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On elliptic systems pertaining
to the Schrödinger equation

by J. Chabrowski and E. Tonkes (Brisbane)

Abstract. We discuss the existence of solutions for a system of elliptic equations
involving a coupling nonlinearity containing a critical and subcritical Sobolev exponent.
We establish the existence of ground state solutions. The concentration of solutions is also
established as a parameter λ becomes large.

1. Introduction. The aim of this paper is to establish the existence of
ground state solutions to nonlinear systems of elliptic equations. We con-
sider two types of problems, involving subcritical and critical growth. In the
first part of the paper we examine a system containing a subcritical nonlin-
earity which couples the equations. The problem is a vector form of a scalar
equation studied in [2]. Specifically we look at

−∆uj + (λaj(x) + 1)uj = fj(U), x ∈ RN , j = 1, . . . , n,(1.1)

where U = (u1, . . . , un), 1 < q < p < 2∗, λ > 0 and aj(x) satisfies certain
assumptions. The nonlinearity fj(·) is defined through the variational for-
mulation. For F (U) = (

∑n
j=1 |uj |q)p/q, we let fj(U) = 1

p
∂F
∂uj

. The interesting
feature is that the genuine vector solutions occur in the case 1 < q < 2 (see
Propositions 2.5–2.8).

The second part of the paper is devoted to the case p = 2∗. The particular
problem introduces another coupling term in the equations, following the
work in [1]. This problem is a vector form of a scalar equation presented
in [6]:

−∆uj + λaj(x)uj =
n∑

k=1

ajkuk + fj(U), x ∈ RN , j = 1, . . . , n.(1.2)

We establish some existence results which are related to the best Sobolev
constants.
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Solutions in both cases exhibit a similar behaviour when λ→∞ as they
tend to concentrate to solutions of the Dirichlet problem in the set Ω where
ai(x) = 0.

We assume that the matrix A = [aij ] with constant coefficients is sym-
metric. The coefficients aj(x), j = 1, . . . , n, are nonnegative and continuous
on RN . Throughout this work we make the assumption:

(A) Ωj =int(a−1
j (0)) are nonempty and bounded sets with smooth bound-

aries and Ωj = a−1
j (0). Moreover, there exists some M0 > 0 such that

the sets

Fj = {x ∈ RN : aj(x) ≤M0}
have finite Lebesgue measure.

Additional assumptions on aj will be introduced and used in Section 4.
Throughout this paper we use standard notation and terminology. By

H1(RN ) and D1,2(RN ) we denote the usual Sobolev spaces equipped with
the norms

‖u‖2H1 =
�

RN
(|∇u|2 + u2) dx and ‖u‖2D1,2 =

�

RN
|∇u|2 dx

respectively.
The corresponding Sobolev spaces of vector functions with n components

are denoted by H1(RN ,Rn) = H1(RN )× . . .×H1(RN ) and D1,2(RN ,Rn) =
D1,2(RN ) × . . . × D1,2(RN ) and equipped with the product norm. Analo-
gous notation is used for the Lebesgue spaces Lp(RN ), with norm |u|pp =�
RN |u|p dx, and we denote the corresponding space of vector functions by
Lp(RN ,Rn) = Lp(RN )× . . .× Lp(RN ).

In a given Banach space X, we denote weak convergence by “⇀” and
strong convergence by “→”. Let F ∈ C1(X,R). A sequence {um} ⊂ X is
said to be a Palais-Smale sequence for F at level c (a (PS)c sequence for
short) if F (um)→ c and F ′(um)→ 0 in X∗ as m→∞.

We say that F satisfies the Palais–Smale condition at level c (the (PS)c
condition for short) if any (PS)c sequence is relatively compact in X.

For our purposes it will be convenient to use the weighted Sobolev spaces.
Let Ej = {u ∈ H1(RN ) :

�
RN aju

2 dx <∞} and define the norm in Ej by

‖u‖2Ej = ‖u‖2H1 +
�

RN
aju

2 dx.

We shall also use the norms

‖u‖Ej,λ = ‖u‖2H1 + λ
�

RN
aju

2 dx, λ > 0,
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which are equivalent to ‖ · ‖Ej . Finally we introduce the weighted Sobolev
spaces of vector functions:

E = E1 × . . .× En and Eλ = E1,λ × . . .× En,λ
with the norms

‖U‖2E = ‖u1‖2E1
+ . . .+ ‖un‖2En

and
‖U‖2Eλ = ‖u1‖2E1,λ

+ . . .+ ‖un‖2En,λ .
The associated scalar products in E and Eλ are denoted by (·, ·)E and (·, ·)Eλ
respectively.

Solutions of system (1.2) will be found as critical points of the functional
Iλ : E → R defined by

Iλ(U) =
1
2

n∑

i=1

( �

RN
|∇ui|2 dx+ λ

�

RN
aiu

2
i dx

)

− 1
2

�

RN

n∑

i,j=1

aijuiuj dx−
1
p

�

RN
F (U) dx.

Since

〈I ′λ(U), Φ〉 =
n∑

i=1

�

RN
∇ui∇φi dx+ λ

n∑

i=1

�

RN
aiuiφi dx

−
n∑

i,j=1

�

RN
aijφiuj dx−

n∑

i=1

�

RN
fi(U)φi dx

for every U,Φ ∈ Eλ, any critical point of Iλ is a weak solution of (1.2).

2. Subcritical case. In this section we consider the subcritical system
(1.1). We assume that F (U) = (

∑n
j=1 |uj |q)p/q, 2 < p < 2∗, and we consider

the cases 1 < q < 2, q = 2 and 2 < q < p.
The variational functional for (1.1) is given by

Jλ(U) =
1
2

n∑

i=1

( �

RN
(|∇ui|2 + (λai + 1)u2

i ) dx
)
− 1
p

�

RN
F (U) dx

for U ∈ Eλ. Solutions of (1.1) will be found by constrained minimisation:

(2.3) Mλ = inf
{ n∑

i=1

�

RN
(|∇ui|2 +(λai+1)u2

i

)
dx :

�

RN
F (U) dx = 1, U ∈ Eλ

}
.

We commence with an observation with standard proof:
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Lemma 2.1. Let {Um} be a minimising sequence for (2.3). Then Wm =
M

1/(p−2)
λ Um is a Palais–Smale sequence for Jλ, that is,

Jλ(Wm)→
(

1
2
− 1
p

)
M

p/(p−2)
λ and J ′λ(Wm)→ 0 in E∗

as m→∞.

Proof. We follow the argument from Theorem 2.1 in [7] (see also Lemma
8.2.1 in [4]). It is clear that

‖Wm‖2Eλ = ‖Um‖2EλM
2/(p−2)
λ = M

p/(p−2)
λ + o(1),

�

RN
F (Wm) dx = M

p/(p−2)
λ

�

RN
F (Um) dx = M

p/(p−2)
λ(2.4)

Jλ(Wm) =
(

1
2
− 1
p

)
M

p/(p−2)
λ + o(1).

For Φ ∈ H1(RN ,Rn), we define the functional

Jm(Φ) =
1
p

�

RN

n∑

i=1

∂F (Wm)
∂ui

φi dx,

where Φ = (φ1, . . . , φn). Since ∂F
∂ui

= p(
∑n

j=1 |uj |q)(p−q)/q|ui|q−1sign(ui),
applying the Hölder inequality we get

Jm(Φ) ≤
�

RN

( n∑

j=1

|wmj |q
)(p−q)/q n∑

i=1

|wmi |q−2|wmi | |φi| dx

≤
�

RN

( n∑

j=1

|wmj |q
)(p−q)/q( n∑

i=1

|wmi |q
)(q−1)/q( n∑

i=1

|φi|q
)1/q

dx

=
�

RN

( n∑

j=1

|wmj |q
)(p−1)/q( n∑

i=1

|φi|q
)1/q

dx

≤
( �

RN

( n∑

i=1

|wmi |q
)p/q

dx
)(p−1)/p( �

RN

( n∑

i=1

|φi|q
)p/q

dx
)1/p

=
( �

RN
F (Wm) dx

)(p−1)/p( �

RN
F (Φ) dx

)1/p
.

It follows from (2.4) that

Jm(Φ) ≤M (p−1)/(p−2)
λ

( �

RN
F (Φ) dx

)1/p
.

If ‖Φ‖Eλ = 1, then
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Mλ ≤
�

RN

( |∇Φ|2
(

�
RN F (Φ) dx)2/p

+
1

(
�
RN F (Φ) dx)2/p

n∑

j=1

(λaj + 1)φ2
j

)
dx.

Hence ( �

RN
F (Φ) dx

)2/p
≤M−1

λ ‖Φ‖2Eλ = M−1
λ .

Therefore, for such Φ we have

Jm(Φ) ≤M (p−1)/(p−2)
λ M

−1/2
λ = M

p/(2(p−2))
λ .

This yields
‖Jm‖H−1(RN ,Rn) ≤Mp/(2(p−2))

λ .

We also have

Jm(Wm‖Wm‖−1
Eλ

) =
1
p

n∑

i=1

1
‖Wm‖Eλ

�

RN

∂F (Wm)
∂ui

wmi dx

=
1

‖Wm‖Eλ
�

RN
F (Wm) dx =

M
p/(p−2)
λ

M
p/(2(p−2))
λ

+ o(1) = M
p/(2(p−2))
λ + o(1).

By the Riesz representation theorem, there exists V m ∈ Eλ such that

Jm(Φ) = (V m, Φ)Eλ =
�

RN

(
∇V m∇Φ+

n∑

i=1

(λai + 1)vmi φi
)
dx

and
‖Jm‖H−1 = ‖V m‖Eλ .

From this, we deduce

(V m,Wm‖Wm‖−1
Eλ

)Eλ = Jm(Wm‖Wm‖−1
Eλ

) = M
p/(2(p−2))
λ + o(1).

Hence

(V m,Wm)Eλ = M
p/(2(p−2))
λ ‖Wm‖Eλ + o(1) = M

p/(p−2)
λ + o(1).

We can now write
‖V m −Wm‖2Eλ = ‖V m‖2Eλ − 2(Wm, V m)Eλ + ‖Wm‖2Eλ

= M
p/(p−2)
λ − 2Mp/(p−2)

λ +M
p/(p−2)
λ + o(1) = o(1).

Since

〈J ′λ(Wm), Φ〉 =
�

RN

(
∇Wm∇Φ+

n∑

i=1

λ(ai + 1)wmi φi
)
dx

− 1
p

n∑

i=1

�

RN

∂F (Wm)
∂ui

φi dx = (Wm, Φ)Eλ − (V m, Φ)Eλ ,

we get |〈J ′λ(Wm), Φ〉| ≤ ‖V m −Wm‖Eλ and the result follows.
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This lemma shows that if U is a minimiser of (2.3) then M
1/(p−2)
λ U is a

solution of system (1.1).
Let {Um} be a minimising sequence for (2.3). Since Um is bounded

in E, we may assume that Um ⇀ U in E. We now define the following two
quantities:

α∞ = lim
R→∞

lim sup
m→∞

�

|x|≥R
F (Um) dx,

β∞ = lim
R→∞

lim sup
m→∞

�

|x|≥R

(
|∇Um|2 +

n∑

j=1

(λaj + 1)(umj )2
)
dx,

which measure the loss of mass at infinity of a weakly convergent sequence
Um (see [4], [5]). It is clear that both α∞ and β∞ are finite.

We now note that the infimum Mλ, defined by (2.3), is bounded inde-
pendently of λ ≥ 0. Let

Mi = inf
{ �

Ωi

(|∇u|2 + u2) dx :
�

Ωi

|u|p dx = 1, u ∈ H1
0 (Ωi)

}
.

Testing Mλ with vector functions nonzero in the jth component, Ũj =
(0, . . . , 0, u, 0, . . . , 0), where u ∈ H1

0 (Ω), we derive the estimate

Mλ ≤ min
j=1,...,n

Mj .(2.5)

In the proof of Theorem 2.2 below, we shall use only the second part of
assumption (A), namely that the measures of the sets Fj are finite.

Theorem 2.2. There exists Λ > 0 such that problem (1.1) has a solution
for λ ≥ Λ.

Proof. Let {Um} be a minimising sequence for Mλ. It is sufficient to
prove that {Um} is convergent up to a subsequence in E. It follows from
(2.5) that there exists a constant K > 0 such that

�

RN

(
|∇Um|2 +

n∑

j=1

(λaj + 1)(umj )2
)
dx ≤ K

for all m. We may assume that Um ⇀ U in E. Then for each 1 ≤ j ≤ n,
�

{|x|≥R, aj(x)≥M0}
(umj )2dx ≤ 1

λM0 + 1

�

RN
(λaj + 1)(umj )2dx ≤ K

λM0 + 1
,(2.6)

�

{|x|≥R, aj(x)<M0}
(umj )2dx ≤

( �

RN
|umj |p dx

)2/p( �

{|x|≥R, aj(x)<M0}
dx
)1−2/p

(2.7)

≤ C|{x ≥ R} ∩ {aj(x) < M0}|,
where C is a constant depending only on K.
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It follows from assumption (A) that

|{|x| ≥ R} ∩ {aj(x) < M0}| → 0 as R→∞.(2.8)

Let θ = (2∗ − p)/(2∗ − 2). Applying the Hölder inequality we get
�

|x|≥R
|umj |p dx ≤

( �

|x|≥R
|umj |2 dx

)θ( �

|x|≥R
|umj |2

∗
dx
)1−θ

≤ C
( �

{|x|≥R, aj(x)≥M0}
(umj )2 dx+

�

{|x|≥R, aj(x)<M0}
(umj )2 dx

)θ
.

Using (2.6)–(2.8) we see that there exists Λ > 0 such that α∞ < 1 for λ ≥ Λ.
We now observe that

1 = lim
m→∞

�

RN
F (Um) dx =

�

RN
F (U) dx+ α∞.

To complete the proof, we need to show that α∞ = 0. Assume that 0 <
α∞ < 1. Let φR ∈ C1(RN ) be such that φR(x) = 1 for |x| > R + 1,
φR(x) = 0 for |x| ≤ R and 0 ≤ φR(x) ≤ 1 on RN . By Lemma 2.1, we have
〈J ′λ(UmM1/(p−2)), UmM1/(p−2)φ2

R〉 → 0 as m → ∞ uniformly for large R.
From this we deduce that

β∞ = Mλα∞.(2.9)

On the other hand, by the Sobolev embedding theorem, we always have
Mλα

2/p
∞ ≤ β∞. Combined with (2.9), this implies that α∞ ≥ 1, which is

impossible, and this completes the proof.

Theorem 2.2 can be extended to solve (1.1) in the case λ = 0.

Proposition 2.3. System (1.1) with λ = 0 has a solution attained as a
minimiser of the variational problem (2.3) with λ = 0.

Proof. We use the following fact known as the vanishing lemma (see [8]):
if {um} is a weakly convergent sequence in H1(RN ) such that

lim inf
m→∞

sup
y∈RN

�

B(y,R)

u2
m dx = 0

for some R > 0 then um → 0 in Ls(RN ) for all 2 < s < 2∗.
Let {Um} be a minimising sequence. We may assume that Um ⇀ U in

H1(RN ,Rn).
If lim infm→∞ supy∈RN

�
B(y,R)(U

m)2 dx = 0, then by the above result,

uim → 0 in Lp(RN ) for each 1 ≤ i ≤ n. Since
�
RN F (Um) dx = 1, this

is impossible. Therefore, there exists a sequence {ym} ⊂ RN such that�
B(0,R)(U

m(x + ym))2 dx ≥ η > 0 for every m and some η > 0. Up to a
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subsequence, we have Um(·+ ym) ⇀ U 6≡ 0 in H1(RN ,Rn). Let

β∞ = lim
R→∞

lim sup
m→∞

�

|x|>R
(|∇Um|2 + (Um)2) dx

and let α∞ be as in the proof of Theorem 2.2. We have
�

RN
F (U) dx+ α∞ = 1.

To complete the proof, we need to show that α∞ = 0. In the contrary
case, 0 < α∞ < 1 since U 6≡ 0. Repeating the final part of the proof of
Theorem 2.2, we show that β∞ = M0α∞. On the other hand, it follows
from the definition of M0 that M0α

2/p
∞ ≤ β0.

Combining the last two inequalities we derive that α∞ ≥ 1, which is a
contradiction.

Let

Mλ,i = inf
{ �

RN
(|∇u|2 + (λai + 1)u2) dx :

�

RN
|u|p dx = 1, u ∈ H1(RN )

}
,

i = 1, . . . , n.

Proposition 2.4. Let q ≥ 2. For every λ ≥ 0, we have

Mλ = min
j=1,...,n

Mλ,j .

Proof. Let U ∈ H1(RN ,Rn). Then
[ �

RN

( n∑

j=1

|uj|q
)p/q

dx
]2/p

=
{[ �

RN

( n∑

i=1

|ui|q
)p/q

dx
]q/p}2/q

≤
[ n∑

i=1

( �

RN
|ui|p dx

)q/p]2/q
(by Minkowski’s inequality)

≤
n∑

i=1

( �

RN
|ui|p dx

)2/p
(by Jensen’s concave inequality)

≤
n∑

i=1

M−1
λ,i

�

RN
(|∇ui|2 + λ(ai + 1)u2

i ) dx.

From this, we deduce that

min
i=1,...,n

Mλ,i ≤Mλ.

The opposite inequality follows as before, by testing Mλ with vector
functions of the form Ũj = (0, . . . , 0, u, 0, . . . , 0), u ∈ H1(RN ).

Suppose that mini=1,...,nMλ,i = Mλ,j0 for some j0. This means that if
wj0 is a minimiser for Mλ,j0 , then Wj0 = wj0ej0 is a minimiser for Mλ, where



Elliptic systems pertaining to Schrödinger equation 281

ej is the vector (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, with 1 as the jth component. In
fact, in Proposition 2.5, we show that these are the only minimisers in the
case 2 < q < p.

Proposition 2.5. Let 2 ≤ q < p < 2∗. If q = 2, assume additionally
that Mλ,j0 < Mλ,j for each j 6= j0. Then the minimiser for Mλ has the form
U = wj0ej0 , where wj0 is a minimiser for Mλ,j0 .

Proof. Let U = (u1, . . . , un) be a minimiser for Mλ. Let uj1 , . . . , ujk be
the nonzero components of U and suppose that k ≥ 2. Then we have

k∑

s=1

Mλ,js

( �

RN
|ujs |p dx

)2/p
≤

�

RN

(
|∇U |2 +

k∑

s=1

(λajs + 1)u2
js

)
dx = Mλj0

.

This yields
k∑

s=1

( �

RN
|ujs |p dx

)2/p
≤ 1,

and the inequality is strict if q = 2 by the assumption of the proposition.
On the other hand, we have

1 =
[ �

RN

( k∑

s=1

|ujs |q
)p/q

dx
]q/p
≤

k∑

s=1

( �

RN
|ujs |p dx

)q/p
.

Since q ≥ 2, we get a contradiction. So it follows that one component of U
must be nonzero. Since Mλ = Mλ,j0 we must have U = wj0ej0 .

If a1 = . . . = an and q = 2, we have n minimisers of the form ejw.
However, we obtain other minimisers with the form (α1w, . . . , αnw).

Proposition 2.6. Suppose that q = 2 and a1 = . . . = an. Then U =
(α1w, . . . , αnw) with α2

1 + . . . + α2
n = 1 are the only minimisers for Mλ,

where w is a minimiser of Mλ,i.

Proof. Following the proof of Proposition 2.4, the chain of inequalities
must be equalities. According to Minkowski’s inequality, equality can only
hold if each component is a multiple of a common term. In order that�
RN F (U) dx = 1, we require

∑n
i=1 α

2
i = 1.

We now consider the case 1 < q < 2. As before, we set Mλ,j0 =
mini=1,...,nMλ,i. Let

A(x) =
a1(x) + . . .+ an(x)

n
,

M
[A]
λ = inf

{ �

RN
(|∇u|2 + (λA+ 1)u2) dx :

�

RN
|u|p dx = 1

}
.



282 J. Chabrowski and E. Tonkes

Proposition 2.7. Let 1 < q < 2. Then

n(q−2)/qMλ,j0 ≤Mλ ≤ n(q−2)/qM
[A]
λ .

In particular , if a1 = . . . = an then Mλ = n(q−2)/qMλ,j0 .

Proof. By the Minkowski inequality and the weighted mean inequalities
(see e.g. [9]), we have

( �

RN

( n∑

i=1

|ui|q
)p/q

dx
)2/p

≤
[ n∑

i=1

( �

RN
|ui|p dx

)q/p]2/q

≤
[ n∑

i=1

(
M−1
λ,i

�

RN
(|∇ui|2 + (λai + 1)u2

i ) dx
)q/2]2/q

≤ n2/q

n

n∑

i=1

M−1
λ,i

�

RN
(|∇ui|2 + (λai + 1)u2

i ) dx

≤ n(2−q)/qM−1
λ,j0

�

RN

n∑

i=1

(|∇ui|2 + (λai + 1)u2
i ) dx,

and this gives the estimate n(q−2)/qMλ,j0 ≤Mλ. The other inequality follows
by testing Mλ with U = (n−1/qwA, . . . , n

−1/qwA) where wA is a ground state
for M [A]

λ .

We now examine the form of minimisers for Mλ when 1 < q < 2. We aim
to show that we cannot have minimisers of the form wej0 or (α1w, . . . , αnw)
for some w ∈ H1(RN ) and constants αi.

We commence with the observation that Mλ,i depends continuously on
ai in the sense of Lp/(p−2)(RN ) convergence. Let η ∈ C(RN ) with 0 ≤ η ≤ 1
and supp(η) ⊂ B(0, 1). We set

M
[a]
λ = inf

{ �

RN
(|∇u|2 + (λa+ 1)u2) dx :

�

RN
|u|p dx = 1, u ∈ H1(RN )

}
,

M
[a+εη]
λ = inf

{ �

RN
(|∇u|2 + (λa+ λεη + 1)u2) dx :

�

RN
|u|p dx = 1, u ∈ H1(RN )

}
,

where a(·) satisfies assumption (A) and ε > 0 is a constant. Then for every
u ∈ H1(RN ), we have

�

RN
ηu2 dx ≤

( �

RN
ηp/(p−2) dx

)(p−2)/p( �

RN
|u|p dx

)2/p
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and consequently

M
[a]
λ ≤M

[a+εη]
λ ≤M [a]

λ + λε
[ �

RN
ηp/(p−2) dx

](p−2)/p
.

We restrict ourselves to the case n = 2.

Proposition 2.8. (i) Let a1 ≤ a2. Then there are no solutions of the
form (0, u2).

(ii) Let a1 ≤ a2 be sufficiently close to each other in Lp/(p−2)(RN ) so that
2(q−2)/2 < Mλ,1/Mλ,2 ≤ 1. Then there are no solutions minimising Mλ of
the form (u1, 0).

(iii) If a1 6= a2, then there are no solutions of the form (αw, βw) with
w ∈ H1(RN ) and constants α, β.

Proof. (i) If U = (0, u2) is a minimiser for Mλ then

Mλ,2 ≤
�

RN
(|∇u2|2 + (λa2 + 1)u2) dx = Mλ ≤ 2(q−2)/2M

[A]
λ ≤ 2(q−2)/2Mλ,2,

which is impossible.
(ii) If U = (u1, 0) is a minimiser for Mλ then

Mλ,1 ≤
�

RN
(|∇u1|2 + (λa1 + 1)u2

1) dx = Mλ ≤ 2(q−2)/qM
[A]
λ ≤ 2(q−2)/qMλ,2.

This yields Mλ,1/Mλ,2 ≤ 2(q−2)/2, which is impossible.
(iii) If U = (αw, βw) is a minimiser with α 6= 0, β 6= 0 and w > 0, then

u1 = αv and u2 = βv with v = M1/(p−2)w satisfy

−∆u1 + (λa1 + 1)u1 = (uq1 + uq2)(p−q)/quq−1
1 ,

−∆u2 + (λa2 + 1)u2 = (uq1 + uq2)(p−q)/quq−1
2 .

From this we derive

λv(a1 − a2) = (αq + βq)(p−q)/q(αq−2 − βq−2)vp−1,

which is impossible.

We remark that if a1 is very close to, but slightly smaller than a2, then
all of (i), (ii) and (iii) can be satisfied, and the solution is a genuine vec-
tor function. Thus, q = 2 appears to be an important threshold inducing
transitions in the vector nature of solutions.

3. Palais–Smale sequences for critical nonlinearities. Henceforth,
we consider problem (1.2) with p = 2∗ = 2N/(N − 2) for N ≥ 4. The best
Sobolev constant for the nonlinearity F is defined by

SF = inf
{ n∑

i=1

�

RN
|∇ui|2 dx : U ∈ D1,2(RN ,Rn),

�

RN
F (U) dx = 1

}
.
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According to Theorem 1.1 in [1], the constant SF is attained by a function
U ∈ D1,2(RN ,Rn).

We commence by examining a sequence Um whose norm ‖Um‖Eλm with
λm →∞ is bounded independently of m.

Lemma 3.1. Let ‖Um‖Eλm ≤ K for λm → ∞ and some constant K
independent of m. Then there exists U ∈ H1

0 (Ω1)× . . .×H1
0 (Ωn) such that

Um ⇀ U in E and Um → U in L2(RN ,Rn).

Proof. We follow some ideas from [6]. We may assume that λm ≥ 1 for
all m. We have ‖Um‖E ≤ ‖Um‖Eλm ≤ K. Therefore up to a subsequence,
Um ⇀ U in E and Um → U in L2

loc(RN ,Rn). Since for every δ > 0 and
j = 1, . . . , n,

δ
�

{aj(x)≥δ}
(umj )2 dx ≤

�

{aj(x)≥δ}
aj(umj )2 dx ≤ K

λm

we see that uj(x) = 0 almost everywhere on RN \Ωj . Since ∂Ωj are smooth,
it follows that uj ∈ H1

0 (Ωj), j = 1, . . . , n. It remains to show that Um → U
in L2(RN ,Rn). First we observe that

�

F c
j

(umj )2 dx ≤ 1
λmM0

�

F c
j

λmaj(umj )2 dx ≤ K

λmM0
→ 0 as m→∞,

where F c
j = RN \ Fj . For Bc(0, R) = RN \B(0, R) we have

�

Bc(0,R)∩Fj
(umj − uj)2 dx ≤ C‖umj − uj‖2H1(RN )|Bc(0, R) ∩ Fj |2/N → 0

as R→∞ uniformly in m. On the other hand, for each R > 0 we have
�

B(0,R)

(umj − uj)2 dx→ 0,

and the result follows.

To proceed further we denote by λ1(Ωj), j = 1, . . . , n, the first eigenval-
ues of the operator −∆ on Ωj with Dirichlet boundary conditions.

Let Ajλ = −∆+λaj be self-adjoint operators on L2(RN ). Denote by (·, ·)
the scalar product on L2(RN ). We set

(Ajλu, v) =
�

RN
(∇u∇v + λajuv) dx

for u, v ∈ E. By ‖A‖ we denote the norm of the linear mapping in Rn with
matrix A = [aij ].
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Proposition 3.2. Suppose that ‖A‖ < minj λ1(Ωj). Then for every µ
satisfying ‖A‖ ≤ µ < minj λ1(Ωj) there exists Λ(µ) such that

(3.10)
n∑

j=1

(Ajλuj , uj)−
n∑

j,k=1

�

RN
ajkujuk dx

≥ min
j
αjµ‖U‖2Eλ + (µ− ‖A‖)|U |22

for u ∈ E and λ ≥ Λ(µ), where

αjµ =
λ1(Ωj)− µ

λ1(Ωj) + 2 + µ
.

Proof. We follow some ideas from [6]. We commence by showing that for
every µ satisfying 0 < µ < λ1(Ωj) there exists Λj(µ) > 0 such that

(Ajλu, u)− µ(u, u) ≥ αjµ‖u‖2Ej,λ for λ ≥ Λj(µ).(3.11)

We set
ajλ = inf{(Ajλu, u) : u ∈ Ej , |u|2 = 1}.

We claim that for µ ∈ (0, λ1(Ωj)), there exists Λj(µ) > 0 such that

ajλ ≥
µ+ λ1(Ωj)

2
for λ ≥ Λj(µ).

Arguing by contradiction, we can find a sequence λm → ∞ such that
ajλm → αj ≤ (µ+ λ1(Ωj))/2 as m→∞. Let um ∈ Ej be such that |um|2 = 1

and ((Ajλm − a
j
λm

)um, um)→ 0 as m→∞. Then

‖um‖2Ej,λm =
�

RN
(|∇um|2 + (1 + λmaj)u2

m) dx

= ((Ajλm − a
j
λm

)um, um) + (1 + ajλm)|um|22

≤ 1 +
µ+ λ1(Ωj)

2
for large m and j = 1, . . . , n. It follows from Lemma 3.1 that there exists
U ∈ H1

0 (Ω1) × . . . × H1
0 (Ωn) such that Um ⇀ U in E and Um → U in

L2(RN ,Rn). Thus |uj|2 = 1 for j = 1, . . . , n. Moreover, we have
�

RN
(|∇uj|2 − αju2

j ) dx ≤ lim inf
m→∞

�

RN
(|∇ujm|2 − ajλm(ujm)2) dx

≤ lim inf
m→∞

((Ajλm − a
j
λm

)ujm, u
j
m) = 0.

Hence �

Ωj

|∇uj|2 dx ≤ αj ≤
µ+ λ1(Ωj)

2
< λ1(Ωj).

However, this is impossible since
�
Ωj
u2
j dx = 1 and λ1(Ωj) is the first eigen-

value of −∆ on Ωj .
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We now write

(3.12) (Ajλu, u)− µ
�

RN
u2 dx

=
λ1(Ωj)− µ

λ1(Ωj) + 2 + µ
(Ajλu, u) +

2µ+ 2
λ1(Ωj) + 2 + µ

(Ajλu, u)− µ
�

RN
u2 dx

≥ λ1(Ωj)− µ
λ1(Ωj) + 2 + µ

(Ajλu, u) +
(µ+ 1)(λ1(Ωj) + µ)
λ1(Ωj) + 2 + µ

�

RN
u2 dx− µ

�

RN
u2 dx

=
λ1(Ωj)− µ

λ1(Ωj) + 2 + µ
(Ajλu, u) +

λ1(Ωj)− µ
λ1(Ωj) + 2 + µ

�

RN
u2 dx

=
λ1(Ωj)− µ

λ1(Ωj) + 2 + µ
‖u‖2Ej,λ .

From (3.12) we derive the estimate
n∑

j=1

(Ajλuj , uj)−
n∑

j,k=1

ajk
�

RN
ukuj dx

≥ min
j
αjµ‖U‖2E,λ −

n∑

j,k=1

ajk
�

RN
ukuj dx+ µ

n∑

j=1

�

RN
u2
j dx

≥ min
j
αjµ‖U‖2E,λ + (µ− ‖A‖)|U |22,

and the result follows.

Proposition 3.3. Let Iλ(Um) → c < S
N/2
F /N and I ′λ(Um) → 0 in E∗λ.

Then {Um} is relatively compact in Eλ.

Proof. First we show that {Um} is bounded in Eλ. To show this we use
Proposition 3.2. Indeed, for ‖A‖ < µ < minj λ1(Ωj), we know that

Iλ(Um)− 1
2∗
〈I ′λ(Um), Um〉 =

1
N

( n∑

j=1

(Ajλu
m
j , u

m
j )−

n∑

j,k=1

ajk
�

RN
umj u

m
k dx

)

≥ min
j
αjµ‖Um‖2Eλ + (µ− ‖A‖)|Um|22.

Hence {Um} is bounded in Eλ and we may assume that Um ⇀ U in Eλ. It
is easy to show that U is a weak solution of system (1.2). Hence

(3.13)
n∑

j=1

(Ajλuj , uj)−
n∑

j,k=1

ajk
�

RN
ujuk dx

=
1
2∗

n∑

i=1

ui
∂F (U)
∂ui

=
�

RN

n∑

i=1

uifi(U) =
�

RN
F (U) dx.



Elliptic systems pertaining to Schrödinger equation 287

We set wmj = umj − uj and Wm = (wm1 , . . . , w
m
n ). Applying Brézis–Lieb’s

lemma, we get
�

RN
F (Um) dx =

�

RN
F (U) dx+

�

RN
F (Wm) dx+ o(1),

and from the weak convergence of Um to U in Eλ we derive

(Ajλu
m
j , u

m
j ) = (Ajλuj , uj) + (Ajλw

m
j , w

m
j ) + o(1)

and
n∑

j,k=1

ajk
�

RN
umj u

m
k dx =

n∑

j,k=1

ajk
�

RN
wmj w

m
k dx+

n∑

j,k=1

�

RN
ajkujuk dx+ o(1).

Therefore we can write

〈I ′λ(Um), Um〉 =
n∑

j=1

(Ajλw
m
j , w

m
j ) +

n∑

j=1

(Ajλuj , uj)

−
n∑

j,k=1

ajk
�

RN
wmj w

m
k dx−

n∑

j,k=1

ajk
�

RN
ujuk dx

−
�

RN
F (U) dx−

�

RN
F (Wm) dx+ o(1).

It then follows from (3.13) that
n∑

j=1

(Ajλw
m
j , w

m
j )−

n∑

j,k=1

ajk
�

RN
wmj w

m
k dx =

�

RN
F (Wm) dx+ o(1).

Since {Um} is bounded, we may also assume that
n∑

j=1

(Ajλw
m
j , w

m
j )−

n∑

j,k=1

ajk
�

RN
wmj w

m
k dx→ b

and �

RN
F (Wm) dx→ b.

Similarly we have

c+ o(1) = Iλ(Um) = Iλ(U) + Iλ(Wm) = Iλ(U) +
(

1
2
− 1

2∗

)
b+ o(1).

It follows from (3.13) and Proposition 3.2 that Iλ(U) ≥ 0. Hence

c ≥ 1
N
b.(3.14)

Taking Λ(µ) larger if necessary, we may assume that M0Λ ≥ µ > ‖A‖. Let
λ > Λ(µ). Since |Fj | < ∞, we have

�
Fj

(wmj )2 dx → 0 as m → ∞. It then
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follows from the Sobolev inequality that

SF

( �

RN
F (Wm) dx

)2/2∗

≤
n∑

j=1

�

RN
|∇wmj |2 dx

≤
n∑

j=1

�

RN
|∇wmj |2 dx+

n∑

j=1

�

F c
j

(λaj − µ)(wmj )2 dx

≤
n∑

j=1

�

RN
|∇wmj |2 dx+

n∑

j=1

�

RN
(λaj − µ)(wmj )2 dx+ o(1)

≤
n∑

j=1

�

RN
|∇wmj |2 dx+

n∑

j=1

�

RN
λaj(wmj )2 dx−

n∑

j,k=1

ajk
�

RN
wmj w

m
k dx+ o(1).

Letting m→∞, we get
SF b

2/2∗ ≤ b.
If b > 0, this yields SN/2F ≤ b. This combined with (3.14) gives c ≥ N−1S

N/2
F ,

which is impossible. Consequently, b = 0 and by Proposition 3.2, ‖Wm‖Eλ
→ 0 as m→∞, and this completes the proof.

4. Existence of solutions. At various points we use the following as-
sumptions on the coefficients aj(·):
(A1) All coefficients aj vanish on a common set D, that is,

a−1
j (0) = D 6= ∅, j = 1, . . . , n,

where D is a bounded domain in RN with a smooth boundary.
(A2) int

⋂n
j=1 a

−1
j (0) 6= ∅.

In what follows we denote by Ω a set equal to D if (A1) holds and equal
to int

⋂n
j=1 a

−1
j (0) if (A2) holds. We shall also use the notation Ωj = a−1

j (0)
introduced in Section 1. We set

IΩ(U) =
1
2

n∑

j=1

�

Ω

|∇uj|2 dx−
1
2

n∑

j,k=1

ajk
�

Ω

ujuk dx−
1
2∗

�

Ω

F (U) dx

for U ∈ H1
0 (Ω,Rn). A critical point U of IΩ is a solution of the Dirichlet

problem for (1.2) in Ω, that is,

−∆uj =
n∑

k=1

ajkuk + fj(U) in Ω,

uj(x) = 0 on ∂Ω, j = 1, . . . , n.

(4.15)

The solvability of problem (4.15) has been investigated in the paper [1] when
f is slightly more general. Let λ1(Ω) be the first eigenvalue of −∆ in Ω.
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Define

SF,Ω = inf
{ n∑

j=1

�

Ω

|∇uj|2 dx−
n∑

j,k=1

ajk
�

Ω

ujuk dx :

U ∈ H1
0 (Ω,Rn),

�

Ω

F (U) dx = 1
}
.

Assuming that A is symmetric and ‖A‖ < λ1(Ω), by Theorem 1.1 of [1]
we know that if SF,Ω < SF , then problem (4.15) admits a solution. This
result will be used to derive the existence result for system (1.2) through
application of the mountain pass lemma. The above assumption will be
maintained throughout this section. It is easy to check that the functional
Iλ defined in Section 3 has the mountain pass geometry: there exist α > 0
and % > 0 such that Iλ(U) ≥ α for ‖U‖E = %. We can also find W ∈ E such
that ‖W‖E ≥ % and Iλ(W ) < 0. The mountain pass level is defined by

c∗ = inf
γ∈Γ

max
0≤t≤1

Iλ(γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = W}. It follows from the
definition of c∗ that

c∗ ≤ inf
U∈E\{0}

max
0≤t<∞

Iλ(tU)

≤ 1
N

inf
U∈E\{0}

(
∑n

j=1

�
RN (|∇uj|2 + λaju

2
j ) dx−

∑n
j,k=1 ajk

�
RN ujuk dx)N/2

(
�
RN F (U) dx)(N−2)/2

.

Since aj(x) = 0 on Ω, j = 1, . . . , n, we deduce from the above inequality
that

c∗ ≤
1
N

inf
U∈H1

0 (Ω,Rn)\{0}

(
∑n

j=1

�
Ω |∇uj|2 dx−

∑n
j,k=1 ajk

�
Ω ujuk dx)N/2

(
�
Ω F (U) dx)(N−2)/2

.

Thus, if SF,Ω < SF , then c∗ < S
N/2
F /N . Applying Proposition 3.3, we get

the following existence result:

Theorem 4.1. Suppose that

SF,Ω < SF .(4.16)

Then problem (1.2) admits a solution.

Let

w(x) =
(N(N − 2))(N−2)/4

(1 + |x|2)(N−2)/2
.

The function w, called an instanton, solves the equation

−∆w = |w|2∗−2w in RN .
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It is well known that the best Sobolev constant S, defined by

S = inf
u∈D1,2(Ω)\{0}

�

RN
|∇u|2 dx,

is attained by w. Every positive minimiser for S has the form Tε,x0 =
ε(2−N)/2w

(
x−x0
ε

)
for some ε > 0 and x0 ∈ RN .

We have the following minimisers for SF :

Proposition 4.2. If q ≥ 2 then SF = S is achieved only by U = Tε,x0ej,
for any ε > 0, x0 ∈ RN , 1 ≤ j ≤ n.

If q < 2 then SF = n(q−2)/qS is achieved only by U = (n−1/qTx0,ε, . . . ,
n−1/qTx0,ε), for any ε > 0, x0 ∈ RN .

If q = 2, then SF = S is achieved by (α1Tx0,ε, . . . , αnTx0,ε), where∑n
i=1 α

2
i = 1, 0 ≤ αi ≤ 1, for any ε > 0, x0 ∈ RN .

Proof. Lemma 3 of [1] implies that SF = S if q ≥ 2. Following a method
of proof similar to that of Proposition 2.4, we note that Jensen’s inequality
for concave functions is an equality if all elements in the sum are zero, apart
from one element.

The proofs of the remaining parts follow the methods of Propositions 2.4
and 2.7. For q < 2, we note that the weighted mean inequality in the proof
of Proposition 2.7 is only an equality if all elements in the sum are identical.
If q = 2, we note that equality holds for Minkowski’s inequality in the proof
of Proposition 2.4 only if each element in the sum is a multiple of a common
term.

We have the following result:

Corollary 4.3. Suppose that F (U) = (
∑n

i=1 |ui|q)2∗/q. If q ≥ 2, as-
sumption (A) holds and aii > 0 for some i, then problem (1.2) admits a
solution. If q < 2, assumption (A2) holds and

∑n
i,j=1 aij > 0, then problem

(1.2) admits a solution.

Proof. Since the mountain pass geometry has been confirmed, we only
need to verify (4.16).

If q ≥ 2, then

inf
{ n∑

j=1

�

RN
(|∇uj|2 + λaju

2
j ) dx−

n∑

j,k=1

ajk
�

RN
ujuk dx :

u ∈ H1(RN ,Rn),
�

RN
F (U) dx = 1

}

< inf
u∈H1

0 (Ωi)

�
Ωi
|∇u|2 dx− aii

�
Ωi
u2 dx

(
�
Ωi
|u|2∗ dx)2/2∗

< S.

The last part of this estimate follows from [3].
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If q < 2, let x0 ∈
⋂
j Ωj , and let r be sufficiently small that B(x0, r) ⊂⋂

j Ωj . Define uε = φr,x0Tε,x0 , where φr,x0 is a smooth function which is zero
on RN \ B(x0, r) and one on B(x0, r/2). Let U = (n−1/quε, . . . , n

−1/quε).
Then the Brézis–Nirenberg estimates give

n∑

j=1

�

RN
|∇uj|2 dx = n1−2/qSN/2 +O(εN−2),

n∑

j,k=1

ajk
�

RN
ujuk dx =





n−2/q
n∑

i,j=1

aijε
2 log(ε) +O(ε2), N = 4,

n−2/q
n∑

i,j=1

aijε
2 +O(εN−2), N ≥ 5,

( �

RN

n∑

j=1

|uj|q dx
)p/q

= SN/2 +O(εN ),

giving SF,Ω < SF = n(q−2)/qS.

We remark that if A is a matrix consisting not only of diagonal elements,
then the solutions possess a genuine vector structure. Suppose we seek so-
lutions of the form uej , u ∈ H1. Suppose that akj 6= 0 for some k 6= j. Then
the kth component of the elliptic system is

0 = ak1 × 0 + . . .+ akjuk + . . .+ akn × 0,

giving uj = 0 and yielding only the trivial solution.
If q < 2, and A consists only of diagonal elements, then the mountain

pass solution possesses a genuine vector structure.

Theorem 4.4. Let 1 < q < 2. Suppose that for each 1 ≤ i ≤ n,
aii|Ωi|2/N < S(1 − n(q−2)/q). Then there exists λ0 > 0 so that for each
λ > λ0, the ground state (mountain pass) solution has a genuine vector
form, that is, it does not take the form uej.

Proof. By Proposition 4.2, the bound for the mountain pass level is

c∗ <
1
N
S
N/2
F =

1
N
n
q−2
q

N
2 SN/2.

If U is a solution, then (I ′λ(U), U) = 0. Suppose that U = uej . Then

Iλ(U) =
1
N

( �
RN (|∇u|2 + λaju

2 − ajju2)

(
�
RN |u|2

∗ dx)2/2∗

)N/2

≥ 1
N

(
inf
u∈H1

�
RN |∇u|2 dx( �
RN |u|2

∗
dx
)2/2∗ + inf

u∈H1

�
RN (λaj − ajj)u2 dx

(
�
RN |u|2

∗ dx)2/2∗

)N/2
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≥ 1
N

(
S − sup

u∈H1

�
RN (ajj − λaj)u2 dx

(
�
RN |u|2

∗ dx)2/2∗

)N/2
.

Let Γj = {x ∈ RN : ajj > λaj(x)}. For λ sufficiently large, this set is of
finite measure by assumption (A). Furthermore, |Γj | → |Ωj | as λ → ∞.
Now,

sup
u∈H1

�
RN (ajj − λaj)u2 dx

(
�
RN |u|2

∗ dx)2/2∗
≤ sup

u∈H1

�
Γj

(ajj − λaj)u2 dx

(
�
Γj
|u|2∗ dx)2/2∗

≤ ajj sup
u∈H1

�
Γj
u2 dx

(
�
Γj
|u|2∗ dx)2/2∗

≤ ajj |Γj |2/N ,

where the last step follows by Hölder’s inequality.
Thus, Iλ(U) ≥ N−1(S − ajj |Γj |2/N)N/2. For λ sufficiently large, |Γj| is

arbitrarily close to |Ωj |. Thus a contradiction arises as Iλ(U) exceeds the
mountain pass energy for any element U of the Nehari manifold with only
one nonzero component.

We now examine the behaviour of solutions to (1.2) as λ→∞.

Theorem 4.5. Suppose that the assumptions of Corollary 4.3 hold. Let
λm → ∞ and let {Um} be a sequence of corresponding mountain pass so-
lutions of (1.2), such that Iλm(Um) → c < SN/2/N . Then, up to a subse-
quence, Um → U in E and U ∈ H1

0 (Ω1)× . . .×H1
0 (Ωn). If (A1) holds, then

U is a solution of (4.15). In particular , if a−1
j (0) = Ωj and Ωj are pairwise

disjoint then uj (meaning the jth component of U) satisfies:

−∆uj = ajju+ f̃j(uj) in Ωj ,

uj = 0 on ∂Ωj ,
(4.17)

where f̃j(uj) = fj(0, . . . , 0, uj , 0, . . . , 0).

Proof. Since ‖Um‖E,λm ≤ K for some K > 0 and all m, by Lemma 3.1
we may assume that Um ⇀ U in E and Um → U in L2(RN ,Rn), with
U ∈ H1

0 (Ω,Rn). Let wmj = umj − uj , Wm = (wm1 , . . . , w
m
n ). From the proof

of Proposition 3.3 we have
n∑

j=1

(Ajλmw
m
j , w

m
j ) =

�

RN
F (Wm) dx+ o(1).

We may assume that

lim
m→∞

n∑

j=1

(Ajλmw
m
j , w

m
j ) = lim

m→∞

�

RN
F (Wm) dx = b.
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We claim that b = 0. Assuming that b > 0, it follows from the Sobolev
inequality that

S
( �

RN
F (Wm) dx

)2/2∗

≤
n∑

j=1

�

RN
|∇wmj |2 dx ≤

n∑

j=1

(Ajλmw
m
j , w

m
j ).

Letting m→ 0, we deduce from this that

b ≥ SN/2.(4.18)

On the other hand,

Iλm(Um) = Iλm(Wm) + Iλm(U) =
1
N

n∑

j=1

(Ajλmw
m
j , w

m
j ) + Iλm(U) + o(1)

=
1
N

n∑

j=1

(Ajλmw
m
j , w

m
j ) + Iλm(U),

yielding b < Nc. Combining this with (4.18), we have a contradiction. Since
b = 0, we deduce from Proposition 3.2 that Um → U in E.

It is clear that if a−1
j (0) = D for each j (that is, if (A1) holds) then U

satisfies (4.15). If a−1
j (0) = Ωj are pairwise disjoint, then if x ∈ Ωj , we have

fj(U) = fj(0, . . . , 0, uj , 0, . . . , 0), which means that uj is a solution of the
Dirichlet problem (4.17).

Finally, we make the following observation about the mountain pass lev-
els for Iλ and IΩ. Let us denote these by cλ and cΩ, respectively. By Theo-
rem 4.5, we have limλ→∞ cλ ≤ c ≤ cΩ. On the other hand, by Corollary 4.3,
for each large λ, there is a solution. So by Theorem 4.5, c is achieved by IΩ.
Thus c ≥ cΩ with, necessarily, limλ→∞ cλ = cΩ.

Remark 4.6. A similar result can be derived for solutions of (1.1) ob-
tained through the constrained minimisation (2.3). In this case, the limiting
Dirichlet problem has the form

−∆u+ u = |u|p in Ωi,

u = 0 on ∂Ωi.
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