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Proper holomorphic self-mappings
of the minimal ball

by Nabil Ourimi (Bizerte)

Abstract. The purpose of this paper is to prove that proper holomorphic self-map-
pings of the minimal ball are biholomorphic. The proof uses the scaling technique applied
at a singular point and relies on the fact that a proper holomorphic mapping f : D → Ω
with branch locus Vf is factored by automorphisms if and only if f∗(π1(D\f−1(f(Vf )), x))
is a normal subgroup of π1(Ω \ f(Vf ), b) for some b ∈ Ω \ f(Vf ) and x ∈ f−1(b).

1. Introduction. Families of proper holomorphic mappings arise in the
problem of determining which domains in Cn do not possess any proper
holomorphic mappings which are not biholomorphic. In this paper our aim
is to study this problem in the case of a special domain in Cn, n ≥ 2,
with non-piecewise smooth boundary. This domain is the minimal ball. It is
given by

B∞ = {z ∈ Cn : N∞(z) < 1},
where N∞(z) = (|z|2 + |z2|)/2 and z2 =

∑
1≤j≤n z

2
j .

The function
√
N∞ is a norm in Cn introduced by Hahn–Pflug [4] as the

smallest norm in Cn that extends the Euclidean norm in Rn under certain
restrictions. It has been studied in several recent works [7], [12], [9], [10], [11],
[17]. The automorphism group of B∞ is S1.O(n,R) (see [7]). In addition
B∞ is a non-Lu Qi-Keng domain for n ≥ 4 and it is neither homogeneous
nor Reinhardt. Its boundary is B-regular in the sense of Sibony [16] and
Henkin–Iordan [6].

Our main result can be stated as follows:

Theorem 1. Every proper holomorphic self-mapping of B∞ is biholo-
morphic.
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The following example shows that this theorem cannot be extended to
proper holomorphic self-correspondences as in the case of strongly pseudo-
convex domains (see [1]).

Let M = {z ∈ Cn+1 : |z| <
√

2 and z2 = 0}. The group S1.O(n + 1,R)
is a subgroup of Aut(M). Consider the projection pr : Cn+1 → Cn defined
by pr(z1, . . . , zn+1) = (z1, . . . , zn). The restriction F := pr|M is a proper
holomorphic mapping with multiplicity 2 from M onto B∞ ⊂ Cn. Let g ∈
S1.O(n+1,R)\S1.O(n,R) (the group O(n,R) can be regarded as a subgroup
of O(n+ 1,R)). Then h = F ◦ g ◦ F−1 is an irreducible proper holomorphic
self-correspondence of B∞. To prove that h is a nontrivial correspondence,
assume that h is a mapping. Then h is an automorphism of B∞ (i.e. h ∈
S1.O(n,R)); otherwise the multiplicity of h ◦ F will be greater than the
multiplicity of F ◦ g. This implies that g ∈ S1.O(n,R) and so we get a
contradiction.

2. Preliminary results. In this section, we give some preliminary re-
sults useful for the proof of our theorem.

2.1. Factorization of proper holomorphic mappings. A mapping f : D →
Ω is factored by automorphisms if there is a finite subgroup Γ ⊂ Aut(D)
such that for all z in D,

f−1(f(z)) = {γ(z) : γ ∈ Γ}.
We will denote by Jf (z) the Jacobian determinant of f and by Vf =

{z ∈ D : Jf (z) = 0} its branch locus. A necessary and sufficient condition
to factorize proper holomorphic mappings is given in the following theorem.

Theorem 2. Let D be a pseudoconvex bounded domain in Cn, Ω a do-
main in Cn and f : D → Ω a proper holomorphic mapping with branch
locus Vf . Denote by F the restriction of f to D \ f−1(f(Vf )). Then the
following statement are equivalent :

(1) there exist b ∈ Ω \ f(Vf ) and x ∈ f−1(b) such that F∗(π1(D \
f−1(f(Vf )), x)) is a normal subgroup of π1(Ω \ f(Vf ), b),

(2) f is factored by automorphisms.

The existence of the group Γ is due to W. Rudin [15] in the case of
the Euclidean ball in Cn and to Bedford–Bell [1] in the case of strongly
pseudoconvex domains in Cn (see also the references for related results).
Theorem 2 implies that the branch locus of f is given by

Vf =
⋃

{g∈Γ :g 6=id}
{z ∈ D : g(z) = z}.

Then the factorization theorem above may be used to reduce the study of
the behavior of the branch locus to the study of the group Γ . Thus far Γ
has been identified only in the case of the Euclidean ball in Cn.
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Proof of Theorem 2. Let H = f(Vf ), E = D \ f−1(H) and B = Ω \H.
The restriction F = f |E : E → B is a connected finite covering. According
to [3], F∗(π1(E, x)) is a normal subgroup in π1(B, b) if and only if F :
E → B is a Galois covering, i.e. F is a connected covering and the group
Γ = {γ ∈ Hom(E) : F ◦ γ = F} acts transitively on each fiber F−1(b),
b ∈ B. Moreover, the group Γ is isomorphic to π1(B, b)/F∗(π1(E, x)).

Assume that F∗(π1(E, x)) is a normal subgroup in π1(B, b). Then F
is a Galois covering. The mapping F is holomorphic, so all elements of
Γ are biholomorphic and since D is bounded, they extend to holomorphic
mappings from D ontoD. Suppose that there exists a point p ∈ f−1(H) such
that γ(p) ∈ ∂D for some γ ∈ Γ . Let ∆ be an analytic disc in D such that
∆∩ f−1(H) = {p}. Then γ(∆) intersects ∂D only at γ(p). This contradicts
the fact that D is pseudoconvex. Hence for all γ ∈ Γ , γ(D) ⊂ D. Thus
the elements of Γ extend to automorphisms of D and define a subgroup of
Aut(D) that we denote by Γ̂ . By analytic extension the equality f ◦ γ̂ = f

remains valid for all γ̂ ∈ Γ̂ .
Let now b ∈ H and z1, z2 ∈ f−1(H) be such that f(z1) = f(z2) = b.

Since f is an open map, there exist two sequences {zj1}j and {zj2}j in E that
converge respectively to z1 and z2 and satisfy f(zj1) = f(zj2) for all j. The
mapping F is a Galois covering, so for all j there exists γj ∈ Γ such that
zj1 = γj(z

j
2). As Γ is a finite subgroup, we may assume that zj1 = γ(zj2) for

some γ ∈ Γ and for any integer j. Passing to the limit, we get z1 = γ̂(z2)
(γ̂ is the extension of γ). This proves that the mapping f is factored by Γ̂ .

Conversely, assume that f is factored by a subgroup Γ̂ . It is clear that for
all γ̂ ∈ Γ̂ , γ̂ maps E onto itself. Then the restriction F is a Galois covering.
This implies that F∗(π1(E, x)) is a normal group in π1(B, b).

2.2. Hopf’s lemma for B∞. We denote by % =
√
N∞ − 1 a defining

function of B∞. It is easy to see that this function satisfies the following
lemma.

Lemma 1. For z ∈ B∞ one has
1√
2

dist(z, ∂B∞) ≤ |%(z)| ≤ dist(z, ∂B∞).

First, we establish the uniform Hopf lemma for the unit disc ∆ in C.

Lemma 2. Let r be a subharmonic negative function on ∆. Then for all
z ∈ ∆ one has

|r(z)| ≥ inf
∆(0,1/2)

|r|dist(z, ∂∆).

Proof. We consider the subharmonic function

r̂(z) = r(z)− A Ln |z|
Ln 2

, where A = inf
∆(0,1/2)

|r|.
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Since r̂ is negative on ∂∆(0, 1/2) and limz→z0∈∂∆ r̂(z) ≤ 0, by the maximum
principle we get r̂(z) ≤ 0 on ∆(0, 1) \∆(0, 1/2). Thus

∀z ∈ ∆, |r(z)| ≥ inf
∆(0,1/2)

|r|min
(

1,
−Ln |z|

Ln 2

)
≥ inf
∆(0,1/2)

|r|(1− |z|).

As an application, we get the Hopf lemma for the minimal ball.

Lemma 3. Let r be a plurisubharmonic negative function on B∞. Then
for all z ∈ B∞ one has

|r(z)| ≥ 1√
2

inf
1
2B∞
|r|dist(z, ∂B∞),

where 1
2B∞ = {z ∈ Cn :

√
N∞(z) ≤ 1/2}.

Proof. For z = 0 the inequality is true. Let now z ∈ B∞ \ {0} and
consider the subharmonic function u defined on the unit disc by

u(ξ) = r

(
ξz√
N∞(z)

)
.

In view of Lemma 2 we have

|u(ξ)| ≥ inf
∆(0,1/2)

|u|dist(ξ, ∂∆).

Let ξ =
√
N∞(z). The previous inequality becomes

|r(z)| ≥ inf
∆(0,1/2)

|u| · |1−
√
N∞(z)| ≥ 1√

2
inf

∆(0,1/2)
|u|dist(z, ∂B∞).

Since

inf
w∈∆(0,1/2)

∣∣∣∣r
(

wz√
N∞(z)

)∣∣∣∣ ≥ inf
1
2B∞
|r|,

we have the desired inequality.

In the case n = 2, the minimal ball is biholomorphic to the Reinhardt
domain {(z, w) ∈ C2 : |z| + |w| < 1}. Hence according to [2], any proper
holomorphic self-mapping of B∞ is biholomorphic. Now assume that n ≥ 3.
The proof of our theorem is based on the scaling technique and the notion
of factorization of proper holomorphic mappings.

3. Scaling technique. Set H = {z ∈ Cn :
∑

1≤j≤n z
2
j = 0} and

H∞ = H ∩ B∞. The singular part of the boundary of B∞ is obviously
the set ∂H∞ = H ∩ ∂B∞. The regular part ∂B∞ \ ∂H∞ is C∞-smooth
and it consists of strongly pseudoconvex points. In [10] the authors gave an
explicit formula for the Bergman kernel of the minimal ball. In particular,
they showed that any proper holomorphic self-mapping of the minimal ball
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extends holomorphically to a neighborhood of B∞ (see Theorem 5.5 of [10]).
In this section we shall prove the following:

Proposition 1. Let f be a branching proper holomorphic self-mapping
of B∞ with branch locus Vf . Then f(Vf ) is equal to H∞.

Proof. Let p ∈ ∂Vf = Vf \Vf and let {pk}k be a sequence in Vf that con-
verges to p. Since f is proper, the sequence {f(pk)}k converges to a boundary
point q ∈ ∂B∞. We shall prove that q is a singular point (i.e. q ∈ ∂H∞).
The proof is by contradiction. Assume that q is a strong pseudoconvexity
point. We will discuss two cases.

First case: p is a strong pseudoconvexity point. Since the mapping f
extends holomorphically to a neighborhood of B∞ ([10]), it defines a local
biholomorphism near p (see [14]). This contradicts the fact that p ∈ ∂Vf .

Second case: p is a singular point (p ∈ ∂H∞). In this case we will use
the scaling technique to prove that this situation is not possible.

Since S1.O(n,R) acts transitively on ∂H∞, we can assume without loss
of generality that p = (0, . . . , 0, i, 1). The domain B∞ − p is represented by

2 Re(zn − izn−1) + |z1|2 + . . .+ |zn|2 + |z2
1 + . . .+ z2

n + 2(zn + izn−1)| < 0.

In the new coordinates

ζj = zj , j ∈ {1, . . . , n− 2},
ζn−1 = zn + izn−1,

ζn = zn − izn−1,

the point p is transformed to 0 and the domain B∞ − p corresponds to the
domain G defined by {ϕ < 0} with

ϕ(ξ) = 2 Re(ζn) +
1
2

(|ζn|2 + |ζn−1|2) + |ζ1|2 + . . .+ |ζ2
n−2|

+ |ζ2
1 + . . .+ ζ2

n−2 + 2ζn−1 + ζn−1ζn|.
We write z ∈ Cn as z = (′z, zn) where ′z denotes the first n−1 coordinates

of z or z = (′′z, zn−1, zn) where ′′z denotes the first n− 2 coordinates of z. If
{ak}k and {bk}k are two sequences of real positive numbers, we write ak ' bk
if there is a positive constant c independent of k such that c−1bk ≤ ak ≤ cbk.

Let g : B∞ → G be the linear transformation mapping B∞ onto G and
tk = (′0,−δk), k = 1, 2, . . . , be a sequence of points in G where {δk}k is a
sequence of real positive numbers converging to 0. It is clear that for large k,
|ϕ(tk)| ' δk. Since B∞ is linearly equivalent to G, in view of Lemma 1 we
have, for all z ∈ G,

1√
2 ‖g‖

dist(z, ∂G) ≤ |ϕ(z)| ≤ ‖g−1‖dist(z, ∂G).



102 N. Ourimi

It follows that for large k,

(1) dist(tk, ∂G) ' δk.
As the mapping f is continuous, the sequence {qk}k, qk = f ◦ g−1(tk),
converges to q = f ◦ g−1(0). Let V be a neighborhood of q in Cn which
does not intersect the set of weakly pseudoconvex points of ∂B∞. For all
w ∈ ∂B∞ ∩ V we consider the change of variables hw defined by

z∗j =
∂%

∂zn
(w)(zj − wj)−

∂%

∂zj
(w)(zn − wn), 1 ≤ j ≤ n− 1,

z∗n =
∑

1≤j≤n

∂%

∂zj
(w)(zj − wj).

The mapping hw maps w to 0 and the real normal to ∂B∞ at w onto the line
{′z = 0, yn = 0}. Let wk be the projection of qk on the boundary of B∞. For
simplicity we denote hwk (the mapping as above) by hk. Set Dk = hk(B∞),
%k = % ◦ hk−1

and γk = dist(hk(qk), ∂Dk). We have hk(qk) = (′0,−γk). The
sequence of proper holomorphic mappings defined by f k = hk ◦ f ◦ g−1 :
G → Dk satisfies fk(′0,−δk) = (′0,−γk) for all k. Now we introduce the
inhomogeneous dilatation of coordinates as follows:

αk(′z, zn) =
( ′z√

γ
k

,
zn
γk

)
, βk(′′z, zn−1, zn) =

( ′′z√
δk
,
zn−1

δk
,
zn
δk

)
.

The idea is to follow the argument of Pinchuk [13] and to consider the
mapping f̂k = αk◦fk◦(βk)−1. In the new coordinates, G and Dk correspond
to the domains Ĝk and D̂k with defining functions

ϕ̂k(z) =
1
δk
ϕ ◦ βk−1

(z), %̂k(z) =
1
γk
%k ◦ (αk)−1(z)

respectively. Thus, f̂k is a proper holomorphic mapping from Ĝk onto D̂k

and satisfies f̂k(′0,−1) = (′0,−1). Let Ĝ = {ϕ̂ < 0} and Σ = {%̂ < 0}
where ϕ̂(z) = 2 Re(zn) + |′′z|2 + |′′z2 + 2zn−1|, %̂(z) = 2 Re(zn) + |′z|2 and
′′z2 =

∑
1≤j≤n−2 z

2
j . The sequence {ϕ̂k}k (resp. {%̂k}k) converges uniformly

to the function ϕ̂ on compact subsets of Ĝ (resp. to the function %̂ on
compact subsets of Σ). Consequently, for all compact K ⊂ Ĝ, the mappings
f̂k are well defined on K, starting from some k0 = k0(K). By exhausting
Ĝ with an increasing sequence of compact sets and by passing to the limit,
we conclude that we may assume that {f̂k}k converges to a holomorphic
function f̂ : Ĝ → Σ. Since %̂ is plurisubharmonic and f̂(′0,−1) = (′0,−1)
∈ Σ, the maximum principle implies that f̂(Ĝ) ⊂ Σ.

We shall prove that f̂ is proper. For this we need some estimates on the
distance.
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Lemma 4. There exists a constant c > 0 such that for all z ∈ B∞,
1
c

dist(z, ∂B∞) ≤ dist(f(z), ∂B∞) ≤ cdist(z, ∂B∞).

Proof. Recall that % denotes a defining function of B∞. Since % ◦ f is
plurisubharmonic and negative on B∞, in view of Lemmas 1 and 3 there
exists a constant c > 0 such that for all z ∈ B∞, dist(f(z), ∂B∞) ≥
c−1 dist(z, ∂B∞). To prove the right-hand inequality, we consider the func-
tion r(w) = max{%(z) : z ∈ f−1(w)}, which is well defined and plurisub-
harmonic on B∞ \ f(Vf ) and also bounded there. Since f is proper, f(Vf )
is an analytic subvariety, and so r extends as a plurisubharmonic function
on B∞. Now we apply Lemmas 1 and 3 again.

Since the coordinates hwk depend continuously on wk and the domain
G is linearly equivalent to B∞, in view of Lemma 4 the following estimates
hold:

(2) c1 dist(z, ∂G) ≤ dist(fk(z), ∂Dk) ≤ c2 dist(z, ∂G),

with c1, c2 > 0 do not depend on k. In addition, in G and Dk we have the
estimates

(3)
c3|ϕ(z)| ≤ dist(z, ∂G) ≤ c4|ϕ(z)|,
c3|%k(w)| ≤ dist(w, ∂Dk) ≤ c4|%k(w)|,

where c3, c4 > 0 do not depend on k (the estimates (3) follow from Lemmas 1
and 3). According to (1) and (2), there exist positive constants c5 and c6
independent of k such that for all k,

(4) c5 < γk/δk < c6.

Let K be a compact set in Ĝ and z ∈ K. Set wk = f̂k(z). In view of
(2)–(4),

%̂k(wk) = γk
−1%k(

√
γk
′wk, γkw

k
n) ≤ (γkc3)−1 dist((

√
γk
′wk, γkw

k
n), ∂Dk)

≤ c2(γkc3)−1 dist((
√
δk
′′z, δkzn−1, δkzn), ∂G)

≤ c2c4(γkc3)−1ϕ(
√
δk
′′z, δkzn−1, δkzn)

= c2c4δk(c3γk)−1ϕ̂k(z) ≤ c2c4(c5c3)−1ϕ̂k(z).

Passing to a convergent subsequence and to the limit, we get

(5) %̂(f̂(z)) ≤ c7ϕ̂(z)

for z ∈ K and for some positive constant c7 independent of z. Since K is an
arbitrary compact set in Ĝ, the estimate (5) holds for all z ∈ Ĝ.

Lemma 5. The sequence {f̂k}k admits a subsequence converging uni-
formly on compact subsets of Ĝ to a proper holomorphic mapping f̂ : Ĝ→ Σ.
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Proof. The proof is based on certain ideas of S. Pinchuk [13]. For the
convenience of the reader and for the sake of completeness we include a
proof. We consider the function v(z) = ezn . It satisfies |v(z)| < 1 on G \ {0}
and v(0) = 1. For δk < 1 the functions

vk(z) =
v(z)− (1− δk)
1− v(z)(1− δk)

are holomorphic in a neighborhood of G and |vk(z)| < 1 for all z ∈ G. For
large k we consider the function uk(z) = vk(

√
δk
′′z, δkzn−1, δkzn), which is

holomorphic in a neighborhood of Ĝk and has the form

uk(z) =

1 + zn + δk

(∑

p≥2

δp−2
k

p!
zpn

)

1− zn(1− δk)− δk
(∑

p≥2

δp−2
k

p!
zpn

)
(1− δk)

.

Set u0 = limk→∞ uk. The limit u0 is holomorphic on Ĝ and it is de-
fined by

u0(z) =
1 + zn
1− zn

.

As |z| → ∞ and z ∈ Ĝ, clearly |zn| → ∞. Thus u0(z) → −1 as |z| → ∞.
Since the mappings f̂k : Ĝk → D̂k are ramified analytic coverings (see [5]),
for each k there exists a polynomial

P k(t, w) = tm + Sk1 (w)tm−1 + . . .+ Skm(w)

(where Skα are holomorphic functions on D̂k for α ∈ {1, . . . ,m} and m is the
multiplicity of f̂k) such that P k(uk(z), f̂k(z)) ≡ 0 on Ĝk and for w ∈ D̂k

one has P k(t, w) = 0 if and only if t ∈ uk ◦ (f̂k)−1(w). As |uk(z)| < 1 in Ĝk,
it follows that all the roots of P k(·, w) are of modulus less than one for all
w ∈ D̂k. Then there exists a constant c > 0 such that |Skα(w)| < c in D̂k.
Consequently, we can assume (after passing to a subsequence) that for all
α ∈ {1, . . . ,m} the sequence {Skα}k converges to a function Sα, defined and
holomorphic in Σ. Let P (t, w) = tm + S1(w)tm−1 + . . . + Sm(w). We have
P (uo(z), f̂(z)) ≡ 0 and the roots of P lie in the closed unit disc for all
w ∈ Σ. We write P (t, w) in the form (t+ 1)lQ(t, w), where Q(−1, w) 6≡ 0.

Assume that f̂ is not proper. In view of (5) there exists a sequence
{zµ}µ of Ĝ such that zµ → ∞ and f̂(zµ) → w0 ∈ Σ as µ → ∞. By the
Weierstrass preparation theorem,Q(t, w) can be written asQ1(t, w)·Q2(t, w)
in a neighborhood of (−1, wo) where Q1(−1, wo) 6= 0 and

Q2(t, w) = (wn − won)r + a1(t, ′w)(wn − won)r−1 + . . .+ ar(t, ′w).
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If t0 is close to −1 and |to| > 1, the equation Q2(t, w) = 0 has a root w1

in Σ close to wo, and so P (to, w1) = 0. This contradicts the fact that the
roots of P lie in the closure of the unit disc and proves that f̂ is proper.

We need the following proposition.

Proposition 2 ([13]). Let at least one of the domains Ω1, Ω2 ⊂⊂ Cn be
strongly pseudoconvex , and assume that there exists a proper holomorphic
mapping from Ω1 onto Ω2 which is not biholomorphic. Then there is no
proper holomorphic mapping from Ω2 onto Ω1. In particular Ω1 and Ω2 are
biholomorphically inequivalent.

Conclusion of the proof of Proposition 1. It is clear that Ĝ is biholomor-
phic to the domain E1 = {(′′z, zn−1, zn) ∈ Cn : 2 Re(zn)+|′′z|2+|zn−1| < 0}.
The fractional transformation

(′′z, zn−1, zn) 7→
( √

2 ′′z
zn − 1

,
2zn−1

(zn − 1)2 ,
zn + 1
zn − 1

)

maps E1 biholomorphically onto the domain E2 = {(′′z, zn−1, zn) ∈ Cn :
|′′z|2+|zn−1|+|zn|2 < 1} and Σ is biholomorphic to the unit ball B by means
of Cayley’s transformation. The mapping (′′z, zn−1, zn) 7→ (′′z, z2

n−1, zn) is
proper from B onto E2. Thus there exists a proper holomorphic mapping
from Σ onto Ĝ which is not biholomorphic. So Proposition 2 implies that
there is no proper holomorphic mapping from Ĝ onto Σ. This contradicts
the fact that f̂ is proper. Therefore q is a singular point of ∂B∞. Finally,
by using the maximum principle and the irreducibility of H∞ (n ≥ 3), we
get f(Vf ) = H∞. This completes the proof of Proposition 1.

4. Factorization by automorphisms and proof of Theorem 1. In
this section we give the proof of Theorem 1. First of all, we need the following
lemma to prove that a proper holomorphic self-mapping of B∞ is factored
by automorphisms.

Lemma 6. For n ≥ 3, π1(B∞ \H∞) = Z.

Proof. The function z 7→ z/(1 +N∞(z)) maps homeomorphically Cn
onto B∞ and H onto H∞. Thus Cn \ H is homeomorphic to B∞ \ H∞.
Since Cn \ H retracts by deformation onto S2n−1 \ (H ∩ S2n−1), we have
π1(Cn \H) = π1(S2n−1 \K) with K = H ∩ S2n−1. The mapping

S2n−1 \K → S1, x 7→ g(x)
|g(x)| ,

(g(x) =
∑

1≤j≤n x
2
j) is a fibration. Its fiber F is (n − 2 − s)-connected,

(i.e. πi(F ) = {0} for all 0 ≤ i ≤ n − 2 − s) where s = dimHsing (see
[8]). Since s = 0 (H has only one singularity at 0), for n ≥ 3 we obtain
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π1(F ) = π0(F ) = {0}. The homotopy sequence

π1(F )→ π1(S2n−1 \K)→ π1(S1)→ π0(F )

is exact; consequently, π1(S2n−1 \K) = π1(S1) = Z.

Proof of Theorem 1. Let f be a proper holomorphic self-mapping of
B∞ with branch locus Vf . We denote by f2 the mapping f ◦ f and by Vf2

its branch locus. Assume that Vf is not empty. In view of Proposition 1,
Lemma 6 and Theorem 2 the mapping f is factored by a finite subgroup Γ .
In particular we have f−1 ◦ f(Vf ) = Vf . Then Proposition 1 implies that

(6) f−1(H∞) = Vf .

Since Vf2 = Vf∪f−1(Vf ) and again using Proposition 1 (applied to f and f 2)
one has H∞ = f(H∞) ∪H∞. It follows from the irreducibility of H∞ that

(7) f(H∞) = H∞.

As the automorphism group of B∞ is S1.O(n,R), the elements of Γ stabilize
H∞. So in view of (7) and the factorization of f we have

(8) f−1(H∞) = H∞.

From (6) and (8) we conclude that Vf = H∞. But the factorization theo-
rem implies that there exists γ ∈ Γ such that {γ(z) = z} = H∞. This is
impossible, since H∞ has a singularity at 0. This contradiction shows that
Vf is empty. As the domain B∞ is simply connected, we conclude that f is
a biholomorphism.

Remarks. We can repeat the same argument used in the proof of Propo-
sition 1 (second case) to show that there is no proper holomorphic mapping
from the minimal ball onto a strongly pseudoconvex bounded domain in Cn
with C2 boundary. The problem of existence of proper holomorphic map-
pings from a strongly pseudoconvex bounded domain in Cn (n ≥ 3) with C2

boundary onto the minimal ball was answered in the negative in [11]. These
results solve a question raised by Hahn and Pflug regarding the existence of
proper holomorphic mappings between the Euclidean ball and the minimal
ball, in a more general context. Note that this question was solved earlier
by Oeljeklaus and Youssfi [9] in the case of the Euclidean ball.

The author is grateful to the referee for his encouragement and for his
useful remarks on this material.
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