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Periodic solutions of dissipative dynamical systems
with singular potential and p-Laplacian

by Bing Liu (Wuhan)

Abstract. By using the topological degree theory and some analytic methods, we
consider the periodic boundary value problem for the singular dissipative dynamical
systems with p-Laplacian: (φp(x′))′ + d

dt gradF (x) + gradG(x) = e(t), x(0) = x(T ),
x′(0) = x′(T ). Sufficient conditions to guarantee the existence of solutions are obtained
under no restriction on the damping forces d

dt gradF (x).

1. Introduction. Consider the periodic boundary value problem for
the singular dissipative dynamical system with p-Laplacian

(φp(x′))′ +
d

dt
gradF (x) + gradG(x) = e(t),(1)

x(0) = x(T ), x′(0) = x′(T ),(2)

where F ∈ C2(Rn,R), G ∈ C1(Rn \ {0},R), e ∈ L1([0, T ],Rn), p > 1 is a
fixed constant, and φp : Rn → Rn is the mapping defined by

(3) φp(x) = φp(x1, . . . , xn) = (|x1|p−2x1, . . . , |xn|p−2xn).

Then φp is a homeomorphism of Rn with inverse φq (1/q + 1/p = 1).
Roughly speaking, the potential G(x) is singular (at 0) in the sense that

G(x) becomes infinite when x tends to 0. From the physical meaning of
(1), the singular potential G(x) is said to be of attractive type (repulsive
type, respectively) if G(x) → −∞ (G(x) → ∞, respectively) as x → 0; see
Ambrosetti [1].

By a solution x of problem (1), (2), we mean that x ∈ W 2,p([0, T ],Rn),
φp(x′) is absolutely continuous on [0, T ], x(t) 6= 0 for all t ∈ [0, T ] and x
satisfies the boundary condition (2) and equation (1) for a.e. t ∈ [0, T ].

When p = 2 or φp(x) = x, and no damping is present in (1), the above
boundary value problem has variational structure and can be handled by
critical point theory. In [3], Gordon introduced a strong force condition on
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G(x) at 0 to get some compactness for the corresponding action functionals.
We refer to Ambrosetti [1] for attractive case and to Coti Zelati [2] and
Solimini [9] for the repulsive case.

When damping is present in (1), and p = 2 or φp(x) = x, we can use
the Leray–Schauder degree or the coincidence degree. For one-dimensional
systems, we refer to [5, 6, 8, 12]. For higher dimensional systems, Habets
and Sanchez [4] introduced a different strong force condition on G(x) at the
origin from the viewpoint of degree theory. Zhang [10] obtained an existence
result under no restriction on the damping forces d

dt gradF (x).
In the present paper, motivated by [10], we are also interested in higher

dimensional systems. We establish the existence results for repulsive type
and attractive type and for any damping forces, without imposing more
conditions on the singular potential G(x). Moreover, the general exponent
p is allowed, and our results seem to be new even if p = 2.

The notation we use is mostly standard. We denote the Euclidean inner
product in Rn by 〈·, ·〉, and the lp-norm in Rn by | · |, i.e.

|x| = |(x1, . . . , xn)| =
( n∑

i=1

|xi|p
)1/p

.

The corresponding Lp-norm in Lp([0, T ],Rn) is defined by

‖x‖p =
( n∑

i=1

1�
0

|xi(t)|p dt
)1/p

=
( n∑

i=1

‖xi‖pp
)1/p

where xi ∈ Lp([0, T ],R), ‖xi‖p = ( � 1
0 |xi(t)|p dt)1/p (i = 1, . . . , n). The L∞-

norm in C([0, T ],Rn) is

‖x‖∞ = max
1≤i≤n

‖xi‖∞

where ‖xi‖∞ = supt∈[0,T ] |xi(t)| (i = 1, . . . , n). Also, for n ≥ 1, we write
C1 = C1([0, T ],Rn), C1

T = {x ∈ C1 : x(0) = x(T ), x′(0) = x′(T )}.

2. Some lemmas. To discuss the existence of solutions for the periodic
boundary value problem (1), (2), we introduce some lemmas.

Let φ : Rn → Rn be a continuous function which satisfies the following
two conditions (see [7]):

(H1) For any x, y ∈ Rn, x 6= y, one has

〈φ(x)− φ(y), x− y〉 > 0.

(H2) There exists a function β : [0,∞) → [0,∞) such that lims→∞ β(s)
=∞ and

〈φ(x), x〉 ≥ β(|x|)|x| for all x ∈ Rn.
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Clearly, under these two conditions φ is a homeomorphism of Rn onto Rn,
and lim|s|→∞ |φ−1(s)| = ∞ (see [7]). We notice that, in [7], the | · | of
(H2) denotes the Euclidean norm in Rn, while here it is the lp-norm in Rn.
However, it is well known that any two norms on Rn are equivalent, so the
above condition (H2) and the condition (H2) of [7] are equivalent.

First, consider the periodic boundary value problem

(φ(x′))′ = f(t, x, x′),(4)

x(0) = x(T ), x′(0) = x′(T ),(5)

where φ : Rn → Rn satisfies conditions (H1), (H2), and f : [0, T ]×Rn×Rn →
Rn is a Carathéodory function. Then we have the following lemma (see
Theorem 3.1 of [7]).

Lemma 1 (see [7]). Assume that Ω is an open bounded set in C1
T such

that the following conditions hold :

(i) For each λ ∈ (0, 1), the problem
{

(φ(x′))′ = λf(t, x, x′),

x(0) = x(T ), x′(0) = x′(T ),

has no solution on ∂Ω.
(ii) The equation

F̃ (d) =
1
T

T�
0

f(t, d, 0) dt = 0

has no solution on ∂Ω ∩ Rn.
(iii) The Brouwer degree

degB[F̃ , Ω ∩ Rn, 0] 6= 0.

Then problem (4), (5) has a solution in Ω.

Next, let W 1,p([0, T ],Rn) be the Sobolev space. We need the following
inequality (see Lemma 3 of [11]):

Lemma 2 (see [11]). Let u ∈W 1,p([0, T ],Rn), u(0) = u(T ) = 0. Then

‖u‖p ≤
T

πp
‖u′‖p

where

(6) πp = 2
(p−1)1/p�

0

ds
(
1− sp

p−1

)1/p =
2π(p− 1)1/p

p sin
(
π
p

) .

3. Main results. In this section, we establish the existence results for
the repulsive type and attractive type.
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Lemma 3. Assume that φp : Rn → Rn is given by (3). Then φp satisfies
conditions (H1), (H2).

Proof. Let x, y ∈ Rn, x 6= y. From the inequality

〈φp(x)− φp(y), x− y〉 =
n∑

i=1

[|xi|p − xiyi(|xi|p−2 + |yi|p−2) + |yi|p]

≥
n∑

i=1

[|xi|p − |xi| · |yi|(|xi|p−2 + |yi|p−2) + |yi|p]

=
n∑

i=1

[|xi|p−1 − |yi|p−1][|xi| − |yi|] ≥ 0

it follows immediately that

〈φp(x)− φp(y), x− y〉 = 0 ⇒ x = y

and thus (H1) holds. Also, from

〈φp(x), x〉 =
n∑

i=1

|xi|p = |x|p = |x|p−1|x|,

(H2) follows.

First, for the repulsive type, we have the following result.

Theorem 1. Assume that the following conditions hold :

(R1) limx→0〈x, gradG(x)〉 = −∞.
(R2) Habets–Sanchez’s strong force condition at 0 (see [4]): There ex-

ists ϕ ∈ C1(Rn \ {0},R) such that (i) limx→0 ϕ(x) = ∞; and (ii)
|gradϕ(x)|q ≤ |〈x, gradG(x)〉| + c0 if 0 < |x| � 1, where c0 is a
positive constant and 1/q + 1/p = 1.

(R3) There exist nonnegative constants a, b and c such that

〈x, gradG(x)〉 ≤ a|x|p + c, ∀x ∈ Rn \ {0}.
(R4) There exists a constant M > 0 such that if |xi| > M (i = 1, . . . , n),

then

xi

(
∂G

∂xi
− ei

)
< 0 for all i ∈ {1, . . . , n}

where ei = T−1 � T0 ei(t) dt (i = 1, . . . , n).

Then the periodic boundary value problem (1), (2) has at least one solution
provided

a < (πp/T )p

where πp is defined by (6).
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Proof. To apply Lemma 1, we first consider the auxiliary equation

(7)





(φp(x′))′ = λ

[
e(t)− d

dt
gradF (x)− gradG(x)

]
, λ ∈ (0, 1),

x(0) = x(T ), x′(0) = x′(T ).

Set
Ω1 = {x ∈W 2,p([0, T ],Rn) : x satisfies (7)}.

We shall show that there exist positive constants Mi (i = 1, 2, 3, 4) such
that, for any x ∈ Ω1,

(8) ‖x′‖p < M1, M2 < ‖x‖∞ < M3, ‖x′‖∞ < M4.

In fact, for x ∈ Ω1, from (7), one has

(9) (φp(x′))′ = λ

[
e(t)− d

dt
gradF (x)− gradG(x)

]
.

Since x(0) = x(T ), x′(0) = x′(T ), we have

−‖x′‖pp =
T�
0

〈x, (φp(x′))′〉 dt

and 〈
x,

d

dt
gradF (x)

〉
=

d

dt
〈x, gradF (x)〉 − 〈x′, gradF (x)〉.

Thus considering the inner product of (9) with x, from (R3) we deduce that

‖x′‖pp = λ

T�
0

〈x, gradG(x)〉 dt− λ
T�
0

〈x, e(t)〉 dt(10)

≤
T�
0

[a|x(t)|p + c] dt+
T�
0

|x(t)| · |e(t)| dt

≤ a‖x‖pp + ‖e‖1‖x‖∞ + cT.

Again from (9), we obtain

0 =
T�
0

(φp(x′))′ dt = λ

T�
0

[
e(t)− d

dt
gradF (x)− gradG(x)

]
dt

= λ

T�
0

[e(t)− gradG(x)] dt

and thus
1
T

T�
0

gradG(x) dt =
1
T

T�
0

e(t) dt,
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that is,

1
T

T�
0

∂G

∂xi
dt = ei, i = 1, . . . , n.

So in view of (R4), for any i ∈ {1, . . . , n}, there exists ti ∈ [0, T ] such that
|xi(ti)| ≤M . Thus for any i ∈ {1, . . . , n},

|xi(t)| =
∣∣∣xi(ti) +

t�
ti

x′i(s) ds
∣∣∣ ≤M +

T�
0

|x′i(s)| ds

≤M + T 1/q
( T�

0

|x′i(s)|p dt
)1/p

≤M + T 1/q
( n∑

i=1

T�
0

|x′i(s)|p ds
)1/p

= M + T 1/q‖x′‖p
where 1/q+ 1/p = 1. From this inequality, we have ‖xi‖∞ ≤M +T 1/q‖x′‖p
so

(11) ‖x‖∞ ≤M + T 1/q‖x′‖p.
Again for each i ∈ {1, . . . , n}, set

yi(t) =
{
xi(t+ ti − T )− xi(ti), T − ti ≤ t ≤ T ,
xi(t+ ti)− xi(ti), 0 ≤ t ≤ T − ti.

Then yi(0) = yi(T ) = 0, hence y(0) = y(T ) = 0. Since x ∈ W 2,p([0, T ],Rn),
we see that y ∈W 2,p([0, T ],Rn), which implies y ∈W 1,p([0, T ],Rn). There-
fore, from Lemma 2,

(12) ‖y‖p ≤
T

πp
‖y′‖p.

For each i ∈ {1, . . . , n}, we have

‖yi + xi(ti)‖pp =
T−ti�

0

|xi(t+ ti)|p dt+
T�

T−ti
|x(t+ ti − T )|p dt

=
T�
ti

|xi(t)|p dt+
ti�
0

|xi(t)|p dt = ‖xi‖pp.

For any ε ∈ (0, a−1(πp/T )p − 1), in view of the Minkowski inequality, p > 1
and |xi(ti)| ≤M , one has

‖xi‖pp = ‖yi + xi(ti)‖pp ≤ (‖yi‖p + ‖xi(ti)‖p)p ≤ (‖yi‖p + T 1/pM)p

≤ (1 + ε)‖yi‖pp + const,
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which implies

(13) ‖x‖pp =
n∑

i=1

‖xi‖pp ≤ (1 + ε)‖y‖pp + const.

Noticing y′i = x′i (i = 1, . . . , n), which implies ‖y′‖p = ‖x′‖p, from (12), (13)
we obtain

(14) ‖x‖pp ≤ (1 + ε)
(
T

πp

)p
‖x′‖pp + const.

Hence from (10), (11), (14), one has

‖x′‖pp ≤ a(1 + ε)
(
T

πp

)p
‖x′‖pp + T 1/q‖e‖1‖x′‖p + const.

As ε ∈ (0, a−1(πp/T )p−1), we have a(1 + ε)(T/πp)p < 1, and thus from the
above inequality, there exists a constant M1 > 0 such that

(15) ‖x′‖p < M1.

Taking

(16) M3 > M + T 1/qM1,

from (11), (15), (16), one has

(17) ‖x‖∞ < M3.

Now in view of conditions (R1), (R2), proceeding as in the proof of Lemma 6
of [4], a lower bound for min{|x(t)| : t ∈ [0, T ]} follows from the proof by
noticing the estimates (15), (17). Namely, there is some L > 0 such that

min{|x(t)| : t ∈ [0, T ]} > L.

Since ‖x‖∞ = max1≤i≤n ‖xi‖∞ where ‖xi‖∞ = supt∈[0,T ] |xi(t)|, we have

n1/p‖x‖∞ ≥
( n∑

i=1

‖xi‖p∞
)1/p

=
[ n∑

i=1

( sup
t∈[0,T ]

|xi(t)|)p
]1/p

(18)

≥
[ n∑

i=1

|xi(t)|p
]1/p

= |x(t)| ≥ min
t∈[0,T ]

|x(t)| > L.

Again from condition (R1), there exists a small enough M2 ∈ (0, n−1/pL)
such that, for any d ∈ Rn with ‖d‖∞ ≤M2, one has

(19) |〈d, gradG(x)|x=d〉| > M2

n∑

i=1

|ei|.

Since M2 < n−1/pL, from (18) we have

(20) ‖x‖∞ > M2.
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Again by (17), (18), for any t ∈ [0, T ], one has L < |x(t)| ≤ n1/p‖x‖∞ ≤
n1/pM3. Thus since F ∈ C2(Rn,R) and G ∈ C1(Rn \ {0},R), there exist
constants L1, L2 > 0 such that |∂2F (x)/∂x2| ≤ L1 and |gradG(x)| ≤ L2.
Now we use (9) to get

T�
0

|(φp(x′))′| dt = λ

T�
0

∣∣∣∣e(t)−
d

dt
gradF (x)− gradG(x)

∣∣∣∣ dt(21)

≤
T�
0

|e(t)| dt+
T�
0

∣∣∣∣
d

dt
gradF (x)

∣∣∣∣ dt+
T�
0

|gradG(x)| dt

=
T�
0

|e(t)| dt+
t�
0

∣∣∣∣
∂2F

∂x2

∣∣∣∣|x′| dt+
T�
0

|gradG(x)| dt

≤
T�
0

|e(t)| dt+ L1

T�
0

|x′| dt+ L2T

≤ ‖e‖1 + L1T
1/q‖x′‖p + L2T.

From (15), (21), there exists a constant L3 > ‖e‖1 + T 1/qL1M1 +L2T such
that

(22)
T�
0

|(φp(x′))′| dt < L3.

On the other hand, for any i ∈ {1, . . . , n}, as xi(0) = xi(T ), there exists
t∗i ∈ (0, T ) such that x′i(t

∗
i ) = 0; thus from (22) we get

|φp(x′i(t))| = |φp(x′i(t))− φp(x′i(t∗i ))| =
∣∣∣∣
t�
t∗i

(φp(x′i(s)))
′ ds

∣∣∣∣ ≤ L3.

So |x′i(t)| ≤ φq(L3) for all i ∈ {1, . . . , n} and t ∈ [0, T ]. Hence there exists a
constant M4 > φq(L3) such that

(23) ‖x′‖∞ < M4.

From (15), (17), (20) and (23), we see that the estimates (8) hold.
Define E = {x ∈W 2,p([0, T ],Rn) : x(0) = x(T ), x′(0) = x′(T )}, and set

Ω = {x ∈ E : M2 < ‖x‖∞ < M3, ‖x′‖∞ < M4}.
Since W 2,p([0, T ],Rn) is compactly embedded in C1, we have Ω ⊂ C1

T . Now,
from the above argument, we know that problem (7) has no solution on ∂Ω.
Hence condition (i) of Lemma 1 is satisfied.

Next, let

F̃ (x) =
1
T

T�
0

[
e(t)− d

dt
gradF (x)− gradG(x)

]
dt, x ∈ E,
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that is,

F̃ (x) =
1
T

T�
0

[e(t)− gradG(x)] dt, x ∈ E.

Then for any d ∈ Rn ∩ E, if F̃ (d) = 0, we have

1
T

T�
0

gradG(x)|x=d dt =
1
T

T�
0

e(t) dt

or

(24)
∂G(x)
∂xi

∣∣∣∣
x=d

= ei, i = 1, . . . , n.

Hence |di| ≤ M (i = 1, . . . , n). Indeed, suppose that there exists i0 ∈
{1, . . . , n} such that |di0 | > M . Then from condition (R4), one has

∂G(x)
∂xi0

∣∣∣∣
x=d
6= ei0 ,

which contradicts (24). Thus, by (16), one has ‖d‖∞ ≤M < M3.
Again

∂Ω ∩ Rn = {d ∈ Ω ∩ Rn : ‖d‖∞ = M2} ∪ {d ∈ Ω ∩ Rn : ‖d‖∞ = M3}.
According to the above argument, F̃ (d) 6= 0 for any d ∈ Ω ∩ Rn with
‖d‖∞ = M3. Moreover, if d ∈ Ω ∩Rn, ‖d‖∞ = M2 and F̃ (d) = 0, then from
(19), (24), we get

M2

n∑

i=1

|ei| < |〈d, gradG(x)|x=d〉| =
∣∣∣∣
n∑

i=1

di
∂G(x)
∂xi

∣∣∣∣
x=d

∣∣∣∣

=
∣∣∣
n∑

i=1

diei

∣∣∣ ≤
n∑

i=1

|di| · |ei| ≤M2

n∑

i=1

|ei|,

which is a contradiction. So F̃ (d) 6= 0 for all d ∈ ∂Ω∩Rn, and condition (ii)
of Lemma 1 holds.

Finally, we show that condition (iii) of Lemma 1 holds. Indeed, since
F̃ (d) = T−1 � T0 e(t) dt − gradG(x)|x=d and G ∈ C1(Rn \ {0},R), it follows
that F̃ : Ω ∩ Rn → Rn is continuous and maps bounded sets to relatively
compact sets, hence F̃ is completely continuous.

Set
H(d, λ) = λΛ(d) + (1− λ)F̃ (d)

where Λ : Rn → Rn is the identity. Then

(25) H(d, λ) 6= 0, ∀d ∈ ∂Ω ∩ Rn, ∀λ ∈ [0, 1].
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In fact, for any d ∈ Rn, if H(d, λ) = 0, then |di| ≤M (i = 1, . . . , n). Indeed,
if |di0 | > M for some d = (d1, . . . , dn) ∈ Rn and i0 ∈ {1, . . . , n} such that
H(d, λ) = 0, then

λΛ(d) + (1− λ)F̃ (d) = 0,

or

λdi = (1− λ)
(
∂G(x)
∂xi

∣∣∣∣
x=d
− ei

)
, i = 1, . . . , n.

In particular,

(26) λdi0 = (1− λ)
(
∂G(x)
∂xi0

∣∣∣∣
x=d
− ei0

)
,

so λ 6= 1 (otherwise di0 = 0, contradicting |di0 | > M). So from condition
(R4), one has

di0 · (1− λ)
(
∂G(x)
∂xi0

∣∣∣∣
x=d
− ei0

)
< 0,

which contradicts λd2
i0
≥ 0; thus |di| ≤ M (i = 1, . . . , n). Hence ‖d‖∞ <

M < M3. So for any d ∈ Ω ∩ Rn with ‖d‖∞ = M3, H(d, λ) 6= 0 for any
λ ∈ [0, 1].

On the other hand, for any d ∈ Ω ∩Rn with ‖d‖∞ = M2, if H(d, λ) = 0,
then

λd+ (1− λ)
[

1
T

T�
0

e(t) dt− gradG(x)|x=d

]
= 0,

which implies

(27) λ〈d, d〉 = (1− λ)[〈d, gradG(x)|x=d〉 − 〈d, e〉],
where

e =
1
T

T�
0

e(t) dt.

In view of (19), (R1), (27), we have (noticing λ 6= 1)

λ〈d, d〉 < (1− λ)
[
−M2

n∑

i=1

|ei|+ |〈d, e〉|
]

≤ (1− λ)
[
−M2

n∑

i=1

|ei|+
n∑

i=1

|di| · |ei|
]

≤ (1− λ)
[
−M2

n∑

i=1

|ei|+M2

n∑

i=1

|ei|
]

= 0,

which is a contradiction. So H(d, λ) 6= 0 for any d ∈ Ω∩Rn with ‖d‖∞ = M2.
Hence (25) holds.
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By the homotopy property of degree

degB(F̃ , Ω ∩ Rn, 0) = degB(H(·, 0), Ω ∩ Rn, 0)

= degB(H(·, 1), Ω ∩ Rn, 0)

= degB(Λ,Ω ∩ Rn, 0) 6= 0.

Thus condition (iii) of Lemma 1 holds. Hence by Lemma 1, the periodic
boundary value problem (1), (2) has at least one solution. This completes
the proof.

Next, for the attractive type, using the above techniques, we can easily
prove the following theorem.

Theorem 2. Assume that conditions (R2), (R3) of Theorem 1 are sat-
isfied , and furthermore the following conditions hold :

(R′1) limx→0〈x, gradG(x)〉 =∞.
(R′4) There exists a constant M > 0 such that if |xi| > M (i = 1, . . . , n),

then

xi

(
∂G

∂xi
− ei

)
> 0 for all i ∈ {1, . . . , n}

where ei = T−1 � T0 ei(t) dt (i = 1, . . . , n).

Then the periodic boundary value problem (1), (2) has at least one solution
provided

a < (πp/T )p

where πp is defined by (6).
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