The natural operators lifting projectable vector fields to some fiber product preserving bundles

by W. M. MIKULSKI (Kraków)

Abstract. Admissible fiber product preserving bundle functors F on \mathcal{FM}_m are defined. For every admissible fiber product preserving bundle functor F on \mathcal{FM}_m all natural operators $B: T_{\text{proj}|\mathcal{FM}_{m,n}} \to TF$ lifting projectable vector fields to F are classified.

Introduction. In [4], the authors classified all fiber product preserving bundle functors $F : \mathcal{FM}_m \to \mathcal{FM}$ from the category \mathcal{FM}_m of fibered manifolds with *m*-dimensional bases and fiber preserving maps with local diffeomorphisms as base maps into the category \mathcal{FM} of fibered manifolds and fibered maps. All such functors of order *r* are in bijection with triples (A, H, t), where *A* is a Weil algebra of order *r*, *H* is a group homomorphism from the *r*th jet group G_m^r into the group $\operatorname{Aut}(A)$ of all automorphisms of *A*, and *t* is a G_m^r -invariant algebra homomorphism from the algebra $\mathcal{D}_m^r =$ $J_0^r(\mathbb{R}^m, \mathbb{R})$ of all *r*-jets of \mathbb{R}^m into \mathbb{R} with source $0 \in \mathbb{R}^m$ into *A*. The natural transformations $F_1 \to F_2$ of two fiber product preserving bundle functors F_1 and F_2 on \mathcal{FM}_m are in bijection with the morphisms between corresponding triples.

The most important example of such a functor F is the r-jet prolongation functor $J^r : \mathcal{FM}_m \to \mathcal{FM}$. The corresponding triple (A, H, t) is $(\mathcal{D}_m^r, \mathrm{id}_{\mathcal{D}_m^r}, \mathrm{id}_{\mathcal{D}_m^r})$, where $H : G_m^r \to G_m^r \cong \mathrm{Aut}(\mathcal{D}_m^r)$ is the identity group homomorphism. Another example is the vertical Weil functor $V^A : \mathcal{FM}_m \to \mathcal{FM}$ corresponding to a Weil algebra A. The corresponding triple (A, H, t)is $(A, \mathrm{id}_A, \varepsilon)$, where $\varepsilon : \mathcal{D}_m^r \to A$ is the trivial algebra homomorphism and $\mathrm{id}_A : G_m^r \to \mathrm{Aut}(A)$ is the trivial group homomorphism. The functors J^r and V^A are admissible in the following sense: for every derivation $D \in \mathrm{Der}(A)$,

if $H(j_0^r(\tau \operatorname{id}_{\mathbb{R}^m})) \circ D \circ H(j_0^r(\tau^{-1} \operatorname{id}_{\mathbb{R}^m})) \to 0$ as $\tau \to 0$ then D = 0.

²⁰⁰⁰ Mathematics Subject Classification: Primary 58A20.

Key words and phrases: natural bundles, bundle functors, Weil algebras, natural operators, jets.

Another example of an admissible fiber product preserving bundle functor is the non-holonomic r-jet prolongation bundle functor $\widetilde{J}^r : \mathcal{FM}_m \to \mathcal{FM}$ in the sense of C. Ehresmann [1]. All extensions of J^r and \widetilde{J}^r in the sense of I. Kolář [2] are also admissible.

Let $\mathcal{FM}_{m,n} \subset \mathcal{FM}_m$ be the subcategory of all fibered manifolds with *m*dimensional basis and *n*-dimensional fibers and local \mathcal{FM}_m -isomorphisms. In [5], Kolář and Slovák studied the problem of how a projectable vector field on an $\mathcal{FM}_{m,n}$ -object *Y* induces a vector field B(X) on J^rY . This problem is reflected in the notion of natural operators $B : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TJ^r$. They proved that every such *B* is a constant multiple of the flow operator \mathcal{J}^r . The similar problem with V^A playing the role of J^r has also been studied. Every natural operator $\mathcal{B} : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TV^A$ is a constant multiple of the flow operator \mathcal{V}^A plus an absolute operator op(D) for some $D \in \text{Lie}(\text{Aut}(A)) = \text{Der}(A)$.

In the present paper we generalize the above results to a (large) class of admissible fiber product preserving bundle functors on \mathcal{FM}_m . The main result of this paper is that for an admissible fiber product preserving bundle functor $F: \mathcal{FM}_m \to \mathcal{FM}$ every natural operator $B: T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TF$ is of the form

$$B = \lambda \mathcal{F} + \operatorname{op}(D)$$

for some $\lambda \in \mathbb{R}$ and $D \in \text{Lie}(\text{Aut}(A, H, t))$, where \mathcal{F} is the flow operator of F. For $F = J^r$ and $F = V^A$ we recover the above-mentioned results of [5], [3].

We also present a conterexample showing that the assumption of admissibility of F is essential.

All manifolds are assumed to be without boundary, finite-dimensional and smooth, i.e. of class \mathcal{C}^{∞} . Maps between manifolds are assumed to be smooth.

1. Fiber product preserving bundle functors. Suppose $F : \mathcal{FM}_m \to \mathcal{FM}$ is a bundle functor. We say that F is fiber product preserving if $F(Y_1 \times_M Y_2)_x \cong F(Y_1)_x \times F(Y_2)_x$ for any \mathcal{FM}_m -objects $Y_1 \to M$ and $Y_2 \to M$ and every $x \in M$.

The most important example of a fiber product preserving bundle functor F on \mathcal{FM}_m is the r-jet prolongation functor $J^r : \mathcal{FM}_m \to \mathcal{FM}$. Another example is the vertical Weil functor $V^A : \mathcal{FM}_m \to \mathcal{FM}$ corresponding to a Weil algebra A. One more example is the non-holonomic r-jet prolongation bundle functor $\widetilde{J}^r : \mathcal{FM}_m \to \mathcal{FM}$ in the sense of C. Ehresmann [1]. The extensions of J^r and \widetilde{J}^r in the sense of I. Kolář [2] are also fiber product preserving bundle functors on \mathcal{FM}_m .

A complete description of the fiber product preserving bundle functors on \mathcal{FM}_m has been given in [4]. We will recall it in Sections 2, 3 and 4.

2. Fiber product preserving bundle functors and induced triples. Suppose F is a fiber product preserving bundle functor on \mathcal{FM}_m of finite order r. The functor F induces both a product preserving bundle functor G^F on the category $\mathcal{M}f$ of manifolds by

$$G^F N = F_0(\mathbb{R}^m \times N), \quad G^F f = F_0(\mathrm{id}_{\mathbb{R}^m} \times f) : G^F N \to G^F P,$$

for every manifold N and every smooth map $f: N \to P$, and a group homomorphism $H^F: G_m^r \to \operatorname{Aut}(G^F)$ by

$$H^F(\xi)_N = F_0(\varphi \times \mathrm{id}_N) : G^F N \to G^F N$$

for every $\xi = j_0^r \varphi \in G_m^r$ and every manifold N, where $\operatorname{Aut}(G^F)$ is the group of natural automorphisms (equivalences) of G^F into itself and $G_m^r =$ inv $J_0^r(\mathbb{R}^m, \mathbb{R}^m)_0$ is the *r*-jet group. By the general theory of product preserving bundle functors on $\mathcal{M}f$ (see [3]), we obtain a Weil algebra A^F by setting

$$A^F = (G^F \mathbb{R}, G^F(+), G^F(\cdot), G^F(0), G^F(1))$$

and a group homomorphism $H^F: G_m^r \to \operatorname{Aut}(A^F)$ by defining

$$H^F(\xi) = H^F(\xi)_{\mathbb{R}} : A^F \to A^F$$

for every $\xi \in G_m^r$. Moreover the functor F defines an algebra homomorphism $t^F: \mathcal{D}_m^r \to A^F$ by

$$\{t^F(\xi)\} = \operatorname{im}(F_0(\operatorname{id}_{\mathbb{R}^m}, f))$$

for every $\xi = j_0^r f \in \mathcal{D}_m^r = J_0^r(\mathbb{R}^m, \mathbb{R}).$

Thus every fiber product preserving bundle functor F on \mathcal{FM}_m of order r determines a triple (A^F, H^F, t^F) , where A^F is a Weil algebra of order r, H^F is a group homomorphism from G_m^r into $\operatorname{Aut}(A^F)$, and t^F is a G_m^r -invariant algebra homomorphism from \mathcal{D}_m^r into A^F .

If \overline{F} is another fiber product preserving bundle functor on \mathcal{FM}_m of order r and $\eta: F \to \overline{F}$ is a natural transformation, then we have a morphism $\sigma^{\eta}: (A^F, H^F, t^F) \to (A^{\overline{F}}, H^{\overline{F}}, t^{\overline{F}})$ of triples, where $\sigma^{\eta}: A^F \to A^{\overline{F}}$ is the restriction and corestriction of $\eta_{\mathbb{R}^m \times \mathbb{R}}: F(\mathbb{R}^m \times \mathbb{R}) \to \overline{F}(\mathbb{R}^m \times \mathbb{R}).$

3. Triples and induced fiber product preserving bundle functors. Conversely, suppose we have a triple (A, H, t), where A is a Weil algebra of order r, H is a group homomorphism from G_m^r into $\operatorname{Aut}(A)$, and t is a G_m^r -invariant algebra homomorphism from \mathcal{D}_m^r into A. By the general theory of product preserving bundle functors on $\mathcal{M}f$, A determines the Weil functor $T^A : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ which is product preserving, H determines the group homomorphism $H : G_m^r \to \operatorname{Aut}(T^A)$ from G_m^r into the group $\operatorname{Aut}(T^A)$ of all natural automorphisms of T^A into itself, and t determines the natural transformation $t: T_m^r \to T^A$, where $T_m^r = T^{\mathcal{D}_m^r} = J_0^r(\mathbb{R}^m, \cdot) : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is the Weil functor (corresponding to \mathcal{D}_m^r) of (m, r)-velocities. For every $\mathcal{F}\mathcal{M}_m$ -object $p: Y \to M$ we have the bundle

$$F^{(A,H,t)}Y = \{\{u, X\} \in P^r M[T^A Y, H] \mid t_M(u) = T^A p(X)\}$$

over Y, where $P^r M = \operatorname{inv} J_0^r(\mathbb{R}^m, M) \subset T_m^r M$ is the principal fiber bundle with structure group G_m^r acting on $P^r M$ by jet composition, $T^A Y$ is the left G_m^r -space by means of H, and $P^r M[T^A Y, H]$ is the associated fiber bundle. For every $\mathcal{F}\mathcal{M}_m$ -map $f: Y_1 \to Y_2$ covering $\varphi: M_1 \to M_2$ we have the induced map $P^r \varphi[T^A f, H]: P^r M_1[T^A Y_1, H] \to P^r M_2[T^A Y_2, H]$ sending $F^{(A,H,t)}Y_1$ into $F^{(A,H,t)}Y_2$, and (by restriction and corestriction) we have the fibered map $F^{(A,H,t)}f: F^{(A,H,t)}Y_1 \to F^{(A,H,t)}Y_2$ covering f.

Thus every triple (A, H, t), where A is a Weil algebra of order r, H is a group homomorphism from G_m^r into $\operatorname{Aut}(A)$, and t is a G_m^r -invariant algebra homomorphism from \mathcal{D}_m^r into A, induces a fiber product preserving bundle functor $F^{(A,H,t)}: \mathcal{FM}_m \to \mathcal{FM}$ of order r.

If $(\overline{A}, \overline{H}, \overline{t})$ is another triple of order r and $\sigma : (A, H, t) \to (\overline{A}, \overline{H}, \overline{t})$ is a morphism of triples then we have a natural transformation $\eta^{\sigma} : F^{(A,H,t)} \to F^{(\overline{A},\overline{H},\overline{t})}$, where $\eta_Y^{\sigma} : F^{(A,H,t)}Y \to F^{(\overline{A},\overline{H},\overline{t})}Y$ is the restriction and corestriction of $\operatorname{id}_{P^rM}[\sigma_Y] : P^rM[T^AY,H] \to P^rM[T^{\overline{A}}Y,\overline{H}]$ for any \mathcal{FM}_m -object $Y \to M$.

4. Classification of fiber product preserving bundle functors. The main result of [4] is the following classification theorem.

THEOREM 1 ([4]). (i) Every fiber product preserving bundle functor F on \mathcal{FM}_m is of some finite order r.

(ii) The correspondence $F \mapsto (A^F, H^F, t^F)$ induces a bijection between the equivalence classes of fiber product preserving bundle functors on \mathcal{FM}_m of order r and the equivalence classes of triples of order r. The inverse bijection is determined by $(A, H, t) \mapsto F^{(A, H, t)}$.

(iii) The natural transformations $F_1 \to F_2$ of two fiber product preserving bundle functors F_1 and F_2 on \mathcal{FM}_m of order r are in bijection with the morphisms between corresponding triples. An example of such a bijection is $\eta \mapsto \sigma^{\eta}$.

5. The Lie algebra of $\operatorname{Aut}(A, H, t)$. Consider a triple (A, H, t), where A is a Weil algebra of order r, H is a group homomorphism from G_m^r into $\operatorname{Aut}(A)$, and t is a G_m^r -invariant algebra homomorphism from \mathcal{D}_m^r into A. We note that $\operatorname{Aut}(A, H, t)$ is a closed (and hence Lie) subgroup in GL(A).

PROPOSITION 1. Lie(Aut(A, H, t)) = { $D \in Der(A) \mid D \circ t = 0, H(\xi) \circ D = D \circ H(\xi)$ for all $\xi \in G_m^r$ }.

Proof. By [3], Lie(Aut(A)) = Der(A). Clearly, $\sigma \in Aut(A, H, t)$ iff $\sigma \in Aut(A)$ and $\sigma \circ t = t$ and $H(\xi) \circ \sigma = \sigma \circ H(\xi)$ for any $\xi \in G_m^r$. Analysing 1-parameter subgroups in Aut(A, H, t) we end the proof.

6. Natural transformations of $F_{|\mathcal{FM}_{m,n}}$ into itself. In this section we prove the following theorem.

THEOREM 2. Let $F : \mathcal{FM}_m \to \mathcal{FM}$ be a fiber product preserving bundle functor and (A, H, t) be its triple. Every natural transformation η of $F_{|\mathcal{FM}_{m,n}}$ into itself can be extended to a unique natural transformation of F into itself. In particular, $\operatorname{Aut}(F_{|\mathcal{FM}_{m,n}}) = \operatorname{Aut}(A, H, t)$.

Proof. Let $x^1, \ldots, x^m, y^1, \ldots, y^n$ be the coordinates on the $\mathcal{FM}_{m,n}$ object $\mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m$, the trivial bundle.

Consider a natural transformation η of $F_{|\mathcal{FM}_{m,n}}$ into itself. Since F is fiber product preserving, $F_0(\mathbb{R}^m \times \mathbb{R}^n) = A^n$. Thus η is uniquely determined by the restriction and corestriction $\eta : A^n \to A^n$. Write $\eta(a_1, \ldots, a_n) = (\eta^1(a_1, \ldots, a_n), \ldots, \eta^n(a_1, \ldots, a_n))$ for $a_1, \ldots, a_n \in A$.

By the invariance of η with respect to the $\mathcal{FM}_{m,n}$ -morphisms $(x^1, \ldots, x^m, \tau_1 y^1, \ldots, \tau_n y^n)$ for $\tau_1, \ldots, \tau_n \in \mathbb{R}_+$ we get the homogeneity conditions $\tau_j \eta^j(a_1, \ldots, a_n) = \eta^j(\tau_1 a_1, \ldots, \tau_n a_n)$ for $j = 1, \ldots, n$ and any $a_1, \ldots, a_n \in A$ and any $\tau_1, \ldots, \tau_n \in \mathbb{R}_+$. This type of homogeneity implies that η^j depends linearly on a_j by the homogeneous function theorem [3].

Using permutations of fibered coordinates we deduce that $\eta = \sigma \times \ldots \times \sigma$ for $\sigma = \eta_1 : A \to A$.

We prove that $\sigma \in Morph(A, H, t)$.

STEP 1. σ is an algebra homomorphism.

We know that σ is \mathbb{R} -linear. Using the invariance of η with respect to the local $\mathcal{FM}_{m,n}$ -morphism $(x^1, \ldots, x^m, y^1 + (y^1)^2, y^2, \ldots, y^n)$ we derive that $\sigma(a + a^2) = \sigma(a) + (\sigma(a))^2$, i.e. $\sigma(a^2) = (\sigma(a))^2$ for any $a \in A$. Then $\sigma((a_1 + a_2)^2) = (\sigma(a_1 + a_2))^2$, i.e. $\sigma(a_1a_2) = \sigma(a_1)\sigma(a_2)$ for any $a_1, a_2 \in A$. So, σ is multiplicative.

Using the invariance of η with respect to the $\mathcal{FM}_{m,n}$ -map $(x^1, \ldots, x^m, y^1 + 1, y^2, \ldots, y^n)$ we derive that $\sigma(a+1) = \sigma(a) + 1$, i.e. $\sigma(1) = 1$.

These facts show that σ is an algebra homomorphism.

STEP 2. σ is G_m^r -equivariant.

Using the invariance of η with respect to the $\mathcal{FM}_{m,n}$ -maps $\varphi \times \mathrm{id}_{\mathbb{R}^n}$ for $\varphi \in \mathrm{Diff}(\mathbb{R}^m, \mathbb{R}^m)$ with $\varphi(0) = 0$ we obtain $H(\xi) \circ \sigma = \sigma \circ H(\xi)$ for any $\xi = j_0^r \varphi \in G_m^r$. So, σ is G_m^r -equivariant.

Step 3. $\sigma \circ t = t$.

By the invariance of η with respect to the $\mathcal{FM}_{m,n}$ -morphisms $(x^1, \ldots, x^m, f(x^1, \ldots, x^m) + \tau y^1, \ldots, \tau y^n)$ for any $\tau \in \mathbb{R}_+$ and any $f : \mathbb{R}^n \to \mathbb{R}$ and next letting $\tau \to 0$ we get $\sigma \circ t(j_0^r f) = t(j_0^r f)$. Hence $\sigma \circ t = t$.

We have proved that $\sigma \in \text{Morph}(A, H, t)$. By Theorem 1 we have the natural transformation $\eta^{\sigma} : F \to F$ corresponding to σ . Clearly, η is the restriction of η^{σ} .

If $\tilde{\eta} : F \to F$ is another such transformation, then $\tilde{\eta} = \eta^{\sigma}$ because $\tilde{\eta}$ coincides with η^{σ} on $A = A \times \{0\} \subset A^n$.

7. Absolute operators. Let $F : \mathcal{FM}_m \to \mathcal{FM}$ be a fiber product preserving bundle functor and let (A, H, t) be its triple. We have the following example of absolute natural operators $T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TF$.

EXAMPLE 1 (The operators $\operatorname{op}(D)$). Let $D \in \operatorname{Lie}(\operatorname{Aut}(A, H, t))$. Let σ_{τ} be the 1-parameter subgroup in $\operatorname{Aut}(A, H, t)$ corresponding to D. By Theorem 1 we have the corresponding 1-parameter subgroup $\eta^{\sigma_{\tau}}$ of natural equivalences of F. So, for every $\mathcal{FM}_{m,n}$ -object Y we have a flow $\eta^{\sigma_{\tau}}$ on FY. This flow defines a vector field $\operatorname{op}(D)$ on FY. The correspondence $\operatorname{op}(D): T_{\operatorname{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TF$ is an *absolute* (i.e. constant) natural operator.

We have the following classification of absolute operators.

PROPOSITION 2. Let $F : \mathcal{FM}_m \to \mathcal{FM}$ be a fiber product preserving bundle functor and (A, H, t) be its triple. Every absolute natural operator $B : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TF$ is op(D) for some $D \in \text{Lie}(\text{Aut}(A, H, t))$.

Proof. Consider an absolute natural operator $B : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TF$. For every $\mathcal{FM}_{m,n}$ -object Y we have a vector field B on FY invariant with respect to $\mathcal{FM}_{m,n}$ -maps. The flow Fl^B_{τ} of B is $\mathcal{FM}_{m,n}$ -invariant. Using Theorem 1 we can easily show that there exists $v \in FY$ such that FY is the orbit of U with respect to $\mathcal{FM}_{m,n}$ -maps for any open neighbourhood $U \subset FY$ of v. This implies that B is complete, i.e. the flow Fl^B_{τ} is global. Hence the flow corresponds to some 1-parameter subgroup in $\text{Aut}(F_{|\mathcal{FM}_{m,n}})$. By Theorem 2, we have the corresponding 1-parameter subgroup $\sigma^{\text{Fl}^B_{\tau}}$ in Aut(A, H, t). This subgroup corresponds to some $D \in \text{Lie}(\text{Aut}(A, H, t))$. Thus B = op(D). ■

The triple corresponding to J^r is $(\mathcal{D}_m^r, \mathrm{id}_{G_m^r}, \mathrm{id}_{\mathcal{D}_m^r})$, where $\mathrm{id}_{G_m^r} : G_m^r \to G_m^r \cong \mathrm{Aut}(\mathcal{D}_m^r)$ is the identity. By Proposition 1, $\mathrm{Lie}(\mathrm{Aut}(\mathcal{D}_m^r, \mathrm{id}_{G_m^r}, \mathrm{id}_{\mathcal{D}_m^r})) = \{0\}$. Therefore we have the following corollary.

COROLLARY 1. Every absolute operator on $J^r_{\mathcal{IFM}_{mn}}$ is 0.

Let $J_v^r : \mathcal{FM}_m \to \mathcal{FM}$ be the vertical extension of J^r (see [2]). We recall that $J_v^r(Y) = \bigcup_{x \in M} J_x^r(M, Y_x)$ for every \mathcal{FM}_m -object $Y \to M$. The triple of J_v^r is $(\mathcal{D}_m^r, \mathrm{id}_{G_m^r}, \varepsilon)$, where $\varepsilon : \mathcal{D}_m^r \to \mathcal{D}_m^r$ is the trivial algebra homomorphism (equal to 0 on the nilpotent ideal; see [4]). By Proposition 1 we have $\operatorname{Lie}(\operatorname{Aut}(\mathcal{D}_m^r, \operatorname{id}_{G_m^r}, \varepsilon)) = \{D \in \operatorname{Der}(\mathcal{D}_m^r) \mid \xi \circ D = D \circ \xi \text{ for all } \xi \in G_m^r\}$. As an easy exercise one can compute that $\{D \in \operatorname{Der}(\mathcal{D}_m^r) \mid \xi \circ D = D \circ \xi \text{ for all } \xi \in G_m^r\} = \{0\}$ if $r \geq 2$. For r = 1 we have $\{D \in \operatorname{Der}(\mathcal{D}_m^1) \mid \xi \circ D = D \circ \xi \text{ for all } \xi \in G_m^1\} = \mathbb{R}D_m^1$, where $D_m^1 \in \operatorname{Der}(\mathcal{D}_m^1)$ is the unique derivation such that $D_m^1(j_0^1(x^i)) = j_0^1(x^i)$ for $i = 1, \ldots, m$. (Here x^1, \ldots, x^m are the usual coordinates on \mathbb{R}^m .) Therefore we have the following corollary.

COROLLARY 2. (i) Every absolute operator on $J^1_{v|\mathcal{FM}_{m,n}}$ is a constant multiple of $\operatorname{op}(D^1_m)$.

(ii) For $r \geq 2$ every absolute operator on $J^r_{v|\mathcal{FM}_{m,n}}$ is 0.

REMARK 1. We have the following geometrical interpretation of $op(D_m^1)$. For every $\mathcal{FM}_{m,n}$ -object $p: Y \to M$, $J_v^1 Y = \bigcup_{w \in Y} (T_{p(w)}^* M \otimes T_w Y_{p(w)})$ is a vector bundle over Y. The Liouville vector field L on the vector bundle $J_v^1 Y$ is $op(D_m^1)$.

The triple corresponding to V^A is $(A, \mathrm{id}_A, \varepsilon)$, where $\mathrm{id}_A : G_m^r \to \mathrm{Aut}(A)$ is the trivial group homomorphism and $\varepsilon : \mathcal{D}_m^r \to A$ is the trivial algebra homomorphism. By Proposition 1 we obtain $\mathrm{Lie}(\mathrm{Aut}(A, \mathrm{id}_A, \varepsilon)) = \mathrm{Lie}(\mathrm{Aut}(A)) = \mathrm{Der}(A)$. So, we have the following corollary.

COROLLARY 3. Every absolute operator on $V^A_{|\mathcal{FM}_{m,n}}$ is $\operatorname{op}(D)$ for some $D \in \operatorname{Der}(D) = \operatorname{Lie}(\operatorname{Aut}(A)) = \operatorname{Lie}(\operatorname{Aut}(A, \operatorname{id}_A, \varepsilon)).$

Since every natural transformation of $\tilde{J}^2 = J^1 \circ J^1$ into itself is the identity (see [3]), then $\text{Lie}(\text{Aut}(A^{\tilde{J}^2}, H^{\tilde{J}^2}, t^{\tilde{J}^2})) = \{0\}$. So, we have the following corollary.

COROLLARY 4. Every absolute operator on $\widetilde{J}^2_{|\mathcal{FM}_{m,n}|}$ is 0.

8. Admissible fiber product preserving bundle functors. Suppose that $F : \mathcal{FM}_m \to \mathcal{FM}$ is a fiber product preserving bundle functor of order r and (A, H, t) is its corresponding triple. We say that F is *admissible* if the following condition is satisfied: for every derivation $D \in \text{Der}(A)$,

if $H(j_0^r(\tau \operatorname{id}_{\mathbb{R}^m})) \circ D \circ H(j_0^r(\tau^{-1} \operatorname{id}_{\mathbb{R}^m})) \to 0$ as $\tau \to 0$ then D = 0.

LEMMA 1. (i) The functors J^r and \tilde{J}^r and their extensions in the sense of [2] are admissible.

(ii) All vertical Weil functors V^A are admissible.

Proof. The triple corresponding to J^r is $(\mathcal{D}_m^r, \mathrm{id}_{G_m^r}, \mathrm{id}_{\mathcal{D}_m^r})$. Consider $D \in \mathrm{Der}(\mathcal{D}_m^r)$ such that $j_0^r(\tau \operatorname{id}_{\mathbb{R}^m}) \circ D \circ j_0^r(\tau^{-1} \operatorname{id}_{\mathbb{R}^m}) \to 0$ as $\tau \to 0$. Let x^1, \ldots, x^m be the usual coordinates on \mathbb{R}^m . For $i = 1, \ldots, m$ we can write $D(j_0^r x^i) = \sum a_{\alpha}^i j_0^r(x^{\alpha})$ for some real numbers a_{α}^i , where the sum is over all

 $\alpha \in (\mathbb{N} \cup \{0\})^m$ with $0 \leq |\alpha| \leq r$. We have

$$j_0^r(\tau \, \mathrm{id}_{\mathbb{R}^m}) \circ D \circ j_0^r(\tau^{-1} \, \mathrm{id}_{\mathbb{R}^m})(j_0^r(x^i)) = \sum a_\alpha^i \, \frac{1}{\tau^{|\alpha|-1}} \, j_0^r(x^\alpha)$$

Then from the assumption on D it follows that $a^i_{\alpha} = 0$ for all $\alpha \in (\mathbb{N} \cup \{0\})^m$ with $1 \leq |\alpha| \leq r$, i.e. $D(j^r_0 x^i) = a^i_{(0)} j^r_0 1$ for $i = 1, \ldots, m$. Then (since $j^r_0((x^i)^{r+1}) = 0 \in \mathcal{D}^r_m$ and D is a differentiation) we have

$$0 = D(j_0^r((x^i)^{r+1})) = D((j_0^r x^i)^{r+1}) = (r+1)(j_0^r x^i)^r D(j_0^r x^i)$$

= $(r+1)a_{(0)}^i j_0^r((x^i)^r).$

Then $a_{(0)}^i = 0$ as $j_0^r((x^i)^r) \neq 0 \in \mathcal{D}_m^r$. Then $D(j_0^r x^i) = 0$ for $i = 1, \ldots, m$. Then D = 0 because the $j_0^r x^i$ for $i = 1, \ldots, m$ generate the algebra \mathcal{D}_m^r . Hence J^r is admissible.

The proof of the admissibility of \widetilde{J}^r is left to the reader. First observe that the triple (A, H, t) of \widetilde{J}^r has the following properties: (1) $A = \bigotimes^r \mathcal{D}_m^1$ (see [2]); (2) $H(\xi) = \bigotimes^r \xi$ for $\xi = j_0^r(\tau \operatorname{id}_{\mathbb{R}^m}) \in G_m^1 \subset G_m^r$. Then the proof is similar to that for J^r .

Every extension F of J^r is admissible because $(A^F, H^F) = (A^{J^r}, H^{J^r})$ and J^r is admissible. By the same argument every extension of \tilde{J}^r is admissible.

The admissibility of V^A is a consequence of the fact that the triple of V^A is (A, id_A, ε) .

In Section 11 we will exhibit a non-admissible fiber product preserving bundle functor.

9. The main result

EXAMPLE 2 (The flow operator). In general, if $E : \mathcal{FM}_{m,n} \to \mathcal{FM}$ is a bundle functor then we have the flow operator $\mathcal{E} : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TE$ lifting projectable vector fields to E. More precisely, if X is a projectable vector field on an $\mathcal{FM}_{m,n}$ -object Y then its flow Fl^X_{τ} is formed by $\mathcal{FM}_{m,n}$ morphisms. The flow $E(\text{Fl}^X_{\tau})$ on EY generates $\mathcal{E}(X)$.

The main result of this paper is the following classification theorem.

THEOREM 3. Let $F : \mathcal{FM}_m \to \mathcal{FM}$ be an admissible fiber product preserving bundle functor and let (A, H, t) be its triple. Every natural operator $B : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TF$ is of the form

$$B = \lambda \mathcal{F} + \operatorname{op}(D)$$

for some $\lambda \in \mathbb{R}$ and $D \in \text{Lie}(\text{Aut}(A, H, t))$, where \mathcal{F} is the flow operator.

Proof. We assume $F = F^{(A,H,t)}$. We have $\mathbb{R}^m \times T^A \mathbb{R}^n \cong F(\mathbb{R}^m \times \mathbb{R}^n)$, where $\mathbb{R}^m \times \mathbb{R}^n$ is the standard $\mathcal{FM}_{m,n}$ -object. The identification is given by $(x, X) \cong \{j_0^r \tau_x, (t_{\mathbb{R}^m}(j_0^r(\tau_x)), X)\} \in F^{(A, H, t)}(\mathbb{R}^m \times \mathbb{R}^n), x \in \mathbb{R}^m, X \in T^A \mathbb{R}^n, where \tau_x : \mathbb{R}^m \to \mathbb{R}^m \text{ is the translation by } x. \text{ The homothety } \tau \operatorname{id}_{\mathbb{R}^m} \times \operatorname{id}_{\mathbb{R}^n} \text{ for } \tau \neq 0 \text{ sends } (x, X) \text{ into } (\tau x, H(j_0^r(\tau \operatorname{id}_{\mathbb{R}^m}))(X)). \text{ An } \mathcal{FM}_{m,n}\text{-morphism of the form } \operatorname{id}_{\mathbb{R}^m} \times \psi \text{ with } \psi \in \operatorname{Diff}(\mathbb{R}^n, \mathbb{R}^n) \text{ sends } (x, X) \text{ into } (x, T^A \psi(X)).$

Let $x^1, \ldots, x^n, y^1, \ldots, y^n$ be the usual coordinates on $\mathbb{R}^m \times \mathbb{R}^n$. The operator *B* is determined by $B(\partial/\partial x^1)$. We can write

$$B\left(\mu \frac{\partial}{\partial x^{1}}\right)_{(x,X)} = \sum_{i=1}^{m} a^{i}(\mu, x, X) \frac{\partial}{\partial x^{i}}_{|x} + E(\mu, x, X),$$

where $E_{\mu,x} = E(\mu, x, \cdot)$ is a vector field on $T^A \mathbb{R}^n$ for any $\mu \in \mathbb{R}$ and $x \in \mathbb{R}^m$. The functions a^i and E are smooth.

Using the invariance of $B(\mu\partial/\partial x^1)$ with respect to the $\mathcal{FM}_{m,n}$ -morphisms of the form $\mathrm{id}_{\mathbb{R}^m} \times \psi$ with $\psi \in \mathrm{Diff}(\mathbb{R}^n, \mathbb{R}^n)$ we see that $E_{\mu,x}$ is $T^A\psi$ -invariant. So, $E_{\mu,x}$ corresponds to some absolute operator on $T^A_{|\mathcal{M}f_n}$. By the result of [3], $E_{\mu,x} = \mathrm{op}(D_{\mu,x})$ for some $D_{\mu,x} \in \mathrm{Der}(A)$. The family $D_{\mu,x}$ depends smoothly on μ and x.

Using the invariance of $B(\mu\partial/\partial x^1)$ with respect to the fiber homotheties $\mathrm{id}_{\mathbb{R}^m} \times \tau \mathrm{id}_{\mathbb{R}^n}$ for $\tau \neq 0$ we deduce that $a^i(\mu, x, X) = a^i(\mu, x, \tau X)$, i.e. $a^i(\mu, x, X) = a^i(\mu, x)$ for $i = 1, \ldots, m$.

Using the invariance of $B(\mu\partial/\partial x^1)$ with respect to the base homotheties $\tau \operatorname{id}_{\mathbb{R}^m} \times \operatorname{id}_{\mathbb{R}^n}$ for $\tau \neq 0$ we deduce that $a^i(\tau\mu, \tau x) = \tau a^i(\mu, x)$, i.e. $a^i(\mu, x)$ depends linearly on μ and x by the homogeneous function theorem.

Clearly, B(0) is an absolute operator. So, B(0) = op(D) for $D \in \text{Lie}(\text{Aut}(A, H, t))$ by Proposition 2.

Now, replacing B by B - B(0) we can write

$$B\left(\mu \frac{\partial}{\partial x^1}\right)_{(x,X)} = \sum_{i=1}^m a^i \mu \frac{\partial}{\partial x^i}_{|x} + \operatorname{op}(D_{\mu,x})_X,$$

where $a^i \in \mathbb{R}$ and $D_{\mu,x} \in \text{Der}(A)$ is a smoothly parametrized family of derivations with $D_{0,0} = 0$.

Using the invariance of $B(\mu\partial/\partial x^1)$ with respect to the $\mathcal{FM}_{m,n}$ -morphisms $(x^1, \tau x^2, \ldots, \tau x^m, y^1, \ldots, y^n)$ for $\tau \neq 0$ we get $a^2 = \ldots = a^m = 0$. So replacing B by $B - a^1 \mathcal{F}$ we can write

$$B\left(\mu \frac{\partial}{\partial x^1}\right)_{(x,X)} = \operatorname{op}(D_{\mu,x})_X,$$

where $D_{\mu,x} \in \text{Der}(A)$ is a smoothly parametrized family of derivations with $D_{0,0} = 0$.

Using the invariance of $B(\mu\partial/\partial x^1)$ with respect to the base homotheties $\tau \operatorname{id}_{\mathbb{R}^m} \times \operatorname{id}_{\mathbb{R}^n}$ we get $\operatorname{op}(D_{\tau\mu,\tau x})_X = (H(j_0^r(\tau \operatorname{id}_{\mathbb{R}^m}))_* \operatorname{op}(D_{\mu,x}))_X$, i.e.

$$D_{\tau\mu,\tau x} = H(j_0^r(\tau \operatorname{id}_{\mathbb{R}^m})) \circ D_{\mu,x} \circ H(j_0^r(\tau^{-1} \operatorname{id}_{\mathbb{R}^m}))$$

for any $\tau \neq 0$.

If $\tau \to 0$, then $D_{\tau\mu,\tau x} \to 0$ because $D_{0,0} = 0$. Thus $D_{\mu,x} = 0$ for all $x \in \mathbb{R}^m$ and $\mu \in \mathbb{R}$ because F is admissible.

REMARK 2. Observe that from Theorem 3 it follows that under the assumption of the theorem any natural operator $B: T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TF$ has order less than or equal to the order of F. This order estimation also follows by the general method from [6].

10. Corollaries. We have the following immediate corollaries of Theorem 3, Corollaries 1–4 and Lemma 1.

COROLLARY 5 ([5]). Every natural operator $B: T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TJ^r$ is a constant multiple of the flow operator \mathcal{J}^r .

COROLLARY 6. (i) Every natural operator $B : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TJ_v^1$ is a linear combination of the flow operator \mathcal{J}_v^1 and $\operatorname{op}(D_m^1)$ with real coefficients.

(ii) For $r \geq 2$ every natural operator $B : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TJ_v^r$ is a constant multiple of the flow operator \mathcal{J}_v^r .

COROLLARY 7. Every natural operator $B : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow TV^A$, where A is a Weil algebra, is of the form $B = \lambda \mathcal{V}^A + \text{op}(D)$ for some $\lambda \in \mathbb{R}$ and $D \in \text{Der}(D) = \text{Lie}(\text{Aut}(A)) = \text{Lie}(\text{Aut}(A, \text{id}_A, 0)).$

COROLLARY 8. Every natural operator $B : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T\widetilde{J}^2$ is a constant multiple of the flow operator $\widetilde{\mathcal{J}}^2$.

11. A counterexample. We show that the assumption of admissibility of F in Theorem 3 is essential.

EXAMPLE 3. Given a fibered manifold $p: Y \to M$ from \mathcal{FM}_m we define a vector bundle

$$F^{\langle r \rangle}Y = \bigcup_{y \in Y} \{j^r_{p(y)}\sigma \mid \sigma: M \to T_y Y_{p(y)}\}$$

over Y. For every \mathcal{FM}_m -map $f: Y_1 \to Y_2$ covering $f: M_1 \to M_2$ we define the induced vector bundle map $F^{\langle r \rangle}f: F^{\langle r \rangle}Y_1 \to F^{\langle r \rangle}Y_2$ covering f by

$$F^{\langle r \rangle}f(j^r_{p(y)}\sigma) = j^r_{\underline{f}(p(y))}(Tf \circ \sigma \circ \underline{f}^{-1})$$

for any $\sigma : M \to T_y Y_{1p(y)}, y \in Y_1$. Then $F^{\langle r \rangle} : \mathcal{FM}_m \to \mathcal{FM}$ is a fiber product preserving bundle functor with values in the category \mathcal{VB} of vector bundles.

Let s = 0, ..., r. Given a projectable vector field X on an $\mathcal{FM}_{m,n}$ -object Y covering a vector field \underline{X} on M we define a vertical vector field $V^{\langle s \rangle}(X)$

on $F^{\langle r \rangle}Y$ as follows. Let $j_{p(y)}^r \sigma \in F_y^{\langle r \rangle}Y$, $\sigma: M \to T_y Y_{p(y)}$, $y \in Y$. We put

$$V^{\langle s \rangle}(X)(y) = (y, j_{p(y)}^{r}(\underline{X}^{\langle s \rangle}\sigma(p(y)))) \in \{y\} \times F_{y}^{\langle r \rangle}Y = V_{y}F^{\langle r \rangle}Y,$$

where $\underline{X}^{(s)} = X \circ \ldots \circ X$ (s times) and $\underline{X}^{(s)} \sigma(p(y)) : M \to T_y Y_{p(y)}$ is the constant map.

The correspondence $V^{\langle s \rangle} : T_{\text{lin}|\mathcal{FM}_{m,n}} \rightsquigarrow TF^{\langle r \rangle}$ is a natural operator.

Of course if s = 1, ..., r then $V^{\langle s \rangle}$ is not of the form as in Theorem 3, for $V^{\langle s \rangle}(0) = 0$ and $V^{\langle s \rangle}$ is not absolute.

References

- C. Ehresmann, Extension du calcul des jets aux jets non holonomes, C. R. Acad. Sci. Paris 239 (1954), 1762–1764.
- [2] I. Kolář, Bundle functors of the jet type, in: Differential Geometry and Its Applications (Brno, 1988), Masaryk Univ., Brno, 1999, 231–237.
- [3] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
- [4] I. Kolář and W. M. Mikulski, On the fiber product preserving bundle functors, Differential Geom. Appl. 11 (1999), 105–115.
- [5] I. Kolář and J. Slovák, Prolongation of vector field to jet bundles, Suppl. Rend. Circ. Mat. Palermo 22 (1990), 103–111.
- [6] A. Zajtz, On the order of natural differential operators and liftings, Ann. Polon. Math. 49 (1988), 169–175.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: mikulski@im.uj.edu.pl

Reçu par la Rédaction le 25.9.2002

(1369)