The natural operators lifting projectable vector fields to some fiber product preserving bundles

by W. M. Mikulski (Kraków)

Abstract

Admissible fiber product preserving bundle functors F on $\mathcal{F M} M_{m}$ are defined. For every admissible fiber product preserving bundle functor F on $\mathcal{F M} \mathcal{M}_{m}$ all natural operators $B: T_{\text {proj } \mid \mathcal{F}} \mathcal{M}_{m, n} \rightarrow T F$ lifting projectable vector fields to F are classified.

Introduction. In [4], the authors classified all fiber product preserving bundle functors $F: \mathcal{F M}_{m} \rightarrow \mathcal{F} \mathcal{M}$ from the category $\mathcal{F} \mathcal{M}_{m}$ of fibered manifolds with m-dimensional bases and fiber preserving maps with local diffeomorphisms as base maps into the category $\mathcal{F} \mathcal{M}$ of fibered manifolds and fibered maps. All such functors of order r are in bijection with triples (A, H, t), where A is a Weil algebra of order r, H is a group homomorphism from the r th jet group G_{m}^{r} into the group $\operatorname{Aut}(A)$ of all automorphisms of A, and t is a G_{m}^{r}-invariant algebra homomorphism from the algebra $\mathcal{D}_{m}^{r}=$ $J_{0}^{r}\left(\mathbb{R}^{m}, \mathbb{R}\right)$ of all r-jets of \mathbb{R}^{m} into \mathbb{R} with source $0 \in \mathbb{R}^{m}$ into A. The natural transformations $F_{1} \rightarrow F_{2}$ of two fiber product preserving bundle functors F_{1} and F_{2} on $\mathcal{F} \mathcal{M}_{m}$ are in bijection with the morphisms between corresponding triples.

The most importrant example of such a functor F is the r-jet prolongation functor $J^{r}: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F} \mathcal{M}$. The corresponding triple (A, H, t) is $\left(\mathcal{D}_{m}^{r}, \operatorname{id}_{G_{m}^{r}}, \mathrm{id}_{\mathcal{D}_{m}^{r}}\right)$, where $H: G_{m}^{r} \rightarrow G_{m}^{r} \cong \operatorname{Aut}\left(\mathcal{D}_{m}^{r}\right)$ is the identity group homomorphism. Another example is the vertical Weil functor $V^{A}: \mathcal{F} \mathcal{M}_{m} \rightarrow$ $\mathcal{F} \mathcal{M}$ corresponding to a Weil algebra A. The corresponding triple (A, H, t) is $\left(A, \mathrm{id}_{A}, \varepsilon\right)$, where $\varepsilon: \mathcal{D}_{m}^{r} \rightarrow A$ is the trivial algebra homomorphism and $\mathrm{id}_{A}: G_{m}^{r} \rightarrow \operatorname{Aut}(A)$ is the trivial group homomorphism. The functors J^{r} and V^{A} are admissible in the following sense: for every derivation $D \in \operatorname{Der}(A)$,

$$
\text { if } H\left(j_{0}^{r}\left(\tau \operatorname{id}_{\mathbb{R}^{m}}\right)\right) \circ D \circ H\left(j_{0}^{r}\left(\tau^{-1} \operatorname{id}_{\mathbb{R}^{m}}\right)\right) \rightarrow 0 \text { as } \tau \rightarrow 0 \text { then } D=0
$$

[^0]Another example of an admissible fiber product preserving bundle functor is the non-holonomic r-jet prolongation bundle functor $\widetilde{J}^{r}: \underset{\mathcal{F}}{\mathcal{F}} \mathcal{M}_{m} \rightarrow \mathcal{F} \mathcal{M}$ in the sense of C. Ehresmann [1]. All extensions of J^{r} and \widetilde{J}^{r} in the sense of I. Kolár $[2]$ are also admissible.

Let $\mathcal{F} \mathcal{M}_{m, n} \subset \mathcal{F} \mathcal{M}_{m}$ be the subcategory of all fibered manifolds with m dimensional basis and n-dimensional fibers and local $\mathcal{F} \mathcal{M}_{m}$-isomorphisms. In [5], Kolář and Slovák studied the problem of how a projectable vector field on an $\mathcal{F} \mathcal{M}_{m, n}$-object Y induces a vector field $B(X)$ on $J^{r} Y$. This problem is reflected in the notion of natural operators $B: T_{\text {proj } \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T J^{r}$. They proved that every such B is a constant multiple of the flow operator \mathcal{J}^{r}. The similar problem with V^{A} playing the role of J^{r} has also been studied. Every natural operator $B: T_{\text {proj } \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T V^{A}$ is a constant multiple of the flow operator \mathcal{V}^{A} plus an absolute operator $\operatorname{op}(D)$ for some $D \in \operatorname{Lie}(\operatorname{Aut}(A))=\operatorname{Der}(A)$.

In the present paper we generalize the above results to a (large) class of admissible fiber product preserving bundle functors on $\mathcal{F} \mathcal{M}_{m}$. The main result of this paper is that for an admissible fiber product preserving bundle functor $F: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F} \mathcal{M}$ every natural operator $B: T_{\text {proj } \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T F$ is of the form

$$
B=\lambda \mathcal{F}+\operatorname{op}(D)
$$

for some $\lambda \in \mathbb{R}$ and $D \in \operatorname{Lie}(\operatorname{Aut}(A, H, t))$, where \mathcal{F} is the flow operator of F. For $F=J^{r}$ and $F=V^{A}$ we recover the above-mentioned results of [5], [3].

We also present a conterexample showing that the assumption of admissibility of F is essential.

All manifolds are assumed to be without boundary, finite-dimensional and smooth, i.e. of class \mathcal{C}^{∞}. Maps between manifolds are assumed to be smooth.

1. Fiber product preserving bundle functors. Suppose $F: \mathcal{F} \mathcal{M}_{m}$ $\rightarrow \mathcal{F M}$ is a bundle functor. We say that F is fiber product preserving if $F\left(Y_{1} \times_{M} Y_{2}\right)_{x} \cong F\left(Y_{1}\right)_{x} \times F\left(Y_{2}\right)_{x}$ for any $\mathcal{F} \mathcal{M}_{m}$-objects $Y_{1} \rightarrow M$ and $Y_{2} \rightarrow M$ and every $x \in M$.

The most important example of a fiber product preserving bundle functor F on $\mathcal{F} \mathcal{M}_{m}$ is the r-jet prolongation functor $J^{r}: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F} \mathcal{M}$. Another example is the vertical Weil functor $V^{A}: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F} \mathcal{M}$ corresponding to a Weil algebra A. One more example is the non-holonomic r-jet prolongation bundle functor $\widetilde{J}^{r}: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F} \mathcal{M}$ in the sense of C. Ehresmann [1]. The extensions of J^{r} and \widetilde{J}^{r} in the sense of I. Kolár $\check{\text { [2] }}$] are also fiber product preserving bundle functors on $\mathcal{F} \mathcal{M}_{m}$.

A complete description of the fiber product preserving bundle functors on $\mathcal{F} \mathcal{M}_{m}$ has been given in [4]. We will recall it in Sections 2, 3 and 4.
2. Fiber product preserving bundle functors and induced triples. Suppose F is a fiber product preserving bundle functor on $\mathcal{F} \mathcal{M}_{m}$ of finite order r. The functor F induces both a product preserving bundle functor G^{F} on the category $\mathcal{M} f$ of manifolds by

$$
G^{F} N=F_{0}\left(\mathbb{R}^{m} \times N\right), \quad G^{F} f=F_{0}\left(\operatorname{id}_{\mathbb{R}^{m}} \times f\right): G^{F} N \rightarrow G^{F} P
$$

for every manifold N and every smooth map $f: N \rightarrow P$, and a group homomorphism $H^{F}: G_{m}^{r} \rightarrow \operatorname{Aut}\left(G^{F}\right)$ by

$$
H^{F}(\xi)_{N}=F_{0}\left(\varphi \times \operatorname{id}_{N}\right): G^{F} N \rightarrow G^{F} N
$$

for every $\xi=j_{0}^{r} \varphi \in G_{m}^{r}$ and every manifold N, where $\operatorname{Aut}\left(G^{F}\right)$ is the group of natural automorphisms (equivalences) of G^{F} into itself and $G_{m}^{r}=$ inv $J_{0}^{r}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)_{0}$ is the r-jet group. By the general theory of product preserving bundle functors on $\mathcal{M} f$ (see [3]), we obtain a Weil algebra A^{F} by setting

$$
A^{F}=\left(G^{F} \mathbb{R}, G^{F}(+), G^{F}(\cdot), G^{F}(0), G^{F}(1)\right)
$$

and a group homomorphism $H^{F}: G_{m}^{r} \rightarrow \operatorname{Aut}\left(A^{F}\right)$ by defining

$$
H^{F}(\xi)=H^{F}(\xi)_{\mathbb{R}}: A^{F} \rightarrow A^{F}
$$

for every $\xi \in G_{m}^{r}$. Moreover the functor F defines an algebra homomorphism $t^{F}: \mathcal{D}_{m}^{r} \rightarrow A^{F}$ by

$$
\left\{t^{F}(\xi)\right\}=\operatorname{im}\left(F_{0}\left(\operatorname{id}_{\mathbb{R}^{m}}, f\right)\right)
$$

for every $\xi=j_{0}^{r} f \in \mathcal{D}_{m}^{r}=J_{0}^{r}\left(\mathbb{R}^{m}, \mathbb{R}\right)$.
Thus every fiber product preserving bundle functor F on $\mathcal{F} \mathcal{M}_{m}$ of order r determines a triple $\left(A^{F}, H^{F}, t^{F}\right)$, where A^{F} is a Weil algebra of order r, H^{F} is a group homomorphism from G_{m}^{r} into $\operatorname{Aut}\left(A^{F}\right)$, and t^{F} is a G_{m}^{r}-invariant algebra homomorphism from \mathcal{D}_{m}^{r} into A^{F}.

If \bar{F} is another fiber product preserving bundle functor on $\mathcal{F} \mathcal{M}_{m}$ of order r and $\eta: F \rightarrow \bar{F}$ is a natural transformation, then we have a morphism $\sigma^{\eta}:\left(A^{F}, H^{F}, t^{F}\right) \rightarrow\left(A^{\bar{F}}, H^{\bar{F}}, t^{\bar{F}}\right)$ of triples, where $\sigma^{\eta}: A^{F} \rightarrow A^{\bar{F}}$ is the restriction and corestriction of $\eta_{\mathbb{R}^{m} \times \mathbb{R}}: F\left(\mathbb{R}^{m} \times \mathbb{R}\right) \rightarrow \bar{F}\left(\mathbb{R}^{m} \times \mathbb{R}\right)$.
3. Triples and induced fiber product preserving bundle functors. Conversely, suppose we have a triple (A, H, t), where A is a Weil algebra of order r, H is a group homomorphism from $G_{m}^{r} \operatorname{into} \operatorname{Aut}(A)$, and t is a G_{m}^{r}-invariant algebra homomorphism from \mathcal{D}_{m}^{r} into A. By the general theory of product preserving bundle functors on $\mathcal{M} f, A$ determines the Weil functor $T^{A}: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ which is product preserving, H determines the group homomorphism $H: G_{m}^{r} \rightarrow \operatorname{Aut}\left(T^{A}\right)$ from G_{m}^{r} into the group $\operatorname{Aut}\left(T^{A}\right)$
of all natural automorphisms of T^{A} into itself, and t determines the natural transformation $t: T_{m}^{r} \rightarrow T^{A}$, where $T_{m}^{r}=T^{\mathcal{D}_{m}^{r}}=J_{0}^{r}\left(\mathbb{R}^{m}, \cdot\right): \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ is the Weil functor (corresponding to \mathcal{D}_{m}^{r}) of (m, r)-velocities. For every $\mathcal{F} \mathcal{M}_{m}$-object $p: Y \rightarrow M$ we have the bundle

$$
F^{(A, H, t)} Y=\left\{\{u, X\} \in P^{r} M\left[T^{A} Y, H\right] \mid t_{M}(u)=T^{A} p(X)\right\}
$$

over Y, where $P^{r} M=\operatorname{inv} J_{0}^{r}\left(\mathbb{R}^{m}, M\right) \subset T_{m}^{r} M$ is the principal fiber bundle with structure group G_{m}^{r} acting on $P^{r} M$ by jet composition, $T^{A} Y$ is the left G_{m}^{r}-space by means of H, and $P^{r} M\left[T^{A} Y, H\right]$ is the associated fiber bundle. For every $\mathcal{F M}_{m}$-map $f: Y_{1} \rightarrow Y_{2}$ covering $\varphi: M_{1} \rightarrow M_{2}$ we have the induced map $P^{r} \varphi\left[T^{A} f, H\right]: P^{r} M_{1}\left[T^{A} Y_{1}, H\right] \rightarrow P^{r} M_{2}\left[T^{A} Y_{2}, H\right]$ sending $F^{(A, H, t)} Y_{1}$ into $F^{(A, H, t)} Y_{2}$, and (by restriction and corestriction) we have the fibered map $F^{(A, H, t)} f: F^{(A, H, t)} Y_{1} \rightarrow F^{(A, H, t)} Y_{2}$ covering f.

Thus every triple (A, H, t), where A is a Weil algebra of order r, H is a group homomorphism from G_{m}^{r} into $\operatorname{Aut}(A)$, and t is a G_{m}^{r}-invariant algebra homomorphism from \mathcal{D}_{m}^{r} into A, induces a fiber product preserving bundle functor $F^{(A, H, t)}: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F} \mathcal{M}$ of order r.

If $(\bar{A}, \bar{H}, \bar{t})$ is another triple of order r and $\sigma:(A, H, t) \rightarrow(\bar{A}, \bar{H}, \bar{t})$ is a morphism of triples then we have a natural transformation $\eta^{\sigma}: F^{(A, H, t)} \rightarrow$ $F^{(\bar{A}, \bar{H}, \bar{t})}$, where $\eta_{Y}^{\sigma}: F^{(A, H, t)} Y \rightarrow F^{(\bar{A}, \bar{H}, \bar{t})} Y$ is the restriction and corestriction of $\operatorname{id}_{P^{r} M}\left[\sigma_{Y}\right]: P^{r} M\left[T^{A} Y, H\right] \rightarrow P^{r} M\left[T^{\bar{A}} Y, \bar{H}\right]$ for any $\mathcal{F} \mathcal{M}_{m}$-object $Y \rightarrow M$.

4. Classification of fiber product preserving bundle functors.

 The main result of [4] is the following classification theorem.Theorem 1 ([4]). (i) Every fiber product preserving bundle functor F on $\mathcal{F} \mathcal{M}_{m}$ is of some finite order r.
(ii) The correspondence $F \mapsto\left(A^{F}, H^{F}, t^{F}\right)$ induces a bijection between the equivalence classes of fiber product preserving bundle functors on $\mathcal{F} \mathcal{M}_{m}$ of order r and the equivalence classes of triples of order r. The inverse bijection is determined by $(A, H, t) \mapsto F^{(A, H, t)}$.
(iii) The natural transformations $F_{1} \rightarrow F_{2}$ of two fiber product preserving bundle functors F_{1} and F_{2} on $\mathcal{F} \mathcal{M}_{m}$ of order r are in bijection with the morphisms between corresponding triples. An example of such a bijection is $\eta \mapsto \sigma^{\eta}$.
5. The Lie algebra of $\operatorname{Aut}(A, H, t)$. Consider a triple (A, H, t), where A is a Weil algebra of order r, H is a group homomorphism from G_{m}^{r} into Aut (A), and t is a G_{m}^{r}-invariant algebra homomorphism from \mathcal{D}_{m}^{r} into A. We note that $\operatorname{Aut}(A, H, t)$ is a closed (and hence Lie) subgroup in $G L(A)$.

Proposition 1. Lie $(\operatorname{Aut}(A, H, t))=\{D \in \operatorname{Der}(A) \mid D \circ t=0, H(\xi) \circ D$ $=D \circ H(\xi)$ for all $\left.\xi \in G_{m}^{r}\right\}$.

Proof. By [3], $\operatorname{Lie}(\operatorname{Aut}(A))=\operatorname{Der}(A)$. Clearly, $\sigma \in \operatorname{Aut}(A, H, t)$ iff $\sigma \in$ $\operatorname{Aut}(A)$ and $\sigma \circ t=t$ and $H(\xi) \circ \sigma=\sigma \circ H(\xi)$ for any $\xi \in G_{m}^{r}$. Analysing 1 -parameter subgroups in $\operatorname{Aut}(A, H, t)$ we end the proof.
6. Natural transformations of $F_{\mid \mathcal{F} \mathcal{M}_{m, n}}$ into itself. In this section we prove the following theorem.

Theorem 2. Let $F: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F M}$ be a fiber product preserving bundle functor and (A, H, t) be its triple. Every natural transformation η of $F_{\mid \mathcal{F} \mathcal{M}_{m, n}}$ into itself can be extended to a unique natural transformation of F into itself. In particular, $\operatorname{Aut}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)=\operatorname{Aut}(A, H, t)$.

Proof. Let $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}$ be the coordinates on the $\mathcal{F} \mathcal{M}_{m, n^{-}}$ object $\mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the trivial bundle.

Consider a natural transformation η of $F_{\mid \mathcal{F} \mathcal{M}_{m, n}}$ into itself. Since F is fiber product preserving, $F_{0}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)=A^{n}$. Thus η is uniquely determined by the restriction and corestriction $\eta: A^{n} \rightarrow A^{n}$. Write $\eta\left(a_{1}, \ldots, a_{n}\right)=$ $\left(\eta^{1}\left(a_{1}, \ldots, a_{n}\right), \ldots, \eta^{n}\left(a_{1}, \ldots, a_{n}\right)\right)$ for $a_{1}, \ldots, a_{n} \in A$.

By the invariance of η with respect to the $\mathcal{F} \mathcal{M}_{m, n}$-morphisms $\left(x^{1}, \ldots\right.$, $\left.x^{m}, \tau_{1} y^{1}, \ldots, \tau_{n} y^{n}\right)$ for $\tau_{1}, \ldots, \tau_{n} \in \mathbb{R}_{+}$we get the homogeneity conditions $\tau_{j} \eta^{j}\left(a_{1}, \ldots, a_{n}\right)=\eta^{j}\left(\tau_{1} a_{1}, \ldots, \tau_{n} a_{n}\right)$ for $j=1, \ldots, n$ and any a_{1}, \ldots, a_{n} $\in A$ and any $\tau_{1}, \ldots, \tau_{n} \in \mathbb{R}_{+}$. This type of homogeneity implies that η^{j} depends linearly on a_{j} by the homogeneous function theorem [3].

Using permutations of fibered coordinates we deduce that $\eta=\sigma \times \ldots \times \sigma$ for $\sigma=\eta_{1}: A \rightarrow A$.

We prove that $\sigma \in \operatorname{Morph}(A, H, t)$.
Step 1. σ is an algebra homomorphism.
We know that σ is \mathbb{R}-linear. Using the invariance of η with respect to the local $\mathcal{F} \mathcal{M}_{m, n}$-morphism $\left(x^{1}, \ldots, x^{m}, y^{1}+\left(y^{1}\right)^{2}, y^{2}, \ldots, y^{n}\right)$ we derive that $\sigma\left(a+a^{2}\right)=\sigma(a)+(\sigma(a))^{2}$, i.e. $\sigma\left(a^{2}\right)=(\sigma(a))^{2}$ for any $a \in A$. Then $\sigma\left(\left(a_{1}+a_{2}\right)^{2}\right)=\left(\sigma\left(a_{1}+a_{2}\right)\right)^{2}$, i.e. $\sigma\left(a_{1} a_{2}\right)=\sigma\left(a_{1}\right) \sigma\left(a_{2}\right)$ for any $a_{1}, a_{2} \in A$. So, σ is multiplicative.

Using the invariance of η with respect to the $\mathcal{F} \mathcal{M}_{m, n}$-map $\left(x^{1}, \ldots, x^{m}\right.$, $\left.y^{1}+1, y^{2}, \ldots, y^{n}\right)$ we derive that $\sigma(a+1)=\sigma(a)+1$, i.e. $\sigma(1)=1$.

These facts show that σ is an algebra homomorphism.
Step 2. σ is G_{m}^{r}-equivariant.
Using the invariance of η with respect to the $\mathcal{F} \mathcal{M}_{m, n}$-maps $\varphi \times \operatorname{id}_{\mathbb{R}^{n}}$ for $\varphi \in \operatorname{Diff}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ with $\varphi(0)=0$ we obtain $H(\xi) \circ \sigma=\sigma \circ H(\xi)$ for any $\xi=j_{0}^{r} \varphi \in G_{m}^{r}$. So, σ is G_{m}^{r}-equivariant.

Step 3. $\sigma \circ t=t$.

By the invariance of η with respect to the $\mathcal{F} \mathcal{M}_{m, n}$-morphisms $\left(x^{1}, \ldots\right.$, $\left.x^{m}, f\left(x^{1}, \ldots, x^{m}\right)+\tau y^{1}, \ldots, \tau y^{n}\right)$ for any $\tau \in \mathbb{R}_{+}$and any $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and next letting $\tau \rightarrow 0$ we get $\sigma \circ t\left(j_{0}^{r} f\right)=t\left(j_{0}^{r} f\right)$. Hence $\sigma \circ t=t$.

We have proved that $\sigma \in \operatorname{Morph}(A, H, t)$. By Theorem 1 we have the natural transformation $\eta^{\sigma}: F \rightarrow F$ corresponding to σ. Clearly, η is the restriction of η^{σ}.

If $\widetilde{\eta}: F \rightarrow F$ is another such transformation, then $\widetilde{\eta}=\eta^{\sigma}$ because $\widetilde{\eta}$ coincides with η^{σ} on $A=A \times\{0\} \subset A^{n}$.
7. Absolute operators. Let $F: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F} \mathcal{M}$ be a fiber product preserving bundle functor and let (A, H, t) be its triple. We have the following example of absolute natural operators $T_{\text {proj| } \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T F$.

Example $1($ The operators $o p(D))$. Let $D \in \operatorname{Lie}(\operatorname{Aut}(A, H, t))$. Let σ_{τ} be the 1 -parameter subgroup in $\operatorname{Aut}(A, H, t)$ corresponding to D. By Theorem 1 we have the corresponding 1-parameter subgroup $\eta^{\sigma_{\tau}}$ of natural equivalences of F. So, for every $\mathcal{F} \mathcal{M}_{m, n}$-object Y we have a flow $\eta^{\sigma_{\tau}}$ on $F Y$. This flow defines a vector field $\operatorname{op}(D)$ on $F Y$. The correspondence $\operatorname{op}(D): T_{\text {proj } \mid \mathcal{F}} \mathcal{M}_{m, n} \rightsquigarrow T F$ is an absolute (i.e. constant) natural operator.

We have the following classification of absolute operators.
Proposition 2. Let $F: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F M}$ be a fiber product preserving bundle functor and (A, H, t) be its triple. Every absolute natural operator $B: T_{\text {proj|F }} \mathcal{M}_{m, n} \rightsquigarrow T F$ is $\operatorname{op}(D)$ for some $D \in \operatorname{Lie}(\operatorname{Aut}(A, H, t))$.

Proof. Consider an absolute natural operator $B: T_{\text {proj } \mid \mathcal{F}} \mathcal{M}_{m, n} \rightsquigarrow T F$. For every $\mathcal{F} \mathcal{M}_{m, n}$-object Y we have a vector field B on $F Y$ invariant with respect to $\mathcal{F} \mathcal{M}_{m, n}$-maps. The flow Fl_{τ}^{B} of B is $\mathcal{F} \mathcal{M}_{m, n}$-invariant. Using Theorem 1 we can easily show that there exists $v \in F Y$ such that $F Y$ is the orbit of U with respect to $\mathcal{F} \mathcal{M}_{m, n}$-maps for any open neighbourhood $U \subset F Y$ of v. This implies that B is complete, i.e. the flow Fl_{τ}^{B} is global. Hence the flow corresponds to some 1-parameter subgroup in $\operatorname{Aut}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)$. By Theorem 2, we have the corresponding 1-parameter subgroup $\sigma^{\mathrm{Fl}_{\tau}^{B}}$ in $\operatorname{Aut}(A, H, t)$. This subgroup corresponds to some $D \in \operatorname{Lie}(\operatorname{Aut}(A, H, t))$. Thus $B=\operatorname{op}(D)$.

The triple corresponding to J^{r} is $\left(\mathcal{D}_{m}^{r}, \operatorname{id}_{G_{m}^{r}}, \operatorname{id}_{\mathcal{D}_{m}^{r}}\right)$, where $\mathrm{id}_{G_{m}^{r}}: G_{m}^{r} \rightarrow$ $G_{m}^{r} \cong \operatorname{Aut}\left(\mathcal{D}_{m}^{r}\right)$ is the identity. By Proposition $1, \operatorname{Lie}\left(\operatorname{Aut}\left(\mathcal{D}_{m}^{r}, \operatorname{id}_{G_{m}^{r}}, \operatorname{id}_{\mathcal{D}_{m}^{r}}^{r}\right)\right)$ $=\{0\}$. Therefore we have the following corollary.

Corollary 1. Every absolute operator on $J_{\mid \mathcal{F} \mathcal{M}_{m, n}}^{r}$ is 0 .
Let $J_{v}^{r}: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F} \mathcal{M}$ be the vertical extension of J^{r} (see [2]). We recall that $J_{v}^{r}(Y)=\bigcup_{x \in M} J_{x}^{r}\left(M, Y_{x}\right)$ for every $\mathcal{F} \mathcal{M}_{m}$-object $Y \rightarrow M$. The triple of J_{v}^{r} is $\left(\mathcal{D}_{m}^{r}\right.$, id $\left._{G_{m}^{r}}, \varepsilon\right)$, where $\varepsilon: \mathcal{D}_{m}^{r} \rightarrow \mathcal{D}_{m}^{r}$ is the trivial algebra
homomorphism (equal to 0 on the nilpotent ideal; see [4]). By Proposition 1 we have $\operatorname{Lie}\left(\operatorname{Aut}\left(\mathcal{D}_{m}^{r}, \operatorname{id}_{G_{m}^{r}}, \varepsilon\right)\right)=\left\{D \in \operatorname{Der}\left(\mathcal{D}_{m}^{r}\right) \mid \xi \circ D=D \circ \xi\right.$ for all $\xi \in$ $\left.G_{m}^{r}\right\}$. As an easy exercise one can compute that $\left\{D \in \operatorname{Der}\left(\mathcal{D}_{m}^{r}\right) \mid \xi \circ D=D \circ \xi\right.$ for all $\left.\xi \in G_{m}^{r}\right\}=\{0\}$ if $r \geq 2$. For $r=1$ we have $\left\{D \in \operatorname{Der}\left(\mathcal{D}_{m}^{1}\right) \mid \xi \circ D=\right.$ $D \circ \xi$ for all $\left.\xi \in G_{m}^{1}\right\}=\mathbb{R} D_{m}^{1}$, where $D_{m}^{1} \in \operatorname{Der}\left(\mathcal{D}_{m}^{1}\right)$ is the unique derivation such that $D_{m}^{1}\left(j_{0}^{1}\left(x^{i}\right)\right)=j_{0}^{1}\left(x^{i}\right)$ for $i=1, \ldots, m$. (Here x^{1}, \ldots, x^{m} are the usual coordinates on \mathbb{R}^{m}.) Therefore we have the following corollary.

Corollary 2. (i) Every absolute operator on $J_{v \mid \mathcal{F} \mathcal{M}_{m, n}}$ is a constant multiple of $\operatorname{op}\left(D_{m}^{1}\right)$.
(ii) For $r \geq 2$ every absolute operator on $J_{v \mid \mathcal{F} \mathcal{M}_{m, n}}$ is 0 .

Remark 1. We have the following geometrical interpretation of op $\left(D_{m}^{1}\right)$. For every $\mathcal{F} \mathcal{M}_{m, n}$-object $p: Y \rightarrow M, J_{v}^{1} Y=\bigcup_{w \in Y}\left(T_{p(w)}^{*} M \otimes T_{w} Y_{p(w)}\right)$ is a vector bundle over Y. The Liouville vector field L on the vector bundle $J_{v}^{1} Y$ is op $\left(D_{m}^{1}\right)$.

The triple corresponding to V^{A} is $\left(A, \operatorname{id}_{A}, \varepsilon\right)$, where $\operatorname{id}_{A}: G_{m}^{r} \rightarrow \operatorname{Aut}(A)$ is the trivial group homomorphism and $\varepsilon: \mathcal{D}_{m}^{r} \rightarrow A$ is the trivial algebra homomorphism. By Proposition 1 we obtain $\operatorname{Lie}\left(\operatorname{Aut}\left(A, \operatorname{id}_{A}, \varepsilon\right)\right)=$ $\operatorname{Lie}(\operatorname{Aut}(A))=\operatorname{Der}(A)$. So, we have the following corollary.

Corollary 3. Every absolute operator on $V_{\mid \mathcal{F} \mathcal{M}_{m, n}}^{A}$ is $\operatorname{op}(D)$ for some $D \in \operatorname{Der}(D)=\operatorname{Lie}(\operatorname{Aut}(A))=\operatorname{Lie}\left(\operatorname{Aut}\left(A, \operatorname{id}_{A}, \varepsilon\right)\right)$.

Since every natural transformation of $\widetilde{J}^{2}=J^{1} \circ J^{1}$ into itself is the identity $($ see $[3])$, then $\operatorname{Lie}\left(\operatorname{Aut}\left(A^{\tilde{J}^{2}}, H^{\tilde{J}^{2}}, t^{\tilde{J}^{2}}\right)\right)=\{0\}$. So, we have the following corollary.

Corollary 4. Every absolute operator on $\widetilde{J}_{\mid \mathcal{F} \mathcal{M}_{m, n}}^{2}$ is 0 .
8. Admissible fiber product preserving bundle functors. Suppose that $F: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F M}$ is a fiber product preserving bundle functor of order r and (A, H, t) is its corresponding triple. We say that F is admissible if the following condition is satisfied: for every derivation $D \in \operatorname{Der}(A)$,

$$
\text { if } H\left(j_{0}^{r}\left(\tau \operatorname{id}_{\mathbb{R}^{m}}\right)\right) \circ D \circ H\left(j_{0}^{r}\left(\tau^{-1} \operatorname{id}_{\mathbb{R}^{m}}\right)\right) \rightarrow 0 \text { as } \tau \rightarrow 0 \text { then } D=0 .
$$

Lemma 1. (i) The functors J^{r} and \widetilde{J}^{r} and their extensions in the sense of [2] are admissible.
(ii) All vertical Weil functors V^{A} are admissible.

Proof. The triple corresponding to J^{r} is $\left(\mathcal{D}_{m}^{r}, \mathrm{id}_{G_{m}^{r}}, \mathrm{id}_{\mathcal{D}_{m}^{r}}\right)$. Consider $D \in \operatorname{Der}\left(\mathcal{D}_{m}^{r}\right)$ such that $j_{0}^{r}\left(\tau \mathrm{id}_{\mathbb{R}^{m}}\right) \circ D \circ j_{0}^{r}\left(\tau^{-1} \mathrm{id}_{\mathbb{R}^{m}}\right) \rightarrow 0$ as $\tau \rightarrow 0$. Let x^{1}, \ldots, x^{m} be the usual coordinates on \mathbb{R}^{m}. For $i=1, \ldots, m$ we can write $D\left(j_{0}^{r} x^{i}\right)=\sum a_{\alpha}^{i} j_{0}^{r}\left(x^{\alpha}\right)$ for some real numbers a_{α}^{i}, where the sum is over all
$\alpha \in(\mathbb{N} \cup\{0\})^{m}$ with $0 \leq|\alpha| \leq r$. We have

$$
j_{0}^{r}\left(\tau \operatorname{id}_{\mathbb{R}^{m}}\right) \circ D \circ j_{0}^{r}\left(\tau^{-1} \operatorname{idd}_{\mathbb{R}^{m}}\right)\left(j_{0}^{r}\left(x^{i}\right)\right)=\sum a_{\alpha}^{i} \frac{1}{\tau^{|\alpha|-1}} j_{0}^{r}\left(x^{\alpha}\right) .
$$

Then from the assumption on D it follows that $a_{\alpha}^{i}=0$ for all $\alpha \in(\mathbb{N} \cup\{0\})^{m}$ with $1 \leq|\alpha| \leq r$, i.e. $D\left(j_{0}^{r} x^{i}\right)=a_{(0)}^{i} j_{0}^{r} 1$ for $i=1, \ldots, m$. Then (since $j_{0}^{r}\left(\left(x^{i}\right)^{r+1}\right)=0 \in \mathcal{D}_{m}^{r}$ and D is a differentiation) we have

$$
\begin{aligned}
0 & =D\left(j_{0}^{r}\left(\left(x^{i}\right)^{r+1}\right)\right)=D\left(\left(j_{0}^{r} x^{i}\right)^{r+1}\right)=(r+1)\left(j_{0}^{r} x^{i}\right)^{r} D\left(j_{0}^{r} x^{i}\right) \\
& =(r+1) a_{(0)}^{i} j_{0}^{r}\left(\left(x^{i}\right)^{r}\right) .
\end{aligned}
$$

Then $a_{(0)}^{i}=0$ as $j_{0}^{r}\left(\left(x^{i}\right)^{r}\right) \neq 0 \in \mathcal{D}_{m}^{r}$. Then $D\left(j_{0}^{r} x^{i}\right)=0$ for $i=1, \ldots, m$. Then $D=0$ because the $j_{0}^{r} x^{i}$ for $i=1, \ldots, m$ generate the algebra \mathcal{D}_{m}^{r}. Hence J^{r} is admissible.

The proof of the admissibility of \widetilde{J}^{r} is left to the reader. First observe that the triple (A, H, t) of \widetilde{J}^{r} has the following properties: (1) $A=\bigotimes^{r} \mathcal{D}_{m}^{1}$ (see [2]); (2) $H(\xi)=\bigotimes^{r} \xi$ for $\xi=j_{0}^{r}\left(\tau \operatorname{id}_{\mathbb{R}^{m}}\right) \in G_{m}^{1} \subset G_{m}^{r}$. Then the proof is similar to that for J^{r}.

Every extension F of J^{r} is admissible because $\left(A^{F}, H^{F}\right)=\left(A^{J^{r}}, H^{J^{r}}\right)$ and J^{r} is admissible. By the same argument every extension of \widetilde{J}^{r} is admissible.

The admissibility of V^{A} is a consequence of the fact that the triple of V^{A} is $\left(A, \mathrm{id}_{A}, \varepsilon\right)$.

In Section 11 we will exhibit a non-admissible fiber product preserving bundle functor.

9. The main result

Example 2 (The flow operator). In general, if $E: \mathcal{F} \mathcal{M}_{m, n} \rightarrow \mathcal{F M}$ is a bundle functor then we have the flow operator $\mathcal{E}: T_{\text {proj } \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T E$ lifting projectable vector fields to E. More precisely, if X is a projectable vector field on an $\mathcal{F} \mathcal{M}_{m, n}$-object Y then its flow Fl_{τ}^{X} is formed by $\mathcal{F} \mathcal{M}_{m, n^{-}}$ morphisms. The flow $E\left(\mathrm{Fl}_{\tau}^{X}\right)$ on $E Y$ generates $\mathcal{E}(X)$.

The main result of this paper is the following classification theorem.
Theorem 3. Let $F: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F M}$ be an admissible fiber product preserving bundle functor and let (A, H, t) be its triple. Every natural operator $B: T_{\text {proj| }} \mathcal{F}_{m, n} \rightsquigarrow T F$ is of the form

$$
B=\lambda \mathcal{F}+\mathrm{op}(D)
$$

for some $\lambda \in \mathbb{R}$ and $D \in \operatorname{Lie}(\operatorname{Aut}(A, H, t))$, where \mathcal{F} is the flow operator.
Proof. We assume $F=F^{(A, H, t)}$. We have $\mathbb{R}^{m} \times T^{A} \mathbb{R}^{n} \cong F\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$, where $\mathbb{R}^{m} \times \mathbb{R}^{n}$ is the standard $\mathcal{F} \mathcal{M}_{m, n}$-object. The identification is given by
$(x, X) \cong\left\{j_{0}^{r} \tau_{x},\left(t_{\mathbb{R}^{m}}\left(j_{0}^{r}\left(\tau_{x}\right)\right), X\right)\right\} \in F^{(A, H, t)}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right), x \in \mathbb{R}^{m}, X \in T^{A} \mathbb{R}^{n}$, where $\tau_{x}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the translation by x. The homothety $\tau \mathrm{id}_{\mathbb{R}^{m}} \times \mathrm{id}_{\mathbb{R}^{n}}$ for $\tau \neq 0$ sends (x, X) into $\left(\tau x, H\left(j_{0}^{r}\left(\tau \operatorname{id}_{\mathbb{R}^{m}}\right)\right)(X)\right)$. An $\mathcal{F} \mathcal{M}_{m, n}$-morphism of the form $\operatorname{id}_{\mathbb{R}^{m}} \times \psi$ with $\psi \in \operatorname{Diff}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ sends (x, X) into $\left(x, T^{A} \psi(X)\right)$.

Let $x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}$ be the usual coordinates on $\mathbb{R}^{m} \times \mathbb{R}^{n}$. The operator B is determined by $B\left(\partial / \partial x^{1}\right)$. We can write

$$
B\left(\mu \frac{\partial}{\partial x^{1}}\right)_{(x, X)}=\sum_{i=1}^{m} a^{i}(\mu, x, X) \frac{\partial}{\partial x^{i} \mid x}+E(\mu, x, X)
$$

where $E_{\mu, x}=E(\mu, x, \cdot)$ is a vector field on $T^{A} \mathbb{R}^{n}$ for any $\mu \in \mathbb{R}$ and $x \in \mathbb{R}^{m}$. The functions a^{i} and E are smooth.

Using the invariance of $B\left(\mu \partial / \partial x^{1}\right)$ with respect to the $\mathcal{F} \mathcal{M}_{m, n}$-morphisms of the form $\operatorname{id}_{\mathbb{R}^{m}} \times \psi$ with $\psi \in \operatorname{Diff}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ we see that $E_{\mu, x}$ is $T^{A} \psi$-invariant. So, $E_{\mu, x}$ corresponds to some absolute operator on $T_{\mid \mathcal{M} f_{n}}^{A}$. By the result of [3], $E_{\mu, x}=\operatorname{op}\left(D_{\mu, x}\right)$ for some $D_{\mu, x} \in \operatorname{Der}(A)$. The family $D_{\mu, x}$ depends smoothly on μ and x.

Using the invariance of $B\left(\mu \partial / \partial x^{1}\right)$ with respect to the fiber homotheties $\operatorname{id}_{\mathbb{R}^{m}} \times \tau \mathrm{id}_{\mathbb{R}^{n}}$ for $\tau \neq 0$ we deduce that $a^{i}(\mu, x, X)=a^{i}(\mu, x, \tau X)$, i.e. $a^{i}(\mu, x, X)=a^{i}(\mu, x)$ for $i=1, \ldots, m$.

Using the invariance of $B\left(\mu \partial / \partial x^{1}\right)$ with respect to the base homotheties $\tau \operatorname{id}_{\mathbb{R}^{m}} \times \operatorname{id}_{\mathbb{R}^{n}}$ for $\tau \neq 0$ we deduce that $a^{i}(\tau \mu, \tau x)=\tau a^{i}(\mu, x)$, i.e. $a^{i}(\mu, x)$ depends linearly on μ and x by the homogeneous function theorem.

Clearly, $B(0)$ is an absolute operator. So, $B(0)=\operatorname{op}(D)$ for $D \in$ $\operatorname{Lie}(\operatorname{Aut}(A, H, t))$ by Proposition 2.

Now, replacing B by $B-B(0)$ we can write

$$
B\left(\mu \frac{\partial}{\partial x^{1}}\right)_{(x, X)}=\sum_{i=1}^{m} a^{i} \mu \frac{\partial}{\partial x^{i} \mid x}+\operatorname{op}\left(D_{\mu, x}\right)_{X}
$$

where $a^{i} \in \mathbb{R}$ and $D_{\mu, x} \in \operatorname{Der}(A)$ is a smoothly parametrized family of derivations with $D_{0,0}=0$.

Using the invariance of $B\left(\mu \partial / \partial x^{1}\right)$ with respect to the $\mathcal{F} \mathcal{M}_{m, n}$-morphisms $\left(x^{1}, \tau x^{2}, \ldots, \tau x^{m}, y^{1}, \ldots, y^{n}\right)$ for $\tau \neq 0$ we get $a^{2}=\ldots=a^{m}=0$. So replacing B by $B-a^{1} \mathcal{F}$ we can write

$$
B\left(\mu \frac{\partial}{\partial x^{1}}\right)_{(x, X)}=\operatorname{op}\left(D_{\mu, x}\right)_{X}
$$

where $D_{\mu, x} \in \operatorname{Der}(A)$ is a smoothly parametrized family of derivations with $D_{0,0}=0$.

Using the invariance of $B\left(\mu \partial / \partial x^{1}\right)$ with respect to the base homotheties $\tau \mathrm{id}_{\mathbb{R}^{m}} \times \operatorname{id}_{\mathbb{R}^{n}}$ we get $\operatorname{op}\left(D_{\tau \mu, \tau x}\right)_{X}=\left(H\left(j_{0}^{r}\left(\tau \operatorname{id}_{\mathbb{R}^{m}}\right)\right)_{*} \mathrm{op}\left(D_{\mu, x}\right)\right)_{X}$, i.e.

$$
D_{\tau \mu, \tau x}=H\left(j_{0}^{r}\left(\tau \operatorname{id}_{\mathbb{R}^{m}}\right)\right) \circ D_{\mu, x} \circ H\left(j_{0}^{r}\left(\tau^{-1} \mathrm{id}_{\mathbb{R}^{m}}\right)\right)
$$

for any $\tau \neq 0$.

If $\tau \rightarrow 0$, then $D_{\tau \mu, \tau x} \rightarrow 0$ because $D_{0,0}=0$. Thus $D_{\mu, x}=0$ for all $x \in \mathbb{R}^{m}$ and $\mu \in \mathbb{R}$ because F is admissible.

Remark 2. Observe that from Theorem 3 it follows that under the assumption of the theorem any natural operator $B: T_{\operatorname{proj} \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T F$ has order less than or equal to the order of F. This order estimation also follows by the general method from [6].
10. Corollaries. We have the following immediate corollaries of Theorem 3, Corollaries 1-4 and Lemma 1.

Corollary 5 ([5]). Every natural operator $B: T_{\operatorname{proj} \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T J^{r}$ is a constant multiple of the flow operator \mathcal{J}^{r}.

Corollary 6. (i) Every natural operator $B: T_{\text {proj| }} \mathcal{F M}_{m, n} \rightsquigarrow T J_{v}^{1}$ is a linear combination of the flow operator \mathcal{J}_{v}^{1} and $\operatorname{op}\left(D_{m}^{1}\right)$ with real coefficients.
(ii) For $r \geq 2$ every natural operator $B: T_{\operatorname{proj} \mid \mathcal{F M}_{m, n}} \rightsquigarrow T J_{v}^{r}$ is a constant multiple of the flow operator \mathcal{J}_{v}^{r}.

Corollary 7. Every natural operator $B: T_{\operatorname{proj} \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T V^{A}$, where A is a Weil algebra, is of the form $B=\lambda \mathcal{V}^{A}+\operatorname{op}(D)$ for some $\lambda \in \mathbb{R}$ and $D \in \operatorname{Der}(D)=\operatorname{Lie}(\operatorname{Aut}(A))=\operatorname{Lie}\left(\operatorname{Aut}\left(A, \operatorname{id}_{A}, 0\right)\right)$.

Corollary 8. Every natural operator $B: T_{\text {proj } \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T \widetilde{J}^{2}$ is a constant multiple of the flow operator $\widetilde{\mathcal{J}}^{2}$.
11. A counterexample. We show that the assumption of admissibility of F in Theorem 3 is essential.

Example 3. Given a fibered manifold $p: Y \rightarrow M$ from $\mathcal{F} \mathcal{M}_{m}$ we define a vector bundle

$$
F^{\langle r\rangle} Y=\bigcup_{y \in Y}\left\{j_{p(y)}^{r} \sigma \mid \sigma: M \rightarrow T_{y} Y_{p(y)}\right\}
$$

over Y. For every $\mathcal{F} \mathcal{M}_{m}$-map $f: Y_{1} \rightarrow Y_{2}$ covering $\underline{f}: M_{1} \rightarrow M_{2}$ we define the induced vector bundle map $F^{\langle r\rangle} f: F^{\langle r\rangle} Y_{1} \rightarrow F^{\langle r\rangle} Y_{2}$ covering f by

$$
F^{\langle r\rangle} f\left(j_{p(y)}^{r} \sigma\right)=j_{\underline{f}(p(y))}^{r}\left(T f \circ \sigma \circ \underline{f}^{-1}\right)
$$

for any $\sigma: M \rightarrow T_{y} Y_{1 p(y)}, y \in Y_{1}$. Then $F^{\langle r\rangle}: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F} \mathcal{M}$ is a fiber product preserving bundle functor with values in the category $\mathcal{V B}$ of vector bundles.

Let $s=0, \ldots, r$. Given a projectable vector field X on an $\mathcal{F} \mathcal{M}_{m, n}$-object Y covering a vector field \underline{X} on M we define a vertical vector field $V^{\langle s\rangle}(X)$
on $F^{\langle r\rangle} Y$ as follows. Let $j_{p(y)}^{r} \sigma \in F_{y}^{\langle r\rangle} Y, \sigma: M \rightarrow T_{y} Y_{p(y)}, y \in Y$. We put

$$
V^{\langle s\rangle}(X)(y)=\left(y, j_{p(y)}^{r}\left(\underline{X}^{(s)} \sigma(p(y))\right)\right) \in\{y\} \times F_{y}^{\langle r\rangle} Y=V_{y} F^{\langle r\rangle} Y
$$

where $\underline{X}^{(s)}=X \circ \ldots \circ X(s$ times $)$ and $\underline{X}^{(s)} \sigma(p(y)): M \rightarrow T_{y} Y_{p(y)}$ is the constant map.

The correspondence $V^{\langle s\rangle}: T_{\operatorname{lin} \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T F^{\langle r\rangle}$ is a natural operator.
Of course if $s=1, \ldots, r$ then $V^{\langle s\rangle}$ is not of the form as in Theorem 3, for $V^{\langle s\rangle}(0)=0$ and $V^{\langle s\rangle}$ is not absolute.

References

[1] C. Ehresmann, Extension du calcul des jets aux jets non holonomes, C. R. Acad. Sci. Paris 239 (1954), 1762-1764.
[2] I. Kolář, Bundle functors of the jet type, in: Differential Geometry and Its Applications (Brno, 1988), Masaryk Univ., Brno, 1999, 231-237.
[3] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
[4] I. Kolář and W. M. Mikulski, On the fiber product preserving bundle functors, Differential Geom. Appl. 11 (1999), 105-115.
[5] I. Kolář and J. Slovák, Prolongation of vector field to jet bundles, Suppl. Rend. Circ. Mat. Palermo 22 (1990), 103-111.
[6] A. Zajtz, On the order of natural differential operators and liftings, Ann. Polon. Math. 49 (1988), 169-175.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 58A20.
 Key words and phrases: natural bundles, bundle functors, Weil algebras, natural operators, jets.

