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Existence theory for single and multiple solutions
to singular positone boundary value problems for

the delay one-dimensional p-Laplacian

by Daqing Jiang (Changchun), Xiaojie Xu (Changchun),
Donal O’Regan (Galway) and Ravi P. Agarwal (Melbourne, FL)

Abstract. The existence of single and multiple nonnegative solutions for singular
positone boundary value problems to the delay one-dimensional p-Laplacian is discussed.
Throughout our nonlinearity f(·, y) may be singular at y = 0.

1. Introduction. Recently in the literature on the theory of functional
differential equations many authors have discussed singular and nonsingular
positone boundary value problems (i.e. problems where f takes nonnegative
values) for second order functional differential equations of the form

x′′(t) + f(t, xt) = 0,

or

x′′(t) + f(t, x(τ(t))) = 0;

for example see [1, 8, 11, 12, 18] and the references therein. In [8, 12, 18],
the problem discussed does not allow singularities. In [1, 7, 11], the exis-
tence of one nonnegative solution of singular positone problems for second
order functional differential equations is studied. As pointed out by the au-
thors of [7], these problems are motivated by applications in physics, applied
mathematics and variational problems in control theory.

In this paper, we study the existence of single and multiple nonnegative
solutions to the singular positone boundary value problem
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(1.1)





(Φ(y′))′ + q(t)f(t, y(t− τ)) = 0, t ∈ (0, 1) \ {τ},
y(t) = ξ(t), −τ ≤ t ≤ 0,
y(1) = 0,

where Φ(s) = |s|p−2s, p > 1, 0 < τ < 1, ξ ∈ C[−τ, 0], ξ(t) > 0 on [−τ, 0)
and ξ(0) = 0. Here our nonlinearity f(t, y) may be singular at y = 0.

In [2, 3] (p = 2, τ = 0), R. P. Agarwal and D. O’Regan showed that the
singular positone problem has single and two nonnegative solutions by using
a Leray–Schauder alternative and a general fixed point theorem in cones.
In [4, 5, 9] (p = 2, τ = 0), the authors used Krasnosel’skĭı’s fixed point
theorem in a cone to establish the existence of two nonnegative solutions
to singular positone boundary value problems. In [10, 13, 16] (τ = 0), the
problem discussed can only have singularities at t = 0 or t = 1. However,
no paper to date has discussed the existence of single and multiple nonneg-
ative solutions to singular positone boundary value problems for the delay
one-dimensional p-Laplacian. This paper attempts to fill this gap in the lit-
erature. Existence will be established by using a Leray–Schauder alternative
[15] and Krasnosel’skĭı’s fixed point theorem in a cone [6].

We next state a result from [2, 3] which will be needed in Section 3.

Lemma 1.1. Let

K[0,1] = {y ∈ C[0, 1] : y ≥ 0 and concave on [0, 1]}.
If y ∈ K[0,1], then

y(t) ≥ t(1− t)‖y‖[0,1] for t ∈ [0, 1],

where ‖y‖[0,1] = supt∈[0,1] |y(t)|.
Finally, for completeness we state Krasnosel’skĭı’s fixed point theorem in

a cone [6].

Lemma 1.2. Let E = (E, ‖ · ‖) be a Banach space and let K ⊂ E be a
cone in E. Assume Ω1, Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2,
and let

A : K ∩ (Ω2 \Ω1)→ K

be a completely continuous operator such that either

(i) ‖Ay‖ ≤ ‖y‖ ∀y ∈ K ∩ ∂Ω1 and ‖Ay‖ ≥ ‖y‖ ∀y ∈ K ∩ ∂Ω2, or
(ii) ‖Ay‖ ≥ ‖y‖ ∀y ∈ K ∩ ∂Ω1 and ‖Ay‖ ≤ ‖y‖ ∀y ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \Ω1).

2. Existence principles. In this section, we establish existence prin-
ciples for the boundary value problem
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(2.1)





(Φ(y′))′ + F (t, y(t− τ)) = 0, 0 < t < 1,
y(t) = A(t), −τ ≤ t ≤ 0,
y(1) = B,

where Φ(s) = |s|p−2s, p > 1, 0 < τ < 1, A ∈ C[−τ, 0] and A(0) = A.
Suppose the following two conditions are satisfied:

(A1) F : (0, 1)× R→ R is continuous;
(A2) for each r > 0 there exists hr ∈ C((0, 1), [0,∞))∩L1[0, 1] such that

|u| ≤ r implies |F (t, u)| ≤ hr(t) for t ∈ (0, 1).

Suppose that D ⊂ E := C[−τ, 1] is a bounded set, and there exists a
constant r > 0 such that ‖u‖ ≤ r for u ∈ D, where

‖u‖ = max
t∈[−τ,1]

|u(t)|.

Thus |F (t, u(t− τ))| ≤ hr(t) for u ∈ D.
For each fixed y ∈ D, we consider the boundary value problem

(2.2)





(Φ(w′))′ + F (t, y(t− τ)) = 0, 0 < t < 1,
w(t) = A(t), −τ ≤ t ≤ 0,
w(1) = B.

Then (2.2) is equivalent to

(2.3) w(t) = (Ty)(t) :=





A+
t�
0

Φ−1
(
Cy +

1�
x

F (s, y(s− τ)) ds
)
dx,

0 ≤ t ≤ 1,
A(t), −τ ≤ t ≤ 0,

where Cy = Φ(w′(1)) is a solution of the equation

(2.4) Z(Cy) :=
1�
0

Φ−1
(
Cy +

1�
x

F (s, y(s− τ)) ds
)
dx = B − A.

Lemma 2.1. For each y ∈ D, (2.4) has a unique solution Cy ∈ R.

Proof. Fix y ∈ D. Then, by the definition of Z(Cy),

(2.5)
1�
0

Φ−1
(
Cy −

1�
x

hr(s) ds
)
dx ≤ Z(Cy) ≤

1�
0

Φ−1
(
Cy +

1�
x

hr(s) ds
)
dx

for all Cy ∈ R. Because Φ−1 is a continuous, strictly increasing function on
R with Φ−1(R) = R, so is Z (for each fixed y ∈ D). Thus, there exists a
unique Cy ∈ R satisfying (2.4).

From Lemma 2.1, we conclude that T : D → E is well defined.

Lemma 2.2. T : D→ E is continuous and compact.
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Proof. Fix y ∈ D and let Cy ∈ R be the unique solution of (2.4) corre-
sponding to y. From (2.4), by the first mean value theorem, there exists a
ξ ∈ [0, 1] such that

Φ−1
(
Cy +

1�
ξ

F (s, y(s− τ)) ds
)

= B −A,

i.e.,

Cy = Φ(B − A)−
1�
ξ

F (s, y(s− τ)) ds.

Then

(2.6) |Cy| ≤ Φ(|B − A|) +
1�
0

hr(s) ds =: M(r),

and

(2.7)
∣∣∣Cy +

1�
t

F (s, y(s− τ)) ds
∣∣∣ ≤M(r) for t ∈ [0, 1].

From (2.3), (2.6) and (2.7), we have

|w(t)| ≤ |A|+M1/(p−1)(r), |w′(t)| ≤M1/(p−1)(r), 0 ≤ t ≤ 1,

where M(r) is a positive constant independent of y ∈ D and t ∈ [0, 1].
Since w(t) = A(t) for t ∈ [−τ, 0], the Arzelà–Ascoli Theorem guarantees

that T : D → E is compact.
Now assume that y0, yn ∈ D and yn → y0 in D. Then

(2.8)n (Tyn)(t) =





A+
t�
0

Φ−1
(
Cyn +

1�
x

F (s, yn(s− τ)) ds
)
dx,

0 ≤ t ≤ 1,
A(t), −τ ≤ t ≤ 0,

where Cyn (n = {0, 1, . . .}) is the unique solution of the equation

(2.9)n Z(Cyn) :=
1�
0

Φ−1
(
Cyn +

1�
x

F (s, yn(s− τ)) ds
)
dx = B − A.

From (2.6), we know that |Cyn | ≤M(r), n = 0, 1, 2, . . . , where M(r) is inde-
pendent of yn. Suppose that C∗ ∈ [−M(r),M(r)] is an accumulation point
of {Cyn}. Then there is a subsequence of {Cyn}, {Cyn(j)}, which converges
to C∗. It follows from (2.9)n(j) that

1�
0

Φ−1
(
C∗ +

1�
x

F (s, y0(s− τ)) ds
)
dx = B −A.
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This shows that C∗ = Cy0 , by Lemma 2.1. Hence {Cyn} has a unique ac-
cumulation point, and hence Cyn → Cy0 . Thus, from (2.8)n and (2.9)n, we
have

lim
n→∞

(Tyn)(t) = (Ty0)(t), t ∈ [−τ, 1].

This shows that T : D → E is continuous. The proof of the lemma is now
complete.

Since D is an arbitrary bounded subset in C[0, 1], we have

Lemma 2.3. T : E → E is completely continuous.

We obtain the following general existence principles for (2.1) by using the
Schauder fixed point theorem and a nonlinear alternative of Leray–Schauder
type.

Theorem 2.1. Suppose (A1) and (A2) hold. In addition suppose there
is a constant M > supt∈[−τ,0] |A(t)|+ |B|, independent of λ, with

(2.10) ‖y‖ = max
t∈[−τ,1]

|y(t)| 6= M

for any solution y ∈ C[−τ, 1] ∩ C1[0, 1] to

(2.11)λ





(Φ(y′))′ + λp−1F (t, y(t− τ)) = 0, 0 < t < 1,
y(t) = λA(t), −τ ≤ t ≤ 0,
y(1) = λB,

for each λ ∈ (0, 1). Then (2.1) has a solution y with ‖y‖ ≤M.

Proof. Notice that (2.11)λ is equivalent to the fixed point problem

(2.12)λ y = λTy, u ∈ C[−τ, 1],

where T is as in (2.3). Set U = {u ∈ C[−τ, 1] : ‖u‖ < M}. Since T :
C[−τ, 1]→ C[−τ, 1] is completely continuous, the nonlinear alternative [15]
guarantees that T has a fixed point, i.e., (2.11)1 has a solution in U .

Theorem 2.2. Suppose (A1) and (A2) hold. In addition suppose there
is a constant M > supt∈[−τ,0] |A(t)|+ |B|, independent of λ, with

‖y‖ = max
t∈[−τ,1]

|y(t)| 6= M

for any solution y ∈ C[−τ, 1] ∩ C1[0, 1] to

(2.13)λ





(Φ(y′ − (1− λ)(B −A)))′ + λp−1F (t, y(t− τ)) = 0, 0 < t < 1,
y(t) = A(t), −τ ≤ t ≤ 0,
y(1) = B,

for each λ ∈ (0, 1). Then (2.1) has a solution y with ‖y‖ ≤M.

Proof. Notice that (2.13)λ is equivalent to the fixed point problem

(2.14)λ y = (1− λ)Q+ λTy,
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where

Q(t) =
{
A(1− t) +Bt, 0 ≤ t ≤ 1,
A(t), −τ ≤ t ≤ 1.

Set U = {u ∈ C[−τ, 1] : ‖u‖ < M}. Since T : C[−τ, 1] → C[−τ, 1] is
completely continuous, the nonlinear alternative guarantees that T has a
fixed point, i.e., (2.14)1 has a solution in U .

Theorem 2.3. Suppose that (A1) holds, and there exists h ∈ C((0, 1),
[0,∞)) ∩ L1[0, 1] with |F (t, u)| ≤ h(t) for t ∈ (0, 1) and u ∈ R. Then (2.1)
has a solution y.

Proof. Solving (2.1) is equivalent to the fixed point problem u = Tu.
Since T : C[−τ, 1]→ C[−τ, 1] is compact, the result follows from Schauder’s
fixed point theorem.

Remark 2.1. Theorems 2.1–2.3 extend results in [2] (p = 2, τ = 0) and
[14] (τ = 0).

3. Delay differential equations. In this section we will discuss (1.1).
We shall assume the following conditions:

(3.1) ξ ∈ C[−τ, 0], ξ(t) > 0 on [−τ, 0) and ξ(0) = 0,
(3.2) q ∈ C(0, 1) ∩ L1[0, 1] with q > 0 on (0, 1),
(3.3) f : [0, 1]× (0,∞)→ (0,∞) is continuous,
(3.4) f(t, u) ≤ g(u) + h(u) on [0, 1] × (0,∞) with g > 0 continuous and

nonincreasing on (0,∞), h ≥ 0, continuous on [0,∞) and h/g non-
decreasing on (0,∞)

(3.5) there exists K0 with g(ab) ≤ K0g(a)g(b) for all a > 0, b > 0,
(3.6) � τ0 q(s)f(s, ξ(s− τ))ds <∞,
(3.7) � τ0 q(s)g(ξ(s− τ))ds <∞, � 1

τ
q(s)g((s− τ)(1 + τ − s))ds <∞.

Theorem 3.1. Suppose (3.1)–(3.7) hold. In addition suppose the follow-
ing conditions are satisfied :

(3.8) for each constant H > 0 there exists a function ψH continuous on
[0, 1] and positive on (0, 1) such that f(t, u) ≥ ψH(t) on [0, 1] ×
(0,H],

(3.9) there exists r > b0 = � τ0 Φ−1( � τ
s
q(x)f(x, ξ(x − τ)) dx) ds with

r/Φ−1(g(r) + h(r)) > a0, where Φ−1(u) = |u|1/(p−1) sgnu is the
inverse to Φ(u), and

a0 = K
1/(p−1)
0

1�
τ

Φ−1
( s�
τ

q(x)g((x− τ)(1 + τ − x)) dx
)
ds.
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Then (1.1) has a solution y ∈ C[−τ, 1] ∩C1[0, 1] with y(t) > 0 for t ∈ (0, 1)
and ‖y − w‖ < r, where

w(t) =
{

0, 0 ≤ t ≤ 1,
ξ(t), −τ ≤ t ≤ 0.

Proof. Choose δ ∈ (0, r) with

(3.10a)

r − δ
Φ−1(g(r) + h(r))

> a0,

δ +
τ�
0

Φ−1
( τ�
s

q(x)f(x, ξ(x− τ)) dx
)
ds < r.

Let m0 ∈ {1, 2, . . .} be chosen so that 1/m0 < δ and

(3.10b) δ +
τ�
0

Φ−1
( τ�
s

q(x)f(x, 1/m+ ξ(x− τ)) dx
)
ds < r for m ∈ N0,

where N0 = {m0,m0 + 1, . . .}. To show (1.1) has a nonnegative solution we
will look at the boundary value problem

(3.11)





(Φ(y′))′ + q(t)f(t, y(t− τ) + w(t− τ)) = 0, t ∈ (0, 1) \ {τ},
y(t) = 0, −τ ≤ t ≤ 0,
y(1) = 0.

We will show, using Theorem 2.2, that there exists a solution y to (3.11)
with y(t) > 0 for t ∈ (0, 1) and y(t) = 0 for t ∈ [−τ, 0] and ‖y‖ < r. If this is
true then u(t) = y(t) +w(t), −τ ≤ t ≤ 1, is a nonnegative solution (positive
on (0, 1) ∪ [−τ, 0)) of (1.1) and ‖u− w‖ < r. Therefore, we focus on (3.11).

The idea is to show first that

(3.12)m





(Φ(y′))′ + q(t)F (t, y(t− τ) + w(t− τ)) = 0, t ∈ (0, 1) \ {τ},
y(t) = 1/m, −τ ≤ t ≤ 0,
y(1) = 1/m,

has a solution ym for each m ∈ N0 with ym(t) ≥ 1/m for t ∈ [0, 1] and
‖ym‖ < r, where

F (t, u) =
{
f(t, u), u ≥ 1/m,
f(t, 1/m), u ≤ 1/m.

We will apply Theorem 2.2. Consider the family of problems

(3.13)mλ





(Φ(y′))′+λp−1q(t)F (t, y(t−τ)+w(t−τ)) = 0, t∈ (0, 1)\{τ},
y(t) = 1/m, −τ ≤ t ≤ 0,
y(1) = 1/m,

for 0 < λ < 1. Let y ∈ C[−τ, 1] ∩ C1[0, 1] be any solution of (3.13)mλ . Then
(Φ(y′))′ ≤ 0 on (0, 1) and it is easy to check that y is concave on [0, 1].
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Thus, y(t) ≥ 1/m on [0, 1]. Also there exists σ ∈ (0, 1) with y′(t) ≥ 0 on
(0, σ), y′(t) ≤ 0 on (σ, 1) and y(σ) = ‖y‖. Moreover, by Lemma 1.1,

(3.14) y(t) ≥ t(1− t)y(σ) = t(1− t)‖y‖, t ∈ [0, 1].

Therefore, (3.13)mλ is equivalent to

(3.15)mλ y(t) =





1/m+ λ

t�
0

Φ−1
( σ�
s

q(x)F (x, y(x− τ) + w(x− τ)) dx
)
ds,

0 ≤ t ≤ σ,

1/m+ λ

1�
t

Φ−1
( s�
σ

q(x)F (x, y(x− τ) + w(x− τ)) dx
)
ds,

σ ≤ t ≤ 1,
1/m, −τ ≤ t ≤ 0,

where σ satisfies
σ�
0

Φ−1
( σ�
s

q(x)F (x, y(x− τ) + w(x− τ)) dx
)
ds

=
1�
σ

Φ−1
( s�
σ

q(x)F (x, y(x− τ) + w(x− τ)) dx
)
ds.

We next claim that

(3.16) ‖y‖ = max
t∈[−τ,1]

|y(t)| 6= r

for any solution y to (3.15)mλ . Suppose this is false, i.e. suppose there exists λ
and a solution y to (3.15)mλ such that ‖y‖ = r. Then by (3.14), y(t) ≥ t(1−t)r
for t ∈ [0, 1], and so y(x− τ) ≥ (x− τ)(1 + τ − x)r for x ∈ [τ, 1]. Notice also
that

F (x, y(x− τ) + w(x− τ)) = f(x, 1/m+ ξ(x− τ)) for x ∈ (0, τ),

F (x, y(x− τ) + w(x− τ)) = f(x, y(x− τ)) for x ∈ (τ, 1).

Let σ be as in (3.15)mλ . If 0 < σ ≤ τ , then

r = y(σ) = 1/m+ λ

σ�
0

Φ−1
( σ�
s

q(x)F (x, y(x− τ) + w(x− τ)) dx
)
ds

= 1/m+ λ

σ�
0

Φ−1
( σ�
s

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds

= 1/m+ λ

σ�
0

Φ−1
( σ�
s

q(x)f(x, 1/m+ ξ(x− τ)) dx
)
ds

≤ δ +
τ�
0

Φ−1
( τ�
s

q(x)f(x, 1/m+ ξ(x− τ)) dx
)
ds.

This contradicts (3.10b), so (3.16) is satisfied.
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If τ ≤ σ < 1, then

r = y(σ) = 1/m+ λ

1�
σ

Φ−1
( s�
σ

q(x)F (x, y(x− τ) + w(x− τ)) dx
)
ds

= 1/m+ λ

1�
σ

Φ−1
( s�
σ

q(x)f(x, y(x− τ)) dx
)
ds

≤ δ +
1�
τ

Φ−1
( s�
τ

q(x)[g(y(x− τ)) + h(y(x− τ))] dx
)
ds

= δ +
1�
τ

Φ−1
( s�
τ

q(x)g(y(x− τ))
(

1 +
h(y(x− τ))
g(y(x− τ))

)
dx

)
ds

≤ δ + Φ−1
(

1 +
h(r)
g(r)

) 1�
τ

Φ−1
( s�
τ

q(x)g((x− τ)(1 + τ − x)r) dx
)
ds

≤ δ + Φ−1(K0)Φ−1(g(r) + h(r))

×
1�
τ

Φ−1
( s�
τ

q(x)g((x− τ)(1 + τ − x)) dx
)
ds

= δ + a0Φ
−1(g(r) + h(r)).

This contradicts (3.10a), so (3.16) is satisfied.
Now Theorem 2.2 implies that (3.12)m has a solution ym with ‖ym‖ ≤ r.

In fact (as above)

1/m ≤ ym(t) < r for t ∈ [0, 1].

Next we obtain a sharper lower bound on ym, namely we show that there
exists a constant k > 0, independent of m, with

(3.17) ym(t) ≥ kt(1− t) for t ∈ [0, 1].

To see this notice that (3.8) guarantees the existence of a function ψM
continuous on [0, 1] and positive on (0, 1) with F (t, ym(t− τ) +w(t− τ)) =
f(t, ym(t−τ)+w(t−τ))≥ ψM (t) for t ∈ [0, 1], where M := r+supt∈[−τ,0] ξ(t)
≥ ‖ym‖ + ‖w‖. Now, let VM ∈ C[0, 1] ∩ C1[0, 1] be the unique solution to
the problem

(3.18)
{

(Φ(y′))′ + q(t)ψM (t) = 0, 0 < t < 1,
y(0) = 0, y(1) = 0.

Since (Φ(V ′M ))′ < 0 on (0, 1), VM is concave on [0, 1] and ‖VM‖[0,1] =
supt∈[0,1] |VM(t)| > 0. Moreover, by Lemma 1.1,

(3.19) VM (t) ≥ t(1− t)‖VM‖[0,1], t ∈ [0, 1].
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Since F (t, ym(t− τ) + w(t− τ)) ≥ ψM (t) for t ∈ [0, 1], we claim that

(3.20) ym(t) ≥ VM (t), t ∈ [0, 1].

Suppose (3.20) is false, i.e. assume ym(t) < VM (t) for some t ∈ (0, 1). Since
ym(0) > VM (0) and ym(1) > VM (1), the function u(t) = VM (t)−ym(t) would
have a positive maximum at a point t0 ∈ (0, 1). Hence V ′M (t0) = y′m(t0), and
there exist 0 ≤ t1 < t0 < t2 ≤ 1 such that u(t1) = u(t2) = 0 and u(t) > 0
on (t1, t2). Notice that

[Φ(V ′M (t))]′ − [Φ(y′m(t))]′

= −q(t)ψM (t) + q(t)F (t, ym(t− τ) + w(t− τ)) ≥ 0, ∀t ∈ (0, 1).

Integrate both sides of the above inequality with respect to t from t0 to
t ∈ (t0, t2), to get

[Φ(V ′M(t))]− [Φ(V ′M (t0))] ≥ [Φ(y′m(t))]− [Φ(y′m(t0))] for all t ∈ (t0, t2).

That is,
u′(t) = V ′M (t)− y′m(t) ≥ 0 for t ∈ (t0, t2),

and so u(t0) ≤ u(t2) = 0, a contradiction.
Now (3.20) together with (3.19) implies (3.17) with k = ‖VM‖[0,1].

We shall now obtain a solution to (3.11) by means of the Arzelà–Ascoli
Theorem, as a limit of solutions of (3.12)m. We will show that

(3.21) {ym}m∈N0 is a bounded, equicontinuous family on [−τ, 1].

Of course ‖ym‖ < r implies {ym}m∈N0 is uniformly bounded. To show
equicontinuity notice that

(3.22) ym(t) =





1/m+
t�
0

Φ−1
( σm�

s

q(x)f(x, ym(x− τ) + w(x− τ)) dx
)
ds,

0 ≤ t ≤ σm,

1/m+
1�
t

Φ−1
( s�
σm

q(x)f(x, ym(x− τ) + w(x− τ)) dx
)
ds,

σm ≤ t ≤ 1,
1/m, −τ ≤ t ≤ 0,

where σm satisfies
σm�
0

Φ−1
( σm�

s

q(x)f(x, ym(x− τ) + w(x− τ)) dx
)
ds

=
1�
σm

Φ−1
( s�
σm

q(x)f(x, ym(x− τ) + w(x− τ)) dx
)
ds,
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and

(3.23) y′m(t) =





Φ−1
( σm�

t

q(x)f(x, ym(x− τ) + w(x− τ)) dx
)
,

0 ≤ t ≤ σm,

−Φ−1
( t�
σm

q(x)f(x, ym(x− τ) + w(x− τ)) dx
)
,

σm ≤ t ≤ 1,

where σm ∈ (0, 1) is such that ym(σm) = ‖ym‖. So for t ∈ [0, 1] we have

|y′m(t)| ≤ Φ−1
( 1�

0

q(x)f(x, ym(x− τ) + w(x− τ)) dx
)

= Φ−1
( τ�

0

q(x)f(x, 1/m+ ξ(x− τ)) dx+
1�
τ

q(x)f(x, ym(x− τ)) dx
)

≤ Φ−1
( τ�

0

q(x)g(x, ξ(x− τ))
{

1 +
h(δ + ‖ξ‖)
g(δ + ‖ξ‖)

}
dx

+K0g(k)
{

1 +
h(r)
g(r)

} 1�
τ

q(x)g((x− τ)(1 + τ − x)) dx
)
.

Since ym(t) = 1/m for t ∈ [−τ, 0], this implies that {ym}m∈N0 is an equicon-
tinuous family on [−τ, 1].

Now the Arzelà–Ascoli Theorem guarantees the existence of a subse-
quence N+ of N0 and a function y ∈ C[−τ, 1] with ym converging to y
uniformly on [−τ, 1] as m→∞ through N+. Moreover, there exists a con-
stant σ with σm converging to σ as m→∞ through N+. Also y(t) = 0 for
t ∈ [−τ, 0], y(1) = 0 and kt(1− t) ≤ y(t).

Notice ym(t) ≥ kt(1−t) for 0 ≤ t ≤ 1, and ym(x−τ) ≥ k(x−τ)(1+τ−x)
for x ∈ [τ, 1]. Notice also that

f(x, ym(x− τ) + w(x− τ)) = f(x, 1/m+ ξ(x− τ)) for x ∈ (0, τ),

and

f(x, ym(x− τ) + w(x− τ)) = f(x, ym(x− τ))

≤ K0

{
1 +

h(δ + r)
g(δ + r)

}
g(k)g((x− τ)(1 + τ − x))

for x ∈ (τ, 1).
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Now, let m → ∞ (through N+) in (3.22) to obtain (here we use the
Lebesgue dominated convergence theorem)

(3.24) y(t) =





t�
0

Φ−1
( σ�
s

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds, 0 ≤ t ≤ σ,

1�
t

Φ−1
( s�
σ

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds, σ ≤ t ≤ 1,

0, −τ ≤ t ≤ 0,

where σ satisfies
σ�
0

Φ−1
( σ�
s

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds

=
1�
σ

Φ−1
( s�
σ

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds.

From (3.24) we deduce immediately that y ∈ C[−τ, 1]∩C1[0, 1] is a nonneg-
ative solution of (3.11) with y(t) ≥ kt(1 − t) on [0, 1] and ‖y‖ ≤ r (in fact
‖y‖ < r as above).

Remark 3.1. If we replace (3.9) with

(3.25) sup
c∈(b0,∞)

c

Φ−1(g(c) + h(c))
> a0

(where a0, b0 are defined by (3.9)), the conclusion of Theorem 3.1 is still
true.

Example 3.1. Consider the boundary value problem (p = 2)

(3.26)




y′′(t) + σ(y−α(t− τ) + yβ(t− τ)) = 0, t ∈ (0, 1) \ {τ},
y(t) = −t, −τ ≤ t ≤ 0,
y(1) = 0, 0 < α < 1, β ≥ 0, 0 < τ < 1,

where σ > 0 is such that

(3.27) σ < sup
c∈(0,∞)

min
(
c

b1
,

cα+1

a1(1 + cα+β)

)

with

b1 =
τ�
0

x[(τ − x)−α + (τ − x)β ] dx,

a1 =
1�
τ

(1− x)(x− τ)−α(1 + τ − x)−α dx.

Then (3.26) has a solution y with y(t) > 0 for t ∈ (0, 1).
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Remark 3.2. If β < 1 then (3.27) is automatically satisfied.
To see this we will apply Theorem 3.1 with

g(y) = y−α, h(y) = yβ , q(t) = σ, ξ(t) = −t, K0 = 1.

Clearly (3.1)–(3.8) hold. Next notice that

b0 =
τ�
0

τ�
s

q(x)f(x, ξ(x− τ)) dx ds

= σ

τ�
0

x[(τ − x)−α + (τ − x)β ] dx = σb1

and

a0 = σ

1�
τ

s�
τ

(x− τ)−α(1 + τ − x)−α dx ds

= σ

1�
τ

(1− x) (x− τ)−α(1 + τ − x)−α dx = σa1,

so (3.9) is true since (3.27) implies there exists r > 0 such that

σ < min
(
r

b1
,

rα+1

a1(1 + rα+β)

)
,

i.e.,

r > b0 and
r

g(r) + h(r)
> a0.

Thus all the conditions of Theorem 3.1 are satisfied, so existence is guaran-
teed.

Next we establish the existence of multiple nonnegative solutions to (1.1)
using Lemma 1.2.

Theorem 3.2. Suppose (3.1)–(3.7) and (3.9) hold. In addition suppose
the following conditions are satisfied :

(3.28) there exists 0 < a < (1− τ)/2 (fixed hereafter), a continuous,
nonincreasing function g1 : (0,∞) → (0,∞), and a continuous
function h1 : [0,∞)→ (0,∞) with h1/g1 nondecreasing on (0,∞)
and f(t, u) ≥ g1(u) + h1(u) for (t, u) ∈ [τ + a, 1− a]× (0,∞),

(3.29) there exists 0 < R1 < r < R2 with

Ri

Φ−1(g1(Ri))Φ−1
(
1 + h1(a(a+τ)Ri)

g1(a(a+τ)Ri)

) < B0
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for i = 1, 2, and

B0 =
1
2

min
τ+a≤t≤1−a

{ t�
τ+a

Φ−1
( t�
s

q(x) dx
)
ds+

1−a�
t

Φ−1
( s�
t

q(x) dx
)
ds
}
.

Then (1.1) has two nonnegative solutions yi ∈ C[−τ, 1] ∩ C1[0, 1] with yi(t)
> 0 for t ∈ (0, 1) and R1 < ‖y1 − w‖ < r < ‖y2 − w‖ < R2, i = 1, 2, where
w is as in Theorem 3.1.

Proof. To show (1.1) has two nonnegative solutions we will look at the
boundary value problem

(3.30)





(Φ(y′))′ + q(t)f(t, y(t− τ) + w(t− τ)) = 0, t ∈ (0, 1) \ {τ},
y(t) = 0, −τ ≤ t ≤ 0,
y(1) = 0.

We will show, using Lemma 2.1, that there exist two solutions yi (i = 1, 2)
to (3.30) with yi(t) > 0 for t ∈ (0, 1) and yi(t) = 0 for t ∈ [−τ, 0]. If this
is true then ui(t) = yi(t) + w(t), −τ ≤ t ≤ 1, are nonnegative solutions
(positive on (0, 1) ∪ [−τ, 0)) of (1.1). Therefore, we focus on (3.30).

Let E = (C[−τ, 1], ‖ · ‖) with the norm ‖u‖ := sup{|u(t)| : −τ ≤ t ≤ 1},
and let K = {u ∈ C[−τ, 1] : u is a nonnegative concave function on [0, 1],
u(t) = 0 for t ∈ [−τ, 0], u(1) = 0}. Clearly K is a cone in E and ‖u‖ =
‖u‖[0,1] for u ∈ K. Moreover, by Lemma 1.1, if u ∈ K, then

u(t) ≥ t(1− t)‖u‖, t ∈ [0, 1].

First we will show that there exists a solution y2 to (3.30) with y2(t) > 0
for t ∈ (0, 1) and r < ‖y2‖ < R2. Let

Ω1 = {u ∈ E : ‖u‖ < r}, Ω2 = {u ∈ E : ‖u‖ < R2}.
Next let A : K ∩ (Ω2 \Ω1)→ E be defined by

(3.31) (Ay)(t) =





t�
0

Φ−1
( σy�
s

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds,

0 ≤ t ≤ σy,
1�
t

Φ−1
( s�
σy

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds,

σy ≤ t ≤ 1,
0, −τ ≤ t ≤ 0,

where σy is a solution of the equation

(3.32) z0(σ) :=
σ�
0

Φ−1
( σ�
s

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds
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=
1�
σ

Φ−1
( s�
σ

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds =: z1(σ), 0 ≤ σ ≤ 1.

First we show A is well defined. To see this notice that if y ∈ K∩(Ω2\Ω1)
then r ≤ ‖y‖ ≤ R2 and y(t) ≥ t(1− t)‖y‖ ≥ t(1− t)r for 0 ≤ t ≤ 1, and so
y(x− τ) ≥ (x− τ)(1 + τ − x)r for x ∈ [τ, 1]. Also notice that

f(x, y(x− τ) + w(x− τ)) = f(x, ξ(x− τ)) for x ∈ (0, τ),

and

f(x, y(x− τ) + w(x− τ)) = f(x, y(x− τ))

≤ g(y(x− τ)) + h(y(x− τ))

= g(y(x− τ))
{

1 +
h(y(x− τ))
g(y(x− τ))

}

≤ g((x− τ)(1 + τ − x)r)
{

1 +
h(R2)
g(R2)

}

≤ K0g((x− τ)(1 + τ − x))g(r)
{

1 +
h(R2)
g(R2)

}
for x ∈ (τ, 1).

These inequalities together with (3.6)–(3.7) guarantee that the operator
A : K ∩ (Ω2 \ Ω1) → E is well defined. Moreover σy ∈ (0, 1) is the unique
solution of (3.32) since z0(σ) is a strictly increasing continuous function de-
fined on [0, 1] with z0(0) = 0, and z1(σ) is a strictly decreasing continuous
function defined on [0, 1] with z1(1) = 0.

Next we show A : K ∩ (Ω2 \Ω1)→ K. If y ∈ K ∩ (Ω2 \Ω1), then

(Ay)′(t) =





Φ−1
( σy�

t

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
, 0 ≤ t ≤ σy,

−Φ−1
( t�
σy

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
, σy ≤ t ≤ 1,

(i)

{Φ[(Ay)′(t)]}′ = −q(t)f(t, y(t− τ) + w(t− τ)), t ∈ (0, 1) \ {τ},(ii)

‖Ay‖ = (Ay)(σy), (Ay)(t) = 0 for t ∈ [−τ, 0], (Ay)(1) = 0.(iii)

This shows that (Ay)(t) is a nonnegative concave function defined on [0, 1],
with (Ay)(t) = 0 for t ∈ [−τ, 0] and (Ay)(1) = 0. Consequently, Ay ∈ K, so
A : K ∩ (Ω2 \Ω1)→ K.

Next we show A : K ∩ (Ω2 \ Ω1) → K is continuous and compact.
Let yn, y0 ∈ K ∩ (Ω2 \ Ω1) with ‖yn − y0‖ → 0 as n → ∞. Of course
r ≤ ‖yn‖ = ‖yn‖[0,1] ≤ R2, r ≤ ‖y0‖ = ‖y0‖[0,1] ≤ R2, yn(t) ≥ t(1− t)r for
0 ≤ t ≤ 1, and so yn(x− τ) ≥ (x− τ)(1 + τ − x)r for x ∈ [τ, 1]. Notice also
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that

f(x, yn(x− τ) + w(x− τ)) = f(x, ξ(x− τ)) for x ∈ (0, τ),

f(x, yn(x− τ) + w(x− τ)) = f(x, yn(x− τ))

→ f(x, y0(x− τ)) as n→∞, x ∈ (τ, 1),

and

f(x, yn(x− τ) + w(x− τ)) ≤ K0

{
1 +

h(R2)
g(R2)

}
g(r)g((x− τ)(1 + τ − x))

for x ∈ (τ, 1). Suppose that σ∗ ∈ [0, 1] is an accumulation point of {σyn},
where σyn ∈ (0, 1), n = 1, 2, . . . , satisfies the equation

(3.33)n
σyn�

0

Φ−1
( σyn�

s

q(x)f(x, yn(x− τ) + w(x− τ)) dx
)
ds

=
1�
σyn

Φ−1
( s�
σyn

q(x)f(x, yn(x− τ) + w(x− τ)) dx
)
ds.

There exists a subsequence {σynk } which converges to σ∗. Insert ynk and
σynk into (3.33)nk and then let k → ∞ (using the Lebesgue dominated
convergence theorem) to obtain

σ∗�
0

Φ−1
( σ∗�
s

q(x)f(x, y0(x− τ) + w(x− τ)) dx
)
ds

=
1�
σ∗
Φ−1

( s�
σ∗
q(x)f(x, y0(x− τ) + w(x− τ)) dx

)
ds.

This shows that σ∗ = σy0 by the uniqueness of σy0 . Thus {σyn} has a unique
accumulation point, and hence σyn → σy0 . Now the Lebesgue dominated
convergence theorem guarantees that

lim
n→∞

(Ayn)(t)

= lim
n→∞





t�
0

Φ−1
( σyn�

s

q(x)f(x, yn(x− τ) + w(x− τ)) dx
)
ds, 0 ≤ t ≤ σyn ,

1�
t

Φ−1
( s�
σyn

q(x)f(x, yn(x− τ) + w(x− τ)) dx
)
ds, σyn ≤ t ≤ 1,

0, −τ ≤ t ≤ 0,

= (Ay0)(t), t ∈ [0, 1].

This shows that A : K ∩ (Ω2 \ Ω1) → K is continuous. Also for y ∈ K ∩
(Ω2 \Ω1) we have
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‖Ay‖ = (Ay)(σy) =
σy�
0

Φ−1
( σy�
s

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds

≤ Φ−1
( 1�

0

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds

= Φ−1
( τ�

0

q(x)f(x, ξ(x− τ))dx+
1�
τ

q(x)f(x, y(x− τ)) dx
)

≤ Φ−1
( τ�

0

q(x)f(x, ξ(x− τ)) dx

+K0g(r)
[
1 +

h(R2)
g(R2)

] 1�
τ

q(x)g((x− τ)(1 + τ − x)) dx
)
,

and for t ∈ [0, 1] we have

|(Ay)′(t)| ≤ Φ−1
( 1�

0

q(x)f(x, y(x− τ) + w(x− τ)) dx
)

≤ Φ−1
( τ�

0

q(x)f(x, ξ(x− τ)) dx

+K0g(r)
[
1 +

h(R2)
g(R2)

] 1�
τ

q(x)g((x− τ)(1 + τ − x)) dx
)
.

Now the Arzelà–Ascoli Theorem guarantees that A : K ∩ (Ω2 \Ω1)→ K is
compact.

We now show

(3.34) ‖Ay‖ < ‖y‖ for y ∈ K ∩ ∂Ω1.

To see this, let y ∈ K ∩ ∂Ω1. Then ‖y‖ = ‖y‖[0,1] = r and y(t) ≥ t(1 − t)r
for t ∈ [0, 1], and so y(x− τ) ≥ (x− τ)(1 + τ − x)r for x ∈ [τ, 1].

If 0 < σy ≤ τ , then

‖Ay‖ = (Ay)(σy) =
σy�
0

Φ−1
( σy�
s

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds

=
σy�
0

Φ−1
( σy�
s

q(x)f(x, ξ(x− τ)) dx
)
ds

≤
τ�
0

Φ−1
( τ�
s

q(x)f(x, ξ(x− τ)) dx
)
ds < r = ‖y‖,

so (3.34) is satisfied.
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If τ ≤ σy < 1, then

‖Ay‖ = (Ay)(σy) =
1�
σy

Φ−1
( s�
σy

q(x)f(x, y(x− τ) + w(x− τ))dx
)
ds

=
1�
σy

Φ−1
( s�
σy

q(x)f(x, y(x− τ)) dx
)
ds

≤
1�
τ

Φ−1
( s�
τ

q(x)[g(y(x− τ)) + h(y(x− τ))] dx
)
ds

=
1�
τ

Φ−1
( s�
τ

q(x)g(y(x− τ))
(

1 +
h(y(x− τ))
g(y(x− τ))

)
dx

)
ds

≤ Φ−1
(

1 +
h(r)
g(r)

) 1�
τ

Φ−1
( s�
τ

q(x)g((x− τ)(1 + τ − x)r) dx
)
ds

≤ Φ−1(K0)Φ−1(g(r) + h(r))
1�
τ

Φ−1
( s�
τ

q(x)g((x− τ)(1 + τ − x)) dx
)
ds

= a0Φ
−1(g(r) + h(r)) < r,

so (3.34) is again satisfied.
Next we show

(3.35) ‖Ay‖ > ‖y‖ for y ∈ K ∩ ∂Ω2.

To see this, let y ∈ K ∩∂Ω2 so ‖y‖ = ‖y‖[0,1] = R2 and y(t) ≥ t(1− t)R2 for
t ∈ [0, 1], so that y(x − τ) ≥ (x − τ)(1 + τ − x)R2 for x ∈ [τ, 1]. Moreover,
y(x− τ) ≥ a(a+ τ)R2 for x ∈ [τ + a, 1− a], since a ∈ (0, (1− τ)/2).

If 0 < σy ≤ τ + a, then

‖Ay‖ = (Ay)(σy) =
1�
σy

Φ−1
( s�
σy

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds

≥
1−a�
τ+a

Φ−1
( s�
τ+a

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds

=
1−a�
τ+a

Φ−1
( s�
τ+a

q(x)f(x, y(x− τ)) dx
)
ds

≥
1−a�
τ+a

Φ−1
( s�
τ+a

q(x)g1(y(x− τ))
(

1 +
h1(y(x− τ))
g1(y(x− τ))

)
dx

)
ds
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≥ Φ−1(g1(R2))Φ−1
(

1 +
h1(a(a+ τ)R2)
g1(a(a+ τ)R2)

) 1−a�
τ+a

Φ−1
( s�
τ+a

q(x) dx
)
ds

≥ B0Φ
−1(g1(R2))Φ−1

(
1 +

h1(a(a+ τ)R2)
g1(a(a+ τ)R2)

)

> R2 = ‖y‖.
If τ + a ≤ σy ≤ 1− a, then

2‖Ay‖ =
σy�
0

Φ−1
( σy�
s

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds

+
1�
σy

Φ−1
( s�
σy

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds

≥
σy�
τ+a

Φ−1
( σy�
s

q(x)f(x, y(x− τ)) dx
)
ds

+
1−a�
σy

Φ−1
( s�
σy

q(x)f(x, y(x− τ)) dx
)
ds

≥
σy�
τ+a

Φ−1
( σy�

s

q(x)g1(y(x− τ))
(

1 +
h1(y(x− τ))
g1(y(x− τ))

)
dx
)
ds

+
1−a�
σy

Φ−1
( s�
σy

q(x)g1(y(x− τ))
(

1 +
h1(y(x− τ))
g1(y(x− τ))

)
dx

)
ds

≥ Φ−1(g1(R2))Φ−1
(

1 +
h1(a(a+ τ)R2)
g1(a(a+ τ)R2)

)

× min
τ+a≤t≤1−a

{ t�
τ+a

Φ−1
( t�
s

q(x) dx
)
ds+

1−a�
t

Φ−1
( s�
t

q(x) dx
)
ds
}

= 2B0Φ
−1(g1(R2))Φ−1

(
1 +

h1(a(a+ τ)R2)
g1(a(a+ τ)R2)

)

> 2R2 = 2‖y‖.
If 1− a ≤ σy < 1, then

‖Ay‖ = (Ay)(σy) =
σy�
0

Φ−1
( σy�
s

q(x)f(x, y(x− τ) + w(x− τ)) dx
)
ds

≥
1−a�
τ+a

Φ−1
( 1−a�

s

q(x)f(x, y(x− τ)) dx
)
ds
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≥
1−a�
τ+a

Φ−1
( 1−a�

s

q(x)g1(y(x− τ))
(

1 +
h1(y(x− τ))
g1(y(x− τ))

)
dx

)
ds

≥ Φ−1(g1(R2))Φ−1
(

1 +
h1(a(a+ τ)R2)
g1(a(a+ τ)R2)

) 1−a�
τ+a

Φ−1
( 1−a�

s

q(x) dx
)
ds

≥ B0Φ
−1(g1(R2))Φ−1

(
1 +

h1(a(a+ τ)R2)
g1(a(a+ τ)R2)

)

> R2 = ‖y‖.
Thus ‖Ay‖ > ‖y‖, so (3.35) holds.

Now Lemma 1.2 implies A has a fixed point y2 ∈ K ∩ (Ω2 \ Ω1), i.e.
r ≤ ‖y2‖ = ‖y2‖[0,1] ≤ R2 and y2(t) ≥ t(1− t)r for t ∈ [0, 1]. It follows from
(3.34) and (3.35) that ‖y2‖ 6= r, ‖y2‖ 6= R2, so r < ‖y2‖ < R2.

Similarly, if we put

Ω1 = {u ∈ E : ‖u‖ < R1}, Ω2 = {u ∈ E : ‖u‖ < r}
we can show that there exists a solution y1 to (3.30) with y1(t) > 0 for
t ∈ (0, 1) and R1 < ‖y1‖ < r.

This completes the proof of Theorem 3.2.

The following result can be extracted from the proof of Theorem 3.2.

Theorem 3.3. Suppose (3.1)–(3.7), (3.9) and (3.28) hold. In addition
suppose the following condition is satisfied :

(3.36) there exists 0 < R1 < r with

R1

Φ−1(g1(R1))Φ−1
(
1 + h1(a(a+τ)R1)

g1(a(a+τ)R1)

) < B0,

where

B0 =
1
2

min
τ+a≤t≤1−a

{ t�
τ+a

Φ−1
( t�
s

q(x) dx
)
ds+

1−a�
t

Φ−1
( s�
t

q(x) dx
)
ds
}
.

Then (1.1) has a nonnegative solution y ∈ C[−τ, 1] ∩ C1[0, 1] with y(t) > 0
for t ∈ (0, 1) and R1 < ‖y − w‖ < r, where w is as in Theorem 3.1.

Remark 3.3. If in (3.36) we have R1 > r then (1.1) has a nonnegative
solution y ∈ C[−τ, 1] ∩ C1[0, 1] with y(t) > 0 for t ∈ (0, 1) and r < ‖y − w‖
< R1.

It is easy to use Theorem 3.3 and Remark 3.3 to obtain theorems which
guarantee the existence of more than two solutions to (1.1). We state one
such result.
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Theorem 3.4. Suppose (3.1)–(3.7), and (3.28) hold. Assume that there
exists m ∈ {1, 2, . . .} and constants Ri, ri (i = 1, . . . ,m) with r1 > b0 and

0 < R1 < r1 < R2 < r2 < . . . < Rm < rm.

In addition suppose that for each i = 1, . . . ,m,

(3.37)
ri

Φ−1(g(ri) + h(ri))
> a0

and

(3.38)
Ri

Φ−1(g1(Ri))Φ−1(1 + h1(a(a+τ)Ri)
g1(a(a+τ)Ri)

)
< B0,

where B0 is as in Theorem 3.3. Then (1.1) has nonnegative solutions y1, . . .
. . . , y2m−1 ∈ C[−τ, 1] ∩ C1[0, 1] with yi(t) > 0 (i = 1, . . . , 2m − 1) for
t ∈ (0, 1) and

R1 < ‖y1 − w‖ < r1 < . . . < Rm < ‖y2m−1 − w‖ < rm,

where a0, b0 and w are as in Theorem 3.1.

Example 3.2. Consider the boundary value problem (p = 2)

(3.39)




y′′(t) + σ(y−α(t− τ) + yβ(t− τ)) = 0, t ∈ (0, 1) \ {τ},
y(t) = −t, −τ ≤ t ≤ 0,
y(1) = 0, 0 < α < 1 < β, 0 < τ < 1,

where σ > 0 is such that

σ < min
([τ�

0

x[(τ − x)−α + (τ − x)β] dx
]−1

,

[
2

1�
τ

(1− x)(x− τ)−α(1 + τ − x)−α dx
]−1)

.

Then (3.39) has two solutions y1, y2 with yi(t) > 0 for t ∈ (0, 1), i = 1, 2.
To see this, we will apply Theorem 3.2 with

g(y) = g1(y) = y−α, h(y) = h1(y) = yβ , q(t) = σ,

ξ(t) = −t, K0 = 1, a =
1− τ

4
(0 < R1 < 1 < R2 will be chosen below). Clearly (3.1)–(3.7) and (3.28)
hold. Next notice that (see Example 3.1)

b0 = σ

τ�
0

x[(τ − x)−α + (τ − x)β ] dx,

a0 = σ

1�
τ

(1− x)(x− τ)−α(1 + τ − x)−α dx,
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so (3.9) is true with r = 1 since

b0 < r = 1, a0 <
1
2

=
r

g(r) + h(r)
.

Finally, notice that (3.29) is satisfied for R1 small and R2 large since

Ri

g1(Ri)
{

1 + h1(a(a+τ)Ri)
g1(a(a+τ)Ri)

} =
R1+α
i

1 + aα+β(a+ τ)α+βRα+β
i

→ 0

as R1 → 0 and R2 → ∞, since β > 1. Thus all the conditions of Theorem
3.2 are satisfied, so existence is guaranteed.
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