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The zero distribution and uniqueness of
difference-differential polynomials

by Kai Liu (Nanchang), Xin-Ling Liu (Nanchang) and
Lian-Zhong Yang (Jinan)

Abstract. We consider the zero distribution of difference-differential polynomials
of meromorphic functions and present some results which can be seen as the discrete
analogues of the Hayman conjecture. In addition, we also investigate the uniqueness of
difference-differential polynomials of entire functions sharing one common value. Our the-
orems improve some results of Luo and Lin [J. Math. Anal. Appl. 377 (2011), 441–449]
and Liu, Liu and Cao [Appl. Math. J. Chinese Univ. 27 (2012), 94–104].

1. Introduction. We assume that the reader is familiar with standard
symbols and fundamental results of Nevanlinna theory [9, 26]. In this pa-
per, a meromorphic function f means meromorphic in the complex plane.
If no poles occur, then f reduces to an entire function. Denote by ρ(f) and
ρ2(f) the order and the hyper-order of f respectively [11, 26]. If f − a and
g − a have the same zeros, then we say that f and g share the value a IM
(ignoring multiplicities). If f − a and g − a have the same zeros with the
same multiplicities, then f and g share the value a CM (counting multiplic-
ities).

Given a meromorphic function f(z), recall that α(z) 6≡ 0,∞ is a small
function with respect to f(z), if T (r, α) = S(r, f), where S(r, f) denotes
any quantity satisfying S(r, f) = o(T (r, f)) as r → ∞ outside a possible
exceptional set of finite logarithmic measure.

The following result is related to the Hayman conjecture [8, Theorem 10].
The conjecture was also considered later (see [1, 3, 2, 20]).

Theorem A ([3, Theorem 1]). Let f be a transcendental meromorphic
function. If n ≥ 1 is a positive integer, then fnf ′ − 1 has infinitely many
zeros.
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Noting that [fn+1]′ = (n+ 1)fnf ′ in Theorem A, Chen [2, Theorem 1],
Wang [22, Theorem 4], Wang and Fang [23, Corollary 1] extended Theo-
rem A. The latter result can be stated as follows.

Theorem B ([23, Corollary 1]). Let f be a transcendental meromorphic
function, and let n and k be two positive integers with n ≥ k + 1. Then
(fn)(k) − 1 has infinitely many zeros.

Extending Theorem A to difference polynomials, Laine and Yang [12,
Theorem 2] investigated the zero distribution of f(z)nf(z+c)−a and proved
the following result.

Theorem C. Let f be a transcendental entire function of finite order
and c be a nonzero complex constant. If n ≥ 2, then f(z)nf(z+c)−a, where
a ∈ C\{0}, has infinitely many zeros.

Recently, Theorem C has been improved in different directions: the con-
stant a was replaced by a nonzero polynomial in [16] or by a small function
a(z) in [14]. In addition, the papers [13, 14, 18, 27] are devoted to the cases
of meromorphic functions f or more general difference products.

In the following, unless otherwise specified, we assume that c is a nonzero
constant, n,m, k, s, t are positive integers, and a(z) is a nonzero small func-
tion with respect to f(z). Let P (z) = anz

n + an−1z
n−1 + · · ·+ a1z+ a0 be a

nonzero polynomial, where a0, a1, . . . , an ( 6= 0) are complex constants and t
is the number of distinct zeros of P (z). Recently, Luo and Lin [18] obtained
the following result.

Theorem D ([18, Theorem 1]). Let f be a transcendental entire function
of finite order. If n > t, then P (f)f(z+ c)− a(z) has infinitely many zeros.

Obviously, Theorem D is an improvement of Theorem C. Here, we com-
plete this result of [18] by showing that the restriction n > t in Theorem D
is indispensable:

Remark 1. The conclusion of Theorem D is not true if n = t = 1. This
can be seen by taking f(z) = ez + 1, ec = −1. Then f(z)f(z+ c)− 1 = −e2z
has no zeros.

Moreover, the assertion of Theorem D may fail if n = t = 2. This can be
seen by taking

f(z) =
1

ez
+ 1, ec = −1, P (z) =

(
z +
−1 +

√
3i

2

)(
z +
−1−

√
3i

2

)
;

then P (f)f(z + c)− 1 = −1/e3z has no zeros.
In fact, the conclusion of Theorem D is not true for any natural positive

integers n, t satisfying n = t ≥ 2,. Taking

f(z) =
1

ez
+ 1, ec = −1, P (z) =

(
z − 1− 1

d1

)
· · ·

(
z − 1− 1

dn

)
,
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where di 6= 1, i = 1, . . . , n, are the distinct zeros of zn+1 − 1 = 0, we get
P (f)f(z + c)− 1 = −1/e(n+1)z, which has no zeros.

It is interesting to investigate what we can get if fn is replaced with
fnf(z + c) in Theorem B, that is, to consider the zero distribution of
difference-differential polynomials. Liu, Liu and Cao [15, Theorems 1.1 &
1.3] considered the zero distribution of [fnf(z + c)](k) and [fn∆cf ](k); their
results are summarized in Theorem E below.

Theorem E. Let f be a transcendental entire function of finite order.
If n ≥ k + 2, then [f(z)nf(z + c)](k) − a(z) has infinitely many zeros. If
n ≥ k + 3, then [f(z)n∆cf ](k) − a(z) has infinitely many zeros, unless f is
a periodic function with period c.

In this paper, we continue to investigate the zero distribution of difference-
differential polynomials and obtain the following four theorems that improve
Theorems D and E.

Theorem 1.1. Let f be a transcendental entire function with ρ2(f) < 1.
If n ≥ t(k + 1) + 1, then [P (f)f(z + c)](k) − a(z) has infinitely many zeros.

Remark 2. (1) Theorem 1.1 is an improvement of Theorem E in the
case t = 1 and an improvement of Theorem D in the case k = 0.

(2) The conclusion of Theorem 1.1 does not remain valid if ρ2(f) = 1.
Indeed, take f(z) = ee

z
, P (z) = zn, k ≥ 1, ec = −n, a(z) a nonconstant

polynomial. Then [P (f)f(z + c)](k) − a(z) = −a(z) has finitely many zeros.

(3) The condition a(z) 6= 0 cannot be removed. Let f(z) = ez, P (z) = zn,
ec = −1. Then [P (f)f(z + c)](k) = −(n+ 1)ke(n+1)z has no zeros.

Theorem 1.2. Let f be a transcendental entire function with ρ2(f) < 1,
which is not a periodic function with period c. If n ≥ (t+ 1)(k+ 1) + 1, then
[P (f)(∆cf)s](k) − a(z) has infinitely many zeros.

Remark 3. The condition a(z) 6= 0 cannot be removed in Theorem
1.2 either, as can be seen by taking f(z) = ez, P (z) = zn, ec = 2 then
[P (f)∆cf ](k) = (n+ 1)ke(n+1)z has no zeros.

For the case that f(z) is a transcendental meromorphic function we
obtain the following counterparts of Theorems 1.1 and 1.2.

Theorem 1.3. Let f be a transcendental meromorphic function with
ρ2(f) < 1. If n ≥ t(k + 1) + 5, then [P (f)f(z + c)](k) − a(z) has infinitely
many zeros.

Remark 4. Theorem 1.3 is a partial answer to a question raised by Luo
and Lin [18, p. 448].
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Theorem 1.4. Let f be a transcendental meromorphic function with
ρ2(f) < 1. If n ≥ (t + 2)(k + 1) + 3 + s, then [P (f)(∆cf)s](k) − a(z) has
infinitely many zeros.

Corollary 1.5. Let P (z), Q(z), H(z), A(z) be nonzero polynomials. If
H(z) is a nonconstant polynomial, then the nonlinear difference-differential
equation

(1.1) [P (f)f(z + c)](k) −A(z) = Q(z)eH(z)

has no transcendental entire (resp. meromorphic) solution f with ρ2(f) < 1
provided that n ≥ t(k+ 1) + 1 (resp. n ≥ t(k+ 1) + 5). If H(z) is a constant,
then (1.1) has no transcendental entire solution f with ρ2(f) < 1, and no
transcendental meromorphic solution f with ρ2(f) < 1, provided that n ≥ 2.

Corollary 1.6. Let P (z), Q(z), H(z), A(z) be nonzero polynomials. If
H(z) is a nonconstant polynomial, then the nonlinear difference-differential
equation

(1.2) [P (f)(∆cf)s](k) −A(z) = Q(z)eH(z)

has no transcendental entire (resp. meromorphic) solution f with ρ2(f) < 1
provided that n ≥ (t+ 1)(k+ 1) + s+ 1 (resp. n ≥ (t+ 2)(k+ 1) + 3 + s). If
H(z) is a constant, then (1.2) has no transcendental entire solution f with
ρ2(f) < 1, and no transcendental meromorphic solution f with ρ2(f) < 1,
provided that n ≥ 3, unless f is a periodic function with period c.

Concerning the uniqueness of difference products of entire functions shar-
ing one common value, some results can be found in [14, 15, 17, 18, 21,
27]. The main purpose is to obtain relationships between f and g when
P (f)f(z+ c) and P (g)g(z+ c) share one common value. In fact, the special
cases P (z) = zn and P (z) = zn(zm − 1) have mostly been considered. Luo
and Lin [18, Theorem 2] considered the case of general P (z). In this paper,
we also consider the uniqueness of difference-differential polynomials shar-
ing one common value. Liu, Liu and Cao [15, Theorem 1.5] considered the
uniqueness on [fnf(z+ c)](k) and [gng(z+ c)](k) sharing one common value;
their result can be stated as follows.

Theorem F. Let f(z) and g(z) be transcendental entire functions of
finite order, and let n ≥ 2k + 6. If [f(z)nf(z + c)](k) and [g(z)ng(z + c)](k)

share the value 1 CM, then either f(z) = c1e
Cz, g(z) = c2e

−Cz, where c1, c2
and C are constants satisfying (−1)k(c1c2)

n[(n + 1)C]2k = 1, or f = tg,
where tn+1 = 1.

In this paper, we consider the uniqueness of entire functions of hyper-
order less than 1 sharing one common value and get the following results.
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Theorem 1.7. Let f(z) and g(z) be transcendental entire functions of
hyper-order less than 1, and let n ≥ 2k +m+ 6. If [fn(fm − 1)f(z + c)](k)

and [gn(gm−1)g(z+ c)](k) share the value 1 CM, then f = tg, where tn+1 =
tm = 1.

Theorem 1.8. The conclusion of Theorem 1.7 is also valid if n ≥ 5k +
4m + 12 and [fn(fm − 1)f(z + c)](k) and [gn(gm − 1)g(z + c)](k) share the
value 1 IM.

2. Some lemmas. For finite order transcendental meromorphic func-
tions, the difference analogue of the logarithmic derivative lemma, given by
Chiang and Feng [4, Corollary 2.5], Halburd and Korhonen [5, Theorem
2.1], [6, Theorem 5.6], plays an important part in considering the difference
analogues of Nevanlinna theory. Afterwards, Halburd, Korhonen and Tohge
improved the growth condition from ρ <∞ to ρ2(f) < 1 as follows.

Lemma 2.1 ([7, Theorem 5.1]). Let f be a transcendental meromorphic
function with ρ2(f) < 1, and let ε be a sufficiently small number. Then

(2.1) m

(
r,
f(z + c)

f(z)

)
= o

(
T (r, f)

r1−ρ2(f)−ε

)
= S(r, f)

for all r outside a set of finite logarithmic measure.

Lemma 2.2 ([7, Lemma 8.3]). Let T : [0,∞)→ [0,∞) be a nondecreasing
continuous function and let s ∈ (0,∞). If the hyper-order of T is strictly
less than 1, i.e.,

lim sup
r→∞

log log T (r)

log r
= ς < 1,(2.2)

and δ ∈ (0, 1− ς), then

(2.3) T (r + s) = T (r) + o(T (r)/rδ)

as r →∞ outside a set of finite logarithmic measure.

From Lemma 2.2, we get the following lemma.

Lemma 2.3. Let f(z) be a transcendental meromorphic function with
ρ2(f) < 1. Then

(2.4) T (r, f(z + c)) = T (r, f) + S(r, f)

and

(2.5)

N(r, f(z + c)) = N(r, f) + S(r, f),

N

(
r,

1

f(z + c)

)
= N(r, 1/f) + S(r, f).

Combining the method of proof of [18, Lemma 5] with Lemma 2.1, we
get the following result.
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Lemma 2.4. Let f(z) be a transcendental entire function with ρ2(f) < 1.
If F = P (f)f(z + c), then

(2.6) T (r, F ) = T (r, P (f)f(z)) + S(r, f) = (n+ 1)T (r, f) + S(r, f).

Lemma 2.5. Let f(z) be a transcendental meromorphic function with
ρ2(f) < 1. If F = P (f)f(z + c), then

(2.7) (n− 1)T (r, f) + S(r, f) ≤ T (r, F ) ≤ (n+ 1)T (r, f) + S(r, f).

Proof. Since F (z) = P (f)f(z + c), we have

(2.8)
1

P (f)f
=

1

F

f(z + c)

f(z)
.

Using the first and second main theorem of Nevanlinna theory, Lemma 2.1
and the standard Valiron–Mohon’ko theorem [19], from (2.8) we get

(n+ 1)T (r, f) ≤ T (r, F (z)) + T

(
r,
f(z + c)

f(z)

)
+O(1)(2.9)

≤ T (r, F (z)) +m

(
r,
f(z + c)

f(z)

)
+N

(
r,
f(z + c)

f(z)

)
+O(1)

≤ T (r, F (z)) +N

(
r,
f(z + c)

f(z)

)
+ S(r, f)

≤ T (r, F (z)) + 2T (r, f) + S(r, f).

Hence, T (r, F ) ≥ (n−1)T (r, f)+S(r, f). It is easy to deduce that T (r, F ) ≤
(n+ 1)T (r, f) + S(r, f). Thus, (2.7) follows.

Remark. The following two examples show that (2.7) cannot be im-
proved. If f(z) = tan z, P (z) = zn, c1 = π/2, then

T (r, P (f)f(z + c1)) = − tann−1 z = (n− 1)T (r, f) + S(r, f).

If f(z) = tan z, P (z) = zn, c2 = π, then

T (r, P (f)f(z + c2)) = tann+1 z = (n+ 1)T (r, f) + S(r, f).

Using a similar method to the proof of Lemma 2.5, we can obtain the
following two lemmas.

Lemma 2.6. Let f(z) be a transcendental entire function with ρ2(f) < 1,
and let s be a natural number. Then

(2.10)
nT (r, f) + S(r, f) ≤ T (r, P (f)[f(z + c)− f(z)]s) ≤ (n+ s)T (r, f) + S(r, f).

Remark. The following two examples show that (2.10) also cannot be
improved. If f(z) = ez, ec = 2, then

T (r, f(z)n[f(z + c)− f(z)]s) = T (r, e(n+s)z) = (n+ s)T (r, f) + S(r, f).
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If f(z) = ez + z, c = 2πi, then

T (r, f(z)n[f(z + c)− f(z)]s) = T (r, [ez + z]n(2πi)s) = nT (r, f) + S(r, f).

Lemma 2.7. Let f(z) be a transcendental meromorphic function with
ρ2(f) < 1. Then

(2.11)
(n−s)T (r, f)+S(r, f)≤T (r, P (f)[f(z+c)−f(z)]s)≤(n+2s)T (r, f)+S(r, f).

For the proof of Theorem 1.7, we need the following lemma. For the case
of k = 0, m = 1, and f and g transcendental entire functions of finite order,
the proof can be found in [27, proof of Theorem 6].

Lemma 2.8. Let f and g be transcendental entire functions with ρ2(f)<1,
and c be a nonzero constant. If n ≥ m+ 5 and

(2.12) [fn(fm − 1)f(z + c)](k) = [gn(gm − 1)g(z + c)](k),

then f = tg, and tn+1 = tm = 1.

Proof. From (2.12), we get fn(fm−1)f(z+c) = gn(gm−1)g(z+c)+Q(z),
where Q(z) is a polynomial of degree at most k − 1. If Q(z) 6≡ 0, then

fn(fm − 1)f(z + c)

Q(z)
=
gn(gm − 1)g(z + c)

Q(z)
+ 1.

From the second main theorem of Nevanlinna theory and Lemma 2.4, we
obtain

(n+m+ 1)T (r, f) = T

(
r,
fn(fm − 1)f(z + c)

Q(z)

)
+ S(r, f)

≤ N
(
r,
fn(fm − 1)f(z + c)

Q(z)

)
+N

(
r,

Q(z)

fn(fm − 1)f(z + c)

)
+N

(
r,

Q(z)

gn(gm − 1)g(z + c)

)
+ S(r, f)

≤ N
(
r,

1

fn(fm − 1)

)
+N

(
r,

1

f(z + c)

)
+N

(
r,

1

gn(gm − 1)

)
+N

(
r,

1

g(z + c)

)
+ S(r, f)

≤ (m+ 2)T (r, f) + (m+ 2)T (r, g) + S(r, f) + S(r, g).

Similarly to the above, we have

(n+m+ 1)T (r, g) ≤ (m+ 2)T (r, f) + (m+ 2)T (r, g) + S(r, f) + S(r, g).

Thus, we get

(n+m+ 1)[T (r, f) + T (r, g)] ≤ 2(m+ 2)[T (r, f) + T (r, g)]

+ S(r, f) + S(r, g),

which contradicts n ≥ m+ 5.



144 K. Liu et al.

Hence, Q(z) ≡ 0. This implies that

(2.13) fn(fm − 1)f(z + c) = gn(gm − 1)g(z + c).

Let G(z) = f(z)/g(z). Assuming that G(z) is not a constant, from (2.13)
we get

g(z)m =
G(z)nG(z + c)− 1

G(z)n+mG(z + c)− 1
.(2.14)

If 1 is a Picard exceptional value of G(z)n+mG(z+c), applying the second
main theorem of Nevanlinna theory, we get

(2.15) T (r,Gn+mG(z + c)) ≤ N(r,Gn+mG(z + c))

+N

(
r,

1

Gn+mG(z + c)

)
+N

(
r,

1

Gn+mG(z + c)− 1

)
+ S(r,G)

≤ 2T (r,G(z)) + 2T (r,G(z + c)) + S(r,G)

≤ 4T (r,G(z)) + S(r,G).

Combining (2.15) with Lemma 2.5, we infer that

(n+m− 1)T (r,G) ≤ 4T (r,G(z)) + S(r,G),

which contradicts n ≥ m+ 5.

Therefore, 1 is not a Picard exceptional value of G(z)n+mG(z+c). Thus,
there exists z0 such that G(z0)

n+mG(z0 + c) = 1. We now distinguish two
cases.

Case 1: G(z)n+mG(z + c) 6≡ 1. From (2.14) and since g(z) is an entire
function, we get G(z0)

nG(z0 + c) = 1, thus G(z0)
m = 1. Therefore,

(2.16) N

(
r,

1

Gn+mG(z + c)− 1

)
≤ N

(
r,

1

Gm − 1

)
≤ mT (r,G) + S(r,G).

By (2.16), Lemma 2.3, and the second main theorem,

T (r,Gn+mG(z + c)) ≤ N(r,Gn+mG(z + c)) +N

(
r,

1

Gn+mG(z + c)

)
+N

(
r,

1

Gn+mG(z + c)− 1

)
+ S(r,G)

≤ (m+ 2)T (r,G(z)) + 2T (r,G(z + c)) + S(r,G)

≤ (m+ 4)T (r,G(z)) + S(r,G).

On the other hand,

(n+m)T (r,G) = T (r,Gn+m)≤T (r,Gn+mG(z + c))+T (r,G(z+c))+O(1)

≤ (m+ 5)T (r,G(z)) + S(r,G),

which contradicts n ≥ m+ 5 ≥ 6.
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Case 2: G(z)n+mG(z + c) ≡ 1. Thus,

(n+m)T (r,G) = T (r,G(z + c)) + S(r,G) = T (r,G(z)) + S(r,G),

which also contradicts n ≥ m + 5. Thus, G must be a constant, hence
f(z) = tg(z), where t is a nonzero constant. From fn(fm − 1)f(z + c) ≡
gn(gm − 1)g(z + c), we deduce that tm = tn+1 = 1, where n,m are positive
integers.

Lemma 2.9. If n ≥ k + 1, then there are no transcendental entire func-
tions f and g with hyper-order less than 1 satisfying

(2.17) [fn(fm − 1)f(z + c)](k) · [gn(gm − 1)g(z + c)](k) = 1.

Proof. Assume that f and g are transcendental entire functions of hyper-
order less than 1 satisfying (2.17). From (2.17) and n ≥ k+ 1, neither f nor
g has zeros. Thus, f(z) = eb(z) and g(z) = ed(z), where b(z), d(z) are entire
functions of order less than 1. Substituting these into (2.17), we get

(2.18) [enb(z)(emb(z) − 1)eb(z+c)](k)[end(z)(emd(z) − 1)ed(z+c)](k) = 1.

Let

(n+m)b(z) + b(z + c) = B1(z), nb(z) + b(z + c) = B2(z),

(n+m)d(z) + d(z + c) = D1(z), nd(z) + d(z + c)= D2(z).

It is easy to see that B1(z) and B2(z) are not constants at the same time:
otherwise, b(z) is a constant, thus f(z) must be a constant.

We next proceed to show that one of B1(z) and B2(z) must be a constant
for any positive integer k. The equation (2.18) can be written as

(eB1(z) − eB2(z))(k)(eD1(z) − eD2(z))(k) = 1.

Thus, we obtain

(eB1 − eB2)(k) = (B′k1 +Mk)e
B1 − (B′k2 +Nk)e

B2

= [(B′k1 +Mk)e
B1−B2 − (B′k2 +Nk)]e

B2 ,

whereMk = Mk(B
′
1, B

′′
1 , . . . , B

(k)
1 ) is a differential polynomial ofB′1 of degree

k − 1, and Nk = Nk(B
′
2, B

′′
2 , . . . , B

(k)
2 ) is a differential polynomial of B′2 of

degree k − 1.

Remarking that 0 is the only Picard exceptional value of eB1(z)−B2(z), we

get B′k1 +Mk(B
′
1, B

′′
1 , . . . , B

(k)
1 ) ≡ 0 or B′k2 +Nk(B

′
2, B

′′
2 , . . . , B

(k)
2 ) ≡ 0. In the

former case, from the Clunie lemma [11, Theorem 2.4.2] we get m(r,B′1) =
S(r,B′1). This implies that the entire function B1(z) must be a constant. In
the latter case we similarly deduce that B2 is a constant.

If B1(z) ≡ B1 is a constant, then f(z)n+mf(z + c) = eB1 . From Lemma
2.4, we get T (r, f) = S(r, f), a contradiction. If B2(z) ≡ B2 is a constant,



146 K. Liu et al.

then f(z)nf(z+c) = eB2 , and from Lemma 2.4, we also get T (r, f) = S(r, f),
a contradiction.

Lemma 2.10 ([26]). Let f be a nonconstant meromorphic function, and
k be a positive integer. Then

(2.19) T (r, f (k)) ≤ T (r, f) + kN(r, f) + S(r, f).

Let p be a positive integer and a ∈ C. We denote by Np(r, 1/(f −a)) the
counting function of the zeros of f − a where an m-fold zero is counted m
times if m ≤ p and p times if m > p. Similarly, Np(r, f) denotes the counting
function of the poles of f where an m-fold pole is counted m times if m ≤ p
and p times if m > p.

Lemma 2.11 ([10, Lemma 2.3]). Let f be a nonconstant meromorphic
function, and p, k be positive integers. Then

Np(r, 1/f
(k)) ≤ T (r, f (k))− T (r, f) +Np+k(r, 1/f) + S(r, f),(2.20)

Np(r, 1/f
(k)) ≤ kN(r, f) +Np+k(1/f) + S(r, f).(2.21)

Lemma 2.12 ([25, Lemma 3]). Let F and G be nonconstant meromorphic
functions. If F and G share the value 1 CM, then one of the following three
cases holds:

(i) max{T (r, F ), T (r,G)} ≤ N2(r, 1/F ) + N2(r, F ) + N2(r, 1/G) +
N2(r,G) + S(r, F ) + S(r,G),

(ii) F = G,
(iii) F ·G = 1.

For the proof of Theorem 1.8, we need the following lemma.

Lemma 2.13 ([24, Lemma 2.3]). Let F and G be nonconstant meromor-
phic functions sharing the value 1 IM. Let

H =
F ′′

F ′
− 2

F ′

F − 1
− G′′

G′
+ 2

G′

G− 1
.

If H 6≡ 0, then

(2.22) T (r, F ) + T (r,G)

≤ 2
(
N2(r, 1/F ) +N2(r, F ) +N2(r, 1/G) +N2(r,G)

)
+ 3

(
N(r, F ) +N(r, 1/F ) +N(r,G) +N(r, 1/G)

)
+ S(r, F ) + S(r,G).

3. Proofs of Theorems 1.1 and 1.2. Let F (z) = P (f)f(z+ c). From
Lemma 2.4, we know that F (z) is not a constant, and S(r, F ) = S(r, F (k)) =
S(r, f) follows. Assume that F (z)(k) − α(z) has only finitely many zeros.
Combining the second main theorem for three small functions [9, Theorem
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2.5] and (2.20) with f a transcendental entire function, we get

T (r, F (k)) ≤ N(r, F (k)) +N

(
r,

1

F (k)

)
(3.1)

+N

(
r,

1

F (k) − α(z)

)
+ S(r, F (k))

≤ N1

(
r,

1

F (k)

)
+N

(
r,

1

F (k) − α(z)

)
+ S(r, F (k))

≤ T (r, F (k))− T (r, F ) +Nk+1(r, 1/F ) + S(r, F (k)).

Combining (2.7) with (3.1), we get

(n+ 1)T (r, f) + S(r, f) = T (r, F ) ≤ Nk+1(r, 1/F ) + S(r, f)

≤ t(k + 1)N(r, 1/f) +N(r, 1/f(z + c)) + S(r, f)

≤ [t(k + 1) + 1]T (r, f) + S(r, f),

contrary to n ≥ t(k + 1) + 1. Thus, Theorem 1.1 is proved.

Set G(z) = P (f)[∆cf ]s. Suppose that G(z)(k) − α(z) has only finitely
many zeros. Using a similar method to the above and Lemma 2.6, we get

nT (r, f) + S(r, f) ≤ T (r,G) ≤ Nk+1(r, 1/G) + S(r, f)

≤ t(k + 1)N(r, 1/f) + (k + 1)N

(
r,

1

f(z + c)− f(z)

)
+ S(r, f)

≤ (t+ 1)(k + 1)T (r, f) + S(r, f),

contradicting n ≥ (t+ 1)(k+ 1) + 1. Thus, we get the proof of Theorem 1.2.

4. Proofs of Theorems 1.3 and 1.4. Let F (z) = P (f)f(z+ c). From
Lemma 2.5, we know that F (z) is not a constant, and S(r, F ) = S(r, F (k)) =
S(r, f) follows. Assume that F (z)(k) − α(z) has only finitely many zeros.
Combining the second main theorem for three small functions [9, Theorem
2.5] and (2.20) with f a transcendental meromorphic function, we have

(4.1)

T (r, F (k)) ≤ N(r, F (k)) +N

(
r,

1

F (k)

)
+N

(
r,

1

F (k) − α(z)

)
+ S(r, F (k))

≤ N(r, f) +N(r, f(z + c)) +N1

(
r,

1

F (k)

)
+N

(
r,

1

F (k) − α(z)

)
+ S(r, F (k))

≤ 2T (r, f) + T (r, F (k))− T (r, F ) +Nk+1(r, 1/F ) + S(r, F (k)).

Combining (2.7) with (4.1), we obtain
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(n− 1)T (r, f) + S(r, f) ≤ T (r, F ) ≤ 2T (r, f) +Nk+1(r, 1/F ) + S(r, f)

≤ t(k + 1)N(r, 1/f) +N

(
r,

1

f(z + c)

)
+ 2T (r, f) + S(r, f)

≤ [t(k + 1) + 3]T (r, f) + S(r, f),

which contradicts n ≥ t(k + 1) + 5. Thus, Theorem 1.3 is proved.

Set G(z) = P (f)[∆cf ]s. Suppose that G(z)(k) − α(z) has only finitely
many zeros. Similarly to the above, using Lemma 2.6 we get

(n− s)T (r, f) + S(r, f) ≤ T (r,G) ≤ 2T (r, f) +Nk+1(r, 1/G) + S(r, f)

≤ 2T (r, f) + t(k + 1)N(r, 1/f) + (k + 1)N

(
r,

1

f(z + c)− f(z)

)
+ S(r, f)

≤ [(t+ 2)(k + 1) + 2]T (r, f) + S(r, f),

which contradicts n ≥ (t + 2)(k + 1) + 3 + s. Thus, we get the proof of
Theorem 1.4.

5. Proof of Theorem 1.7. Let F = [fn(fm − 1)f(z + c)](k), G =
[gn(gm − 1)g(z + c)](k). By assumption, F and G share the value 1 CM.
From (2.19) and since f is a transcendental entire function,

T (r, F ) ≤ T (r, fn(fm − 1)f(z + c)) + S(r, f).(5.1)

Combining (5.1) with Lemma 2.4, we get S(r, F ) = S(r, f). We also have
S(r,G) = S(r, g). From (2.20), we obtain

N2(r, 1/F ) = N2

(
r,

1

[fn(fm − 1)f(z + c)](k)

)
(5.2)

≤ T (r, F )− T (r, fn(fm − 1)f(z + c))

+Nk+2

(
r,

1

fn(fm − 1)f(z + c)

)
+ S(r, f).

Combining Lemma 2.4 with (5.2), we get

(5.3) (n+m+ 1)T (r, f) = T (r, fn(fm − 1)f(z + c)) + S(r, f)

≤ T (r, F )−N2(r, 1/F ) +Nk+2

(
r,

1

fn(fm − 1)f(z + c)

)
+ S(r, f).

From (2.21), we obtain

(5.4) N2(r, 1/F ) ≤ Nk+2

(
r,

1

fn(fm − 1)f(z + c)

)
+ S(r, f)

≤ (k + 2)N(r, 1/f) +N

(
r,

1

fm − 1

)
+N

(
r,

1

f(z + c)

)
+ S(r, f)

≤ (k +m+ 3)T (r, f) + S(r, f).
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Similarly, we obtain

(n+m+ 1)T (r, g) ≤ T (r,G)−N2(r, 1/G)(5.5)

+Nk+2

(
r,

1

gn(gm − 1)g(z + c)

)
+ S(r, g)

and

N2(r, 1/G) ≤ (k +m+ 3)T (r, g) + S(r, g).(5.6)

If (i) of Lemma 2.12 is satisfied, then we get

max{T (r, F ), T (r,G)} ≤ N2(r, 1/F ) +N2(r, 1/G) + S(r, F ) + S(r,G).

Thus, combining the above with (5.3)–(5.6), we obtain

(n+m+ 1)[T (r, f) + T (r, g)] ≤ 2Nk+2

(
r,

1

fn(fm − 1)f(z + c)

)
+ 2Nk+2

(
r,

1

gn(gm − 1)g(z + c)

)
+ S(r, f) + S(r, g)

≤ 2(k +m+ 3)[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

contradicting n ≥ 2k + m + 6. Hence, F = G or F · G = 1. From Lemmas
2.8 and 2.9, we get f = tg for tm = tn+1 = 1. Thus, we get the proof of
Theorem 1.7.

6. Proof of Theorem 1.8. Let F = [fn(fm − 1)f(z + c)](k), G =
[gn(gm − 1)g(z + c)](k). We will show that F = G or F · G = 1 under the
assumptions of Theorem 1.8.

Assume that H 6≡ 0, where H is defined in Lemma 2.13. Then from
(2.22), we get

T (r, F )+T (r,G) ≤ 2
(
N2(r, 1/F )+N2(r, 1/G)

)
+3

(
N(r, 1/F )+N(r, 1/G)

)
+ S(r, F ) + S(r,G).

Combining the above with (5.3)–(5.6) and (2.21), we obtain

(n+m+ 1)(T (r, f) + T (r, g)) ≤ T (r, F ) + T (r,G)

+Nk+2

(
r,

1

fn(fm − 1)f(z + c)

)
+Nk+2

(
r,

1

gn(gm − 1)g(z + c)

)
−N2(r, 1/F )−N2(r, 1/G) + S(r, f) + S(r, g)

≤ 2Nk+2

(
r,

1

fn(fm − 1)f(z + c)

)
+ 2Nk+2

(
r,

1

gn(gm − 1)g(z + c)

)
+ 3

(
N(r, 1/F ) +N(r, 1/G)

)
+ S(r, f) + S(r, g)

≤ (5k + 5m+ 12)[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

which contradicts n ≥ 5k + 4m+ 12.
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Thus, H ≡ 0. The idea of the following proof is due to Yang and Yi [26].
Integrating H twice, we obtain

(6.1) F =
(b+ 1)G+ (a− b− 1)

bG+ (a− b)
, G =

(a− b− 1)− (a− b)F
Fb− (b+ 1)

,

which implies that T (r, F ) = T (r,G) +O(1). We will consider three cases:

Case 1: b 6= 0,−1. If a− b− 1 6= 0, then by (6.1), we get

N(r, 1/F ) = N

(
r,

1

G− a−b−1
b+1

)
.

By the second main theorem, (2.20) and (2.21),

(6.2) (n+m+ 1)T (r, g) ≤ T (r,G) +Nk

(
r,

1

gn(gm − 1)g(z + c)

)
−N(r, 1/G) + S(r, g)

≤ Nk

(
r,

1

gn(gm − 1)g(z + c)

)
+N

(
r,

1

G− a−b−1
b+1

)
+ S(r, g)

≤ (k +m+ 1)T (r, g) + (k +m+ 2)T (r, f) + S(r, f) + S(r, g).

Similarly,

(n+m+ 1)T (r, f) ≤ (k +m+ 1)T (r, f) + (k +m+ 2)T (r, g)

+ S(r, f) + S(r, g).

From (6.2) and the above,

(n+m+ 1)[T (r, f) + T (r, g)]

≤ (2k + 2m+ 3)[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

which contradicts n ≥ 5k + 4m+ 12.
Thus, a− b− 1 = 0, so

(6.3) F =
(b+ 1)G

bG+ 1
.

Since F is an entire function, (6.3) yields N(r, 1
G+1/b) = 0. Using the same

method as above, we get

(n+m+ 1)T (r, g) ≤ T (r,G) +Nk

(
r,

1

gn(gm − 1)g(z + c)

)
−N(r, 1/G) + S(r, g)

≤ Nk

(
r,

1

gn(gm − 1)g(z + c)

)
+N

(
r,

1

G+ 1/b

)
+ S(r, g)

≤ (k +m+ 1)T (r, g) + S(r, g),

which is a contradiction.
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Case 2: b = 0, a 6= 1. From (6.1), we have

F =
G+ a− 1

a
,

and we get a contradiction as above. Thus, a = 1 follows, which implies that
F = G.

Case 3: b = −1, a 6= −1. From (6.1), we obtain

F =
a

a+ 1−G
.

and again we get a contradiction. Hence a = −1. Thus, F · G = 1. From
Lemmas 2.8 and 2.9, we get f = tg for tm = tn+1 = 1. Thus, we get the
proof of Theorem 1.8.

7. Discussion. In this paper, we investigated the uniqueness of differ-
ence-differential polynomial of entire functions sharing one common value.
It remains an open question under what conditions Theorem 1.7 holds for
meromorphic functions f , g with ρ2(f) < 1 and ρ2(g) < 1. In addition,
if [fn(fm − 1)∆cf ](k) and [gn(gm − 1)∆cg](k) share one common value, we
believe that f = tg for tm = tn+1 = 1. Unfortunately, we have not succeeded
in proving that.
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