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Characterization of global Phragmén–Lindelöf conditions

for algebraic varieties by limit varieties only

by Rüdiger W. Braun (Düsseldorf), Reinhold Meise (Düsseldorf)
and B. A. Taylor (Ann Arbor, MI)

Abstract. For algebraic surfaces, several global Phragmén–Lindelöf conditions are
characterized in terms of conditions on their limit varieties. This shows that the hyper-
bolicity conditions that appeared in earlier geometric characterizations are redundant.
The result is applied to the problem of existence of a continuous linear right inverse for
constant coefficient partial differential operators in three variables in Beurling classes of
ultradifferentiable functions.

1. Introduction. The existence of a continuous linear right inverse for
a given linear partial differential operator P (D) with constant coefficients on
the spaces C∞(Rn)/D′(Rn) or Eω(Rn)/D′

ω(Rn) was characterized by Meise,
Taylor, and Vogt [13] and [14] in various ways, in particular by the condi-
tion PL(ω) (see Definition 6). It is a condition of Phragmén–Lindelöf type
for plurisubharmonic functions on the zero variety V (P ) of the symbol P .
A similar but different condition had been used by Hörmander [10] to char-
acterize the surjectivity of P (D) on the space A(Rn) of all real-analytic
functions on R

n.
Recently, we derived in [5] new necessary conditions for PL(ω) which

state that the limit varieties Tγ,dV (P ) (see Definition 10) of V (P ) with re-
spect to each real simple curve γ must satisfy the strong Phragmén–Lindelöf
condition (SPL) if lim inft→∞ ω(t)/td = 0. This new condition together with
a number of hyperbolicity conditions was then used to give a complete char-
acterization of PL(ω) for n = 3. In the same spirit, a characterization of
(SPL) was derived in [7] for algebraic surfaces in C

n.
The main result of the present paper is to show that the hyperbolicity

conditions mentioned above are redundant, i.e., an algebraic surface V in C
n

(resp. C
3) satisfies (SPL) (resp. PL(ω)) if and only if each limit variety Tγ,dV

2000 Mathematics Subject Classification: Primary 32U05; Secondary 31C10, 32C25.
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(resp. each limit variety Tγ,dV for which lim inft→∞ ω(t)/td = 0) satisfies
(SPL). This new characterization is derived from the ones given in [5] and [7]
by the curve selection lemma from real algebraic geometry. It is a simpler
geometric description than the old one, since the limit varieties Tγ,dV which
come up are either homogeneous surfaces or surfaces which are products of
C with an algebraic curve in C

n−1. In both cases geometric characterizations
of (SPL) are known from Braun [1] and [7] (see Proposition 20).

We begin by recalling some definitions and notations that will be applied
in what follows.

2.Notation. By Bn(x, ε) we denote the ball of radius ε around x in C
n.

If n = 1, the superscript will be omitted.

3. Definition. Let ω : [0,∞[ → ]0,∞[ be a continuous increasing func-
tion with the following properties:

(α) ω(2t) = O(ω(t)) as t → ∞,
(β) ω(t) = o(t) as t → ∞,
(γ) log t = O(ω(t)) as t → ∞,
(δ) φ : x 7→ ω(ex) is a convex function.

Then for n ∈ N, the function ω : C
n → ]0,∞[, ω(z) = ω(|z|), will be called

a weight function.

We say that ω is a weak weight function if ω is either a weight function
or identically 0.

4. Definition. Let ω be a weight function that satisfies, instead of (β),
the stronger condition

(β)′
∞\
0

ω(t)

1 + t2
dt < ∞.

Then the space of all ultradifferentiable functions of Beurling type on R
n is

defined as

Eω(Rn) := {f ∈ C∞(Rn) : for each K ⊂ R
n compact and each m ∈ N,

sup
α∈Nn

0

sup
x∈K

|f (α)(x)| exp(−mφ∗(|α|/m)) < ∞},

where φ∗(y) := supx>0(xy − φ(x)) for y > 0.

For a systematic study of these spaces and the corresponding spaces of
ultradistributions we refer to [2].

5. Notation. For P ∈ C[z1, . . . , zn], P (z) =
∑

|α|≤m aαzα, define the

partial differential operator P (D) :=
∑

|α|≤m aαi−i|α|∂α.

We denote by V (P ) := {z ∈ C
n : P (z) = 0} the variety of the symbol

of P (D).
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Meise, Taylor, and Vogt [14] were able to decide, for any given polyno-
mial P , whether the operator P (D) : Eω(Rn) → Eω(Rn) admits a continuous
linear right inverse. To state their theorem, the Phragmén–Lindelöf condi-
tion PL(ω) is needed.

6. Definition. Let V be an algebraic variety in C
n and let ω be a weak

weight function.

(a) A function u : V → [−∞,∞[ is plurisubharmonic if it is locally
bounded above, plurisubharmonic in the usual sense at all regular
points of V (i.e., via coordinates), and satisfies

u(z) = lim sup
ζ→z

ζ∈V regular

u(ζ)

at the singular points of V . By PSH(V ) we denote the set of all
plurisubharmonic functions on V .

(b) V satisfies the Phragmén–Lindelöf condition PL(ω) if there exists
A ≥ 1 such that for each ̺ > 0 there is B > 0 such that each
u ∈ PSH(V ) which satisfies (α) and (β) also satisfies (γ), where

(α) u(z) ≤ |z| + o(|z|), z ∈ V ,
(β) u(z) ≤ ̺|Im z|, z ∈ V ,
(γ) u(z) ≤ A|Im z| + Bω(z), z ∈ V .

(c) The Phragmén–Lindelöf condition PL(0) is denoted by (SPL).

7. Remark. To see that (SPL) as defined in Definition 6 coincides with
the original definition, given by Meise and Taylor in [12, Definition 3.1(c)],
note that our definition is clearly weaker than the one by Meise and Taylor,

but stronger than their property S̃PL(A, 0) for a suitable constant A. Hence
they are equivalent by [12, Lemma 3.2].

8. Theorem (Meise, Taylor, and Vogt [14, Theorem 5.5]). Assume that

the weight function ω satisfies (β)′ from Definition 4. Then P (D) : Eω(Rn) →
Eω(Rn) admits a continuous linear right inverse if and only if V (P ) satisfies

PL(ω).

It has been shown in [3], [5], and [7] that an important tool for the
investigation of Phragmén–Lindelöf conditions are limit varieties. The cor-
responding definitions are given next.

9. Definition. A real simple curve γ is a map γ : ]α,∞[ → R
n which

for some α > 0 and some q ∈ N admits a convergent expansion

γ(t) =

q∑

j=−∞

ajt
j/q, with |aq| = 1.

The vector aq is the limit vector of γ at infinity.
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10.Definition. Let V ⊂ C
n be an algebraic variety, let γ : ]α,∞[ → R

n

be a real simple curve, and let d ≤ 1.

(a) For t ∈ ]α,∞[ we define

Vt := {w ∈ C
n : γ(t) + wtd ∈ V }

and we define the limit variety Tγ,dV of V of order d along γ as

Tγ,dV = {ζ ∈ C
n : ζ = lim

j→∞
zj where zj ∈ Vtj for j ∈ N and

(tj)j∈N is a sequence in ]α,∞[ which tends to ∞}.

(b) The tangent cone TpV at a point p ∈ C
n consists of all limits

v = limj→∞ aj(pj − p) where pj ∈ V and aj ∈ C for j ∈ N and
limj→∞ pj = p.

(c) The cone of limiting directions is defined as

Vh :=

{
r lim

j→∞

zj

|zj |
: r ≥ 0, zj ∈ V with |zj| → ∞

}
.

11. Remark. We collect some basic properties of limit varieties. To do
so, we fix d ≤ 1 and a real simple curve γ.

(a) By [6, Theorem 1], limit varieties are algebraic.
(b) If ξ is the limit vector of γ at infinity, then Tγ,1V = Vh − ξ. If d < 1,

then Tγ,dV is invariant under arbitrary translations in the direction
of ξ. This was shown in [6, Proposition 4].

(c) It was shown in [6, Proposition 5] that there are numbers 1 =: d1 >
d2 > · · · > dp with p ≥ 1 such that the map d 7→ Tγ,dV is constant
on the intervals ]dj+1, dj [, j = 1, . . . , p− 1, as well as on the interval
]−∞, dp[.

(d) If dj > d > dj+1 for some j < p, then

T0(Tγ,dj
V ) = Tγ,dV = (Tγ,dj+1

)h.

If d < dp, then

T0(Tγ,dp
V ) = Tγ,dV.

Both statements are shown in [8, Corollary 4.15]. In particular, Tγ,dV
is homogeneous unless d is one of the dj .

12. Definition. Assume that {d1, . . . , dp} is the minimal set such that
Remark 11(c) holds. Then the numbers 1 = d1 > d2 > · · · > dp are called
critical values for γ and V .

13. Definition. Let V be an algebraic variety in C
n of pure dimension

k ≥ 1. A projection π : C
n → C

n is called noncharacteristic for V at ζ ∈ V
if its rank is k, its image and its kernel are spanned by real vectors, and
TζV ∩ kerπ = {0}. It is called noncharacteristic for V at infinity if its rank
is k, its image and its kernel are spanned by real vectors, and Vh∩ker π = {0}.
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14. Definition. Let V be an algebraic surface in C
n and let γ be a real

simple curve. If d < 1 is a critical value for γ, then a real, singular point ζ of
Tγ,dV is called a simple singularity if the curve γζ : t 7→ γ(t)+ ζtd admits no
critical value strictly smaller than d. If d = 1, then a real, singular point ζ
of Vh is called a simple singularity if the curve γζ : t 7→ tζ admits no critical
value strictly smaller than 1. If d ≤ 1 is a critical value for γ and if a real
singularity ζ of Tγ,dV is not a simple singularity, then ∆(γ, d, ζ) denotes the
largest critical value for γζ which is strictly smaller than d.

15. Definition. Let γ : [α,∞[ → R
n be a real simple curve, let d ≤ 1,

let U ⊂ C
n, and let R ≥ α. Then the set

Γ (γ, d, U, R) :=
⋃

t>R

(γ(t) + tdU)

is called a conoid with core γ, opening exponent d, and profile U , with tip
truncated at R.

16. Definition. Let V be an algebraic variety in C
n of pure dimension

k ≥ 1, let γ : [α,∞[ → R
n be a real simple curve, let d ≤ 1, let ζ ∈ Tγ,dV ∩R

n,
and let ω be a weak weight function.

(a) We say that V is (ω, γ, d)-hyperbolic at ζ with respect to a projection
π : C

n → C
n which is noncharacteristic for Tγ,dV at ζ if there exist a

neighborhood U of ζ, r > α, and C > 0 such that z ∈ V ∩Γ (γ, d, U, r)
satisfies |Im z| ≤ Cω(z) whenever π(z) is real.

(b) Let δ < d. We say that V is (ω, γ, d, δ)-hyperbolic at ζ if there exist
R > 1, a neighborhood U of ζ, a bounded neighborhood G of ζ, and
C > 0 such that |Im z| ≤ Cω(z) whenever z ∈ Γ (γ, d, U, R) satisfies
π(z) ∈ R

n and π(z) 6∈ Γ (π ◦ γ, δ, π(G), 0).

17. Definition. Let V be an algebraic surface in C
n and let ω be a

weak weight. We say that V is ω-hyperbolic in conoids if for each real simple
curve γ and each d ≤ 1 which satisfies lim inft→∞ ω(t)/td = 0 the following
conditions are satisfied:

(a) Tγ,dV satisfies condition PLloc(ξ) (see Definition 19 below) for each
ξ ∈ Tγ,dV ∩ R

n.
(b) V is (ω, γ, d)-hyperbolic at ξ whenever one of the following conditions

is satisfied:

(i) ξ ∈ (Tγ,dV )reg ∩ R
n,

(ii) ξ ∈ R
n is a simple singularity of Tγ,dV , and d is a critical value

for γ and V .

(c) If d is a critical value for γ and V , then for each ξ ∈ (Tγ,dV )sing ∩R
n

which is not a simple singularity of Tγ,dV , the variety V is (ω, γ, d, δ)-
hyperbolic at ξ for δ = ∆(γ, d, ξ).
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If ω is a weight function, then the significance of the notion of “ω-
hyperbolicity in conoids” is explained by [5, Theorem 4.7]. It implies the
following result.

18. Theorem. Let V be an algebraic surface in C
3 and let ω be a weight

function. Then V satisfies PL(ω) if and only if V is ω-hyperbolic in conoids.

We want to show that for algebraic surfaces in C
n conditions (b) and (c)

of Definition 17 are redundant once condition (a) is replaced by the stronger
condition that Tγ,dV satisfies (SPL). Condition (SPL) was characterized for
curves and surfaces in C

n in [7]. To state these characterizations we need
the local Phragmén–Lindelöf condition PLloc(ξ), which was introduced by
Hörmander [10]. For a geometric characterization of PLloc(ξ) for analytic
curves in C

n and analytic surfaces in C
3 we refer to [3, Proposition 3.16 and

Theorem 5.5]. Next we recall the definition of PLloc(ξ) and the characteri-
zation of (SPL) for algebraic curves in C

n.

19. Definition. For ξ ∈ R
n and r0 > 0 let V be an analytic variety

in B(ξ, r0) which contains ξ. We say that V satisfies condition PLloc(ξ)
if there exist positive numbers A and r0 ≥ r1 ≥ r2 such that each u ∈
PSH(V ∩ B(ξ, r1)) satisfying (α) and (β) also satisfies (γ), where

(α) u(z) ≤ 1 for z ∈ V ∩ B(ξ, r1),
(β) u(z) ≤ 0 for z ∈ V ∩ R

n ∩ B(ξ, r1),
(γ) u(z) ≤ A|Im z| for z ∈ V ∩ B(ξ, r2).

20. Proposition ([7, Theorem 3.10]). For each algebraic curve V in C
n

the following conditions are equivalent:

(a) V satisfies (SPL),
(b) V satisfies PLloc(ξ) for each ξ ∈ V ∩ R

n, the cone Vh of limiting

directions satisfies (SPL), and for each projection π : C
n → C

n which

is noncharacteristic for Vh at infinity with π(Cn) = Cζ for some

ζ ∈ R
n there exists K ≥ 1 such that π−1(tζ) ∩ V ⊂ R

n for each

t ∈ R with |t| ≥ K.

Example 5.2 in [7] shows that in general the introduction of K ≥ 1 in
the previous statement cannot be avoided. However, we are going to show
in Lemma 21 and Proposition 22 that under suitable additional hypotheses
on the geometry of V the statement of Proposition 20 holds with K = 0.
These two results are crucial for the main result of the present paper.

21. Lemma. Let V ⊂ C
n−1 be an algebraic curve of degree m such that

Vh = {z ∈ C
n−1 : z2 = · · · = zn−1 = 0} and such that (SPL) is satisfied

for V . Then there are y1, . . . , ym ∈ R
n−2 such that

(1) V = C × {y1, . . . , ym}.
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Proof. Let W be a component of V that is locally irreducible at infinity.
By the existence theorem for Puiseux series expansions (see, e.g., Chirka
[9, 6.1]), there are q ∈ N and holomorphic functions

fk(t) =

q−1∑

j=−∞

ak,jt
j , k = 2, . . . , n − 1,

converging for large complex t, such that each point of W \ B(0, R) for
sufficiently large R has the form

w(t) = (tq, f2(t), . . . , fn−1(t)).

We may assume that q is chosen to be minimal with this property. It is clear
from Proposition 20 that all ak,j are real. We claim that q = 1. Assume for
contradiction that q ≥ 2, and let λ be a primitive qth root of −1. Then,
for all sufficiently large t > 0 the point w(λt) is in W . By the minimality
condition on q there are arbitrarily large positive values of t for which this
point is not real although the first component of w(λt) is real. Since this
contradicts Proposition 20, the assumption is false and we have shown q = 1.
Note that this implies that all fk are bounded.

Consider now the canonical defining function of V . To define it, set
z = (z1, z

′) with z′ = (z2, . . . , zn−1). Since V is an m-sheeted cover of C ×
{(0, . . . , 0)}, there are, for each z1 ∈ C, exactly m vectors α1(z1), . . . , αm(z1)
∈ C

n−2 such that (z1, αj(z1)) ∈ V , provided multiplicities are taken into
account. Now define

Φ(z, ξ) =
m∏

j=1

〈αj(z1) − z′, ξ〉, z ∈ C
n−1, ξ ∈ C

n−2.

This function, which is analytic in z and ξ, is the canonical defining func-
tion of V with respect to the projection z 7→ (z1, 0, . . . , 0) (for details see
Chirka [9, §4.2]).

Fix now z′, ξ ∈ C
n−2. The argument in the first part of this proof

shows that the function z1 7→ Φ((z1, z
′), ξ) is bounded for large z1 and

hence everywhere. By Liouville’s theorem it is constant. Hence there are
y1, . . . , ym ∈ C

n−2 such that

Φ(z, ξ) =

m∏

j=1

〈yj − z′, ξ〉, z ∈ C
n−1, ξ ∈ C

n−2.

Since z ∈ V if and only if Φ(z, ξ) = 0 for all ξ, we have shown (1). That
the yj are actually real now follows again from Proposition 20.

20. Proposition. Let V be an algebraic surface in C
n, let γ be a real

simple curve, let d ≤ 1, and assume that 0 is a regular point of Tγ,dV . Fix

δ < d and assume that Tγ,̺V satisfies (SPL) for all ̺ with d ≥ ̺ ≥ δ. Then
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Tγ,δV is either empty or the union of a finite number of planes which are

parallel to T0(Tγ,dV ) and which have 2-dimensional intersection with R
n.

Proof. We only treat the case that Tγ,δV is not empty.
Let 1 = d1 > d2 > · · · > dp be the critical values for V and γ. Assume

first d ≤ dp and fix δ < d. By Remark 11(d), Tγ,δV = T0(Tγ,dV ), which is a
plane since 0 is a regular point of Tγ,dV .

To complete the proof by induction, we assume that the assertion holds
for all d ≤ dj+1 and j + 1 ≥ p. Then we fix d with dj+1 < d ≤ dj and δ < d.
If δ > dj+1, then it follows from Remark 11(d) that Tγ,δV = T0(Tγ,dj

V ) =
T0(Tγ,dV ) is a plane which satisfies (SPL). Hence it intersects R

n in a real
plane.

Next note that for δ = dj+1, again by Remark 11(d), we also have

(Tγ,dj+1
V )h = (Tγ,δV )h = T0(Tγ,dV ).

Hence Lemma 21 implies that Tγ,dj+1
V is a finite union of planes which are

parallel to T0(Tγ,dV ), each of which intersects R
n in a real plane. Hence the

assertion of the proposition holds for δ ∈ [dj+1, d[.
If δ < dj+1, then T0(Tγ,dj+1

V ) 6= ∅ since Tγ,δV 6= ∅. As we have just
shown, T0(Tγ,dj+1

V ) = T0(Tγ,dV ). Therefore, we can apply the induction
hypothesis with d = dj+1 to complete the proof of the induction step.

The next result is the main tool of the present paper. It states that
(b) and (c) of Definition 17 are redundant once in (a) condition PLloc(ξ) is
replaced by (SPL).

23. Proposition. Let V be an algebraic surface in C
n and let ω be

a weak weight function. Then V is ω-hyperbolic in conoids if and only

if Tγ,dV satisfies (SPL) for all real simple curves γ and all d ≤ 1 with

lim inft→∞ ω(t)/td = 0.

Proof. Necessity of the condition is known from [5, Remark 3.29] if ω is
a weight function, and from [7, Corollary 4.4] if ω ≡ 0.

We prove sufficiency by contradiction. To do so, assume that V is not
ω-hyperbolic in conoids. Then one of the conditions (a), (b), or (c) in Defi-
nition 17 is violated. This cannot be (a), since (SPL) for a variety W implies
PLloc(ξ) for all ξ ∈ W ∩ R

n by Meise and Taylor [12, Proposition 4.4].
Let us begin with the case that condition (c) is violated. Then there exist

a critical value d ≤ 1 satisfying lim inft→∞ ω(t)/td = 0 and ξ ∈ (Tγ,dV )sing

∩ R
n which is not a simple singularity of Tγ,dV such that V is not (ω, γ, d, δ)-

hyperbolic at ξ for δ = ∆(γ, d, ξ). Without loss of generality we may assume
ξ = 0. Furthermore, we may assume that (0, . . . , 0, 1) is the limit vector
of γ at infinity and that γn(t) = t for all t, where γn(t) denotes the last
coordinate of γ(t). We define a projection π by π(z1, . . . , zn) = (0, z2, . . . , zn)
and assume that coordinates are so chosen that π is noncharacteristic for
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Tγ,dV at the origin, i.e., there are r, C1 > 0 such that

(2) |(z1, . . . , zn)| ≤ C1|(0, z2, . . . , zn)|

whenever (z1, . . . , zn) ∈ Tγ,dV with |(z1, . . . , zn)| < r. Note that by Re-
mark 11 the projection π is also noncharacteristic for Tγ,δV at infinity.

The proof starts with the same construction as at the beginning of the
proof of [4, Proposition 17]. For d < 1, we choose coordinates in such a way
that there are ε1, ε2, K1, K2 > 0 such that

(i) If

(z1, . . . , zn) ∈ Tγ,dV ∩ (B(0, ε1) × Bn−2(0, 2ε2) × C)

satisfies (z2, . . . , zn) ∈ R
n−1, then also z1 is real. Such numbers

ε1, ε2 exist by [3, Proposition 3.16], since Tγ,dV satisfies (SPL) by
hypothesis and hence PLloc(0) by Proposition 20.

(ii) The restriction of π to Tγ,dV ∩ (B(0, ε1)× (Bn−2(0, 2ε2) \ {0})×C)
is unbranched.

(iii) If lim inft→∞ ω(t)/tδ = 0 and if

(z1, . . . , zn) ∈ Tγ,δV \ (C × Bn−2(0, K2) × C)

satisfies (z2, . . . , zn) ∈ R
n−1, then also z1 is real. Such a number K2

exists by Proposition 20.
(iv) The restriction of π to Tγ,δV \(C×Bn−2(0, K2)×C) is unbranched.
(v) If w ∈ Tγ,δV satisfies |(w2, . . . , wn−1)| ≤ 2K2, then |w1| ≤ K1.

For d = 1, conditions (i) and (ii) are replaced by

(i′) If (z1, . . . , zn) ∈ Tγ,1V ∩(B(0, ε1)×Bn−1(0, ε2)) satisfies (z2, . . . , zn)
∈ R

n−1, then also z1 is real.
(ii′) The restriction of π to Tγ,1V ∩(B(0, ε1)×Bn−1(0, 2ε2))\({(0, . . . , 0)}

× C) is unbranched.

Now set, for R > 0,

ΓR = Γ (γ, d, B(0, ε1) × Bn−1(0, ε2), R),

Γ ′
R = Γ (γ, δ, B(0, K1) × Bn−1(0, 2K2), R).

Fix a suitably large R1 > 0 and define a semi-algebraic set by

M = V ∩ (C × R
n−1) ∩ ΓR1

\ Γ ′
R1

and a semi-algebraic function by

h : [R1,∞[ → R, r 7→ sup{|Imx| : there is y ∈ R
n−2 with (x, y, r) ∈ M}.

By the curve selection lemma (see Hörmander [11, Theorem A.2.8]) there
are R2 ≥ R1 and an algebraic curve σ : [R2,∞[ → M such that

πn(σ(r)) ≡ r and h(r) ≡ |Imπ1(σ(r))|.
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We must have σ 6= γ since γ is real. Hence σ admits a Puiseux series expan-
sion

σ(t) = γ(t) + (tβw1, t
βw′, 0) + σ̃(t)

with β ≤ d, C × C
n−2 ∋ (w1, w

′) 6= 0, |σ̃(t)| = o(tβ), and π3 ◦ σ̃ ≡ 0. The
definition of M implies that w′ and π ◦ σ are real. Since h is semi-algebraic
there are C2 > 0 and α ≤ β such that h(t) = C2t

α + o(tα). Note that

lim inf
t→∞

ω(t)

tα
= 0

since V is not (ω, γ, d, δ)-hyperbolic at 0. Thus Tζ,̺V satisfies (SPL) for each
real simple curve ζ and each ̺ ≥ α by hypothesis. The claim is now proved
by looking at a complete set of cases and leading each one to a contradiction.
When checking that all cases are covered, keep in mind that α ≤ β ≤ d and
β ≥ δ; the latter holds since σ(t) 6∈ Γ ′

R1
for all t.

(I) Case β = d < 1. Then (w1, w
′, 0) ∈ Tγ,dV , and (i) implies that w1 is

real since w′ is real. By construction, they do not both vanish, hence by (ii),
(w1, w

′, 0) is a regular point of Tγ,dV . Note that α < β = d since w1 is
real. Thus 0 is a regular point of TRe σ,dV which satisfies the hypotheses of
Proposition 22 with α in place of δ and Reσ in place of γ. Proposition 22
implies that z ∈ TRe σ,αV is real whenever π(z) is real. On the other hand,
for ζ = i limt→∞ Im π1(σ(t))t−α 6= 0 we have (ζ, 0, 0) ∈ TRe σ,αV . Since this
is a contradiction, the present case is impossible.

(I′) Case β = d = 1. This is the same as before except that (i) and (ii)
are replaced by (i′) and (ii′), respectively.

(II) Case δ < β < d. In this case, the choice of δ implies that β is not a
critical value for V and γ. Hence Tγ,βV is homogeneous by Remark 11(d).

(A) Subcase α = β. Since Tγ,βV is homogeneous and since limit vari-
eties are translation invariant by Remark 11(b), the plane E := C·(w1, w

′, 0)
+C · (0, 0, 1) is an irreducible component of Tγ,βV . Since Tγ,βV = T0(Tγ,dV )
by Remark 11(d), inequality (2) holds for all (z1, . . . , zn) ∈ Tγ,βV . Hence
w′ 6= 0. On the other hand, w1 is not real because we are in the case α = β.
Hence the real dimension of E ∩ R

n is only 1, and Proposition 20 implies
that E does not satisfy (SPL). This is a contradiction since it is clear that
(SPL) is inherited by irreducible components.

(B) Subcase α < β. In this case, w1 and w′ are real. Since Tγ,βV
is two-dimensional, homogeneous, and invariant under all translations in
the direction (0, . . . , 0, 1), it is easy to see that all singular points are of
the form (0, . . . , 0, τ), τ ∈ C. Hence (w1, w

′, 0) is a regular point of Tγ,βV
and the origin is a regular point of TRe σ,βV . Now Proposition 22 yields a
contradiction as in case (I).
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(III) Case β = δ.

(A) Subcase α = β. Then

lim inf
t→∞

ω(t)/tδ = lim inf
t→∞

ω(t)/tα = 0.

Hence (iii) implies that w1 is real since w′ is real. This contradicts the
hypothesis α = β.

(B) Subcase α < β. Then |w′| > 2K2 by (v) and the choice of σ.
Hence it follows from (iv) that Tγ,δV = Tγ,βV is regular at (w1, w

′, 0) ∈ R
n.

Hence the origin is a regular point of TRe σ,βV . Again Proposition 22 yields
a contradiction as in case (I).

As all possible cases lead to contradictions, we have finished the proof
of the case where condition (c) of Definition 17 is violated. If condition (b)
of Definition 17 is violated, then the above proof works with β = −∞. In
particular, case (III) cannot happen.

24. Theorem. Let V be an algebraic surface in C
3 and let ω be a weight

function. Then V satisfies PL(ω) if and only if Tγ,dV satisfies (SPL) for

all real simple curves γ and all d ∈ ]0, 1] with lim inft→∞ ω(t)/td = 0.

Proof. The result follows immediately from Proposition 23 together with
Theorem 18.

25. Remark. It should be pointed out that for working examples the
approach in [5], which is more algorithmic in spirit, is often very useful.
Also, a direct proof of Theorem 24, i.e., a proof without recourse to hyper-
bolicity conditions, would facilitate the generalization of the result to higher
dimensions. Unfortunately, no such proof is known yet.

26. Corollary. For P ∈ C[z1, z2, z3] with deg P ≥ 1 assume that

V (P )h satisfies (SPL). Let M consist of all those d ∈ ]0, 1] such that

Tγ,dV (P ) does not satisfy (SPL) for some real simple curve γ. Set c :=
supM if M 6= ∅, and set c := 0 otherwise. Then for any weight function

ω the variety V (P ) satisfies PL(ω) if and only if tc = O(ω(t)) for t → ∞.

Moreover , the number c is rational.

Proof. All of this follows immediately from Theorem 24 with the excep-
tion of the fact that c is rational, which follows from [4, Theorem 22].

Before we can prove the analogue to Theorem 24 for (SPL) we have to
recall Definitions 3.12 and 3.15 from [7].

27. Definition.

(a) Let d ≤ 1. Two real simple curves γ and σ are equivalent modulo d
if for each R > 0 and each neighborhood U of zero we have

Γ (γ, d, U, R) ∩ Γ (σ, d, U, R) 6= ∅.
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(b) Let V ⊂ C
n be an algebraic variety, let γ be a real simple curve,

and let d ≤ 1. A real, singular point ζ of Tγ,dV is called terminating

for γ and d if there is a real simple curve σ which is equivalent to γ
modulo d such that ζ is a simple singularity of Tσ,dV in the sense of

Definition 14, i.e., there is no critical value for V and σ(t)+ tdζ that
is strictly smaller than d.

28. Definition. Let V be an algebraic variety in C
n. We say that V

is hyperbolic in conoids if for each real simple curve γ and each d ≤ 1 the
following conditions are satisfied:

(1) Tγ,dV satisfies (SPL).
(2) If ξ ∈ Tγ,dV ∩R

n is either a regular point of Tγ,dV or a singularity of
Tγ,dV which is terminating for γ and d, then V is (0, γ, d)-hyperbolic
at ξ.

(3) If ξ ∈ Tγ,dV ∩ R
n is a singularity of Tγ,dV which is not terminating

for γ and d, then V is (0, γ, d, δ)-hyperbolic at ξ for δ := ∆(γ, d, ξ).

29.Theorem. Let V be an algebraic surface in C
n that satisfies PLloc(ξ)

at each ξ ∈ V ∩ R
n. The following are equivalent:

(a) V satisfies (SPL).
(b) Tγ,dV satisfies (SPL) for all real simple curves γ and all d ≤ 1.
(c) V is 0-hyperbolic in conoids in the sense of Definition 17.
(d) V is hyperbolic in conoids in the sense of Definition 28.

Proof. The equivalence of (a) and (d) is shown in [7, Theorem 4.4], the
equivalence of (b) and (c) is shown in Proposition 23, while (d) obviously
implies (b).

We complete the proof by showing that (c) implies (d). To do so, fix
ξ ∈ Tγ,dV ∩R

n. If ξ is regular, the two notions of hyperbolicity coincide. If ξ
is singular but not terminating, then ξ is not simple, and (c) implies that V is
(0, γ, d, δ)-hyperbolic at ξ for δ := ∆(γ, d, ξ). If ξ is singular and terminating,
then there is a real simple curve σ, equivalent to γ modulo d, such that ξ is
a simple singularity of Tσ,dV . Then (c) implies that V is (0, σ, d)-hyperbolic
at ξ. It is easy to see that this implies that V is (0, γ, d)-hyperbolic at ξ.
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