 —7)Y(y),
@ (A (2,9)) (A (@) P
pA = grdy)d'(z) A -p){A- rrd (@)¢'(y) (1-p
@ (A (@.)) (A, )
for all x,y € I. Subtracting these equalities we obtain
pa(L =)' (@)¢'(y) = p(L = r' WP () _ 0y 1 v
ATz ) p(1 =r)P(y) — (1 = p)ry/(z)
for all x,y € I. Setting here x := ¢~!(u) and y := ¢~ !(v) we have
pg(L —7)f(u)g(v) —p(1 — g)rf(v)g(u)
flqu+ (1 —q)v)
for all u,v € p(I). Now Lemma 1 yields the assertion. =

=p(l —r)g(v) —r(l —p)g(u)

LEMMA 3. Let ¢,r € (0,1) and let J C R be an interval. If f,g: J —
(0,00) are continuously differentiable and satisfy (14) for all u,v € J, then
there exists a number ¢ > 0 such that

g =c, uel
Proof. Differentiating both sides of (14) with respect to u we get
af'(qu+ (1 = q)v)[(1 = r)g(v) = (L = q)g(w)] = (1 — @) f(qu+ (1 — q)v)g(u)
=q(1=r)f'(w)g(v) = (1 - q)rf(v)g'(u)
for all u,v € J. Letting v — u we obtain

qf'(w)g(u) = —(1 =r)f(u)g'(u), ue.l
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Consequently,
f@)igw)'™"=¢, wel,
for some ¢ > 0.
LEMMA 4. Let q,r € (0,1) and let J C R be an interval. If f : J —
(0,00) is continuous and satisfies the equation
(16)  flqu+ (1= q)u)[(1 = r)f(0)"7 = (1 - ) f(u)~9/7")]
= (1 =) f(w)f(v)” 0 = (1= q)f(0)f(w)= )

for all u,v € J, then either f is constant, or ¢ +r = 1 and there exist
A e R\ {0} and b € R such that

flw)=Xu—-">0), wue.l

Proof. First assume that f is not one-to-one. Fix ug,vg € J, ug < v,
such that f(ug) = f(vo). We will show that f is constant on [ug, vg]. Suppose,
on the contrary, that

(17) f) # f(uo), v € (uo,v0).
By (16) we have

(¢ —r)f(quo + (1 = q)vo) = (¢ — 7)f (uo),
whence (17) gives ¢ = r. Thus (16) takes the form

(18)  flqu+ (1= q)o)[f(w)? =9 — f(v)/ =)
= q[f (u)Y =D — f(u)/ O]

for all u,v € J. In particular, with the use of (17) and interchanging u and v,
we arrive at

(19) flauo + (1 = q)v) = f((1 = qJuo + qv), v € (uo, o).
If ¢ = 1/2 equality (18) gives

ut+v\ _ f(u)+ f(v)

p(t) = e,

whence f is affine, which is impossible in the case of (17) with f(ug) = f(vo).
So we may further assume that ¢ # 1/2. Let, for instance, ¢ € (0,1/2). Fix
a u € (up, quo + (1 — q)vg). Put uy := w and

— quo

U,V E J,

U
(20) Un+t1 = (1_Q)U0+Qﬁa neN.
Clearly,

(21) = quo+ (1 —q) 2" 290 e N

1—g¢q
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Using induction we deduce from (20) that u, > ug for all n € N. This implies

that Un, — QU

l—¢q
Hence, from (20), (21) and the condition ¢ < 1/2 we infer that the sequence
(un)nen is decreasing and, in particular,
Up — qUQ
l—¢q
Consequently, by (20) the sequence (uy,)nen converges to ug and, according

to (19)—(21), .
Fluo) = Tim flun) = fm) = f(u),
which, by (17), is impossible. This contradiction shows that there are a
maximal interval Jy C J with nonempty interior and a positive ¢ such that
flu)=¢, wedp.

We will show that Jy = J. Suppose this is not the case. For instance let
sup Jy < sup J. Fix a u € Jy, u < sup Jy. Then it follows from (16) that we
can find an € > 0 with

el(1 =) (@) 77077 = (1= g)e /00
= g1 = )ef ()70 < (1= q)f )0,

>ug, neN.

€ (up,v0), mneN

that is,
/=) (1 — )

c—rf(v)

for all v € (supJo,supJy + ¢). Putting here d := ¢!T9/(=")(1 — r) and
y := f(v) we see that

f(v)q/(lfr) —

d
c—ry

yq/(l—r) —

for all y from an interval with nonempty interior, which is impossible. Thus
Jo = J. In other words, f is constant.

Now consider the case when f is one-to-one. Putting z = f(u) and y =
f(v) in (16) we get, for all x,y € f(J),

Flaf~ @)+ 1= a) f NI =)y~ 07 = (1= g)a/(77)]

= q(1 =)oy~ —r(1 = gy /1),

which shows that the quasi-arithmetic mean Agf_l] on f(J) is conditionally
homogeneous. On account of Proposition 1 there are a € R\ {0} and b € R
such that either

1° f~1(z) = az" +b, x € f(J), for some 1 € R\ {0},
or

2° f~Yx) =alnx+0b, x € f(J).
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Suppose that case 2° holds. Then we can find ¢ € R\ {0} and p > 0, p # 1,
such that

flu)=cp®, uel
whence, by (16),
pdetA=avrq — gy =/ A=) (1 = g) e/ (071))
= q(1 =) p 0 — (1 = g /0T

for all u,v € J and, consequently, for all u,v € R. Taking here v = 0 and
putting w := p* we obtain

(1—r)w! —(1—q)w /) = g1 —r)yw—r(1—q)w ¥ w e (0,).

Thus, since ¢ > 0, —qr/(1 —r) < 0 and —q/(1 —7) < 0, we get ¢ = 1 and
—qr/(1 —r) = —q/(1 — r), which is impossible. Therefore case 1° is satisfied
and it follows that

(22) f(w) =clu—ul®, wuelJ,
with some ug € R\ J and ¢ € (0,00), £ € R\ {0}. By (16) we get
w4 (1= @)~ wol€[(1 )l — gl 9077 — (1~ g) s — ] /47
= (1 —r)|u— uo[*Jo — uo|*/ =) —r(1 = g)v — uo|*|u — wp| "%/
for all u,v € J, whence
(23)  (qu+ (1= @)v)S[(1 =)o~ %07 — (1 — g)u~a/0=7)]
= q(1 — r)uSo= /07 (1 — g)oéu~%/0-7)

either for all u,v € J — ugp, or for all u,v € ug — J, depending on whether
ug < u,u € J, or ug > u,u € J. If £ <0, then (23) gives

u v ¢[(1 — r)o= /(=) — (1 — g)u—9/(=7)]
= (qu+ (1 = q)v)~*(q(1 — o~ M5 —p(1 = gpu~ (F5))
for all u,v € [0,00), whence, by setting u = 0,
g1 —r)(1— q)_gv_(%%r)& =0, vel0,00),
which is impossible. Therefore £ > 0 and now (23) gives

(24)  (qu+ (1 — @)¢[(1 — r)u®/0=) — (1 — g)ps/(1=7)]
(A+15)¢ _ r(1— q)v(lﬂ%r)é

=q(l—r)u
for all u,v € [0, 00). Putting here v = 0 we arrive at
Fub (1 — r)u®/ ) = g(1 — )Ty e [0, 00).
Hence ¢¢ = ¢, i.e. £ = 1. Thus, putting u = 0 in (24), we get
—(1 = q)o(1 — o7 = —p(1 = o'/ v € [0, 00),
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and, consequently, r = 1—q. Moreover, according to (22) we have the desired
affine form of f. =

4. Main results. Now we are in a position to prove the main result
of the paper. It concerns the case of & = id, when equation (1) takes the
form (12).

THEOREM 1. Functions ¢, € C?M(I) and numbers p,q,r € (0,1)
satisfy (12) if, and only if, the following two conditions are fulfilled:

() o
p= mv
(ii) there exist a,c € R\ {0} and b,d € R such that
p(x)=ax+b, Yx)=cx+d, xel,
orp=1/2, g+r=1 and
o) =ae +b, Y)=ce M4+d, zel,
with some A € R\ {0}.

In that case A, is the unique (AEIW],A,[nw])—invariant mean. Moreover, the it-
erates of (Agp],ALw]) approach A,.

Proof. Assume that @, v satisfy equation (12) and put f := ¢/op™!, g:=
Yot First assume additionally that ¢'(z) # 0 and ¥/(x) # O for all z € 1.

Without loss of generality we may assume that ¢’ and v’ are positive. By
Lemmas 2 and 3 there is a ¢y € (0, 00) such that

(25) F)ig(w)!™ =co, uep(l),
and, moreover, f satisfies (16). According to Lemma 4 either

1° f(u) = a, u € o(I), for some a € (0, c0),
or

2° f(u) = Mu—10), u € p(I), with some A € R\ {0}, b € R, and

q+r=1.
First consider case 1°. Then, by (25), there is a ¢ € (0,00) such that
g(u) =c¢, uepl).

Thus
ox)=a, Y(v)=c, wze€l,

which completes the proof in case 1°. Now assume 2°. Then, by Lemma 1,
we get p = 1/2. Moreover, from the definition of f, we obtain

¢'(x) = Mep(z) =b), zel,
whence
p(x) =ae* +b, zcl,
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with an @ € R\ {0}. Now, by (25),

a
= — )\—
g(u) = —eA —

g UE o(I),

with a ¢ € R\ {0}, which gives

V(@) = g(p(x)) = —eXe™,  z el
that is,
Y(x)=ce M +d, axel,

with a d € R.

For the proof in the general case denote by Z, and Z,, the sets of zeros
of ¢/ and 1/, respectively. It is enough to show that these sets are empty.
Since they are closed sets with empty interiors, I\ (Z, U Z) is a nonempty
open subset of I. Let Iy be any of its components and suppose that Iy # I.
Then at least one end of Iy, say o, belongs to I. Clearly, g € Z,U Zy, that
is, either ¢'(z¢) = 0, or ¢/(x9) = 0. On the other hand, applying the just
proved case of the theorem to ¢|;, and |, and the continuity of ¢’ and
Y’ at xp, we infer that ¢'(xg) # 0 and 9’ (x¢) # 0. This contradiction shows
that Iy = I and, consequently, Z, = Z, = 0.

The converse implication can be easily verified. The last paragraph of
Theorem 1 is an immediate consequence of Theorem 1 in [6]. =

Theorem 1 implies the following result concerning equation (1) for gen-
eral a.

THEOREM 2. Let o, 3,y € CM(I). Assume that B oa!,yoa ! €
C2?M(I). The functions «, 3,7 and numbers p,q,r € (0,1) satisfy (1) if,
and only if , the following two conditions are fulfilled:

0)
B r
Cl—gq+r’
(ii) there exist a,c € R\ {0} and b,d € R such that
B(x) = aa(z) +b, y(x)=calz)+d, wze€l,
orp=1/2, g+r=1 and
B(z) = ae*@) 4 p, ~v(x) = ce @ g zel,
with some A € R\ {0}.

p

In that case A/Lod s the unique (A([]m,AW)-mvarz'ant mean. Moreover, the
iterates of (A[q’g],A,m) approach AJ[DQ].

Proof. It is enough to observe that «, 3,7 satisfy (1) if, and only if
@ :=Boa ! and ¢ :=7oa ! satisfy (12) and next use Theorem 1. m
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5. An application

REMARK. It can be seen from Theorem 1 (or by a direct substitution)
that for ¢ € (0,1) and ¢, : I — R given by

(26) p(r) =N, Pa) =
with arbitrary A € R\ {0} we have
(27) Ay + A @y = vy, wyel

that is, the arithmetic mean is the (unique) (A[qﬂ,AM

1_q)—invariant mean.
Moreover, we have

. n Tty x+
(28) ,ggwﬁiA@Q(%y%:( 2% 2y), z,y € 1.

The above Remark allows us to obtain

THEOREM 3. Let ¢ € (0,1) and let ¢,v : I — R be given by (26).
A function F : I? — R is a solution of the equation

(29) F(Af (@, y), Az, y)) = F(z,y),

continuous at every point of the diagonal {(x,y) € I? : x = y}, if, and only
if , there is a continuous function f : I — R such that

F(x,y) =f<$;ry), z,y € 1.
Proof. Assume that F : [? — R satisfies (29) and is continuous on the
diagonal. By induction we get

F(z,y) = F((AP, A (2,y)), 2,yel, neN.

q T
Letting n — oo and making use of (28) and of the continuity of F' at the
diagonal we obtain

F(z,y) = F(A(z,9), A(z,y)),  wyel

Putting
fu) = F(u,u), wel,

we get the desired form of F. In view of (27) the converse is clear. m
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