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Infinitely many solutions for a semilinear
elliptic equation in RN via a perturbation method

by Marino Badiale (Torino)

Abstract. We introduce a method to treat a semilinear elliptic equation in RN (see
equation (1) below). This method is of a perturbative nature. It permits us to skip the
problem of lack of compactness of RN but requires an oscillatory behavior of the poten-
tial b.

1. Introduction. The existence of positive solutions of elliptic equa-
tions on RN like{

−∆u+ u = b(x)|u|p−1u, 1 < p < (N + 2)/(N − 2),
u ∈ H1(RN ),

(1)

has been extensively investigated by variational methods. One looks for
solutions of (1) as critical points of the energy functional J : H1(RN )→ R,

J(u) =
1
2

�

RN
[|∇u|2 + u2] dx− 1

p+ 1

�

RN
b(x)up+1 dx.(2)

Under reasonable assumptions (see e.g. (b1) below) J satisfies the geometric
properties of the Mountain Pass Theorem, while the compactness Palais–
Smale condition (PS in short) does not hold, in general, because of the
unboundedness of the domain and the non-compactness of Sobolev embed-
dings. To overcome this lack of compactness the structure of the Palais–
Smale sequences of J has been deeply studied in recent years, starting with
the celebrated papers of P. L. Lions on the concentration-compactness prin-
ciple (see [15]–[18]). The nature of the obstruction to compactness seems
now clear enough: see for example [8], [13] and the references therein. See
also [5] for a generalization to quasilinear equations.

A standard hypothesis for (1) is the following:

(b1) b ≥ b0 > 0, b ∈ C(RN ), b(x)→ b∞ > 0 as |x| → ∞,
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It is worth noticing that, to our knowledge, there is no result on existence
of a solution for (1) under hypothesis (b1). However, thanks to the analysis
of loss of compactness discussed above, many different existence results for
(1) have been obtained. For example it is not difficult to prove the existence
of a solution if (b1) holds and furthermore b ≥ b∞, and in general one can
show that (PS) holds at any level c < c∞, the Mountain Pass critical level of

J∞(u) =
1
2

�

RN
[|∇u|2 + u2] dx− b∞

p+ 1

�

RN
|u|p+1 dx.(3)

Among many others we quote, as examples, the papers [6], [7], [11], [12]
and we refer to the book of J. Chabrowski quoted above for an extensive
bibliography.

We just recall that the main results achieved in [6, 7] require that b
satisfies (b1) as well as

(b2) b(x) ≥ b∞ − Ce−δ|x| ∀x ∈ RN (C, δ > 0).

In this case the critical level can be greater than c∞ and is found by exploit-
ing algebraic topology tools.

The main aim of this paper is to face a class of problems that cannot be
handled by the preceding results. We deal with a class of functions b that
satisfy (b1) but oscillate in a suitable way at infinity. No condition on the
decay of b at infinity is required. For such b’s we are able to show that (1)
has infinitely many solutions. See Theorems 3.2, 3.3, 4.1 and the example
at the end of Section 3. In this example we build a function b which does
not satisfy (b2), which can even be negative somewhere, and such that (1)
has infinitely many solutions.

Our approach is different from the papers cited above. Instead of trying
to overcome the lack of (PS) we adapt a perturbation method discussed
in [2–4]. Roughly, our arguments are based on the following steps:

1) If z ∈ H1(RN ) is a radial positive solution of

−∆u+ u = b∞|u|p−1u,(4)

then the manifold Z = {zθ = z(· + θ) : θ ∈ RN} consists of critical points
of J∞.

2) For a large R we construct, near ZR = {zθ = z(· + θ) : |θ| > R},
a perturbed manifold Z̃R, locally diffeomorphic to ZR, which is a natural
constraint for J : by this we mean that the critical points of J constrained
on Z̃R are global critical points, that is,

u ∈ ZR and ∇J|Z̃R(u) = 0 implies ∇J(u) = 0.

In this way we reduce the infinite-dimensional problem of finding critical
points of J to a finite-dimensional one.
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3) Through an asymptotic expansion, the critical points of J|Z̃R cor-
respond to the ones of a suitable functional Γ on ZR. Such a functional
inherits the oscillation behavior of b and this permits us to find infinitely
many critical points of J .

This paper is organized as follows: in Section 2 we give the abstract
setting for our treatment of problem (1); then we apply this setting to get
infinitely many solutions when b oscillates and a = b− b∞ has constant sign
(Section 3) or changes sign (Section 4).

Notations. We give a list of the main notations we will use.

• For u ∈ R, u+ is the positive part, u− the negative part.
• We write ‖u‖ for the usual norm in the Sobolev space H1(RN ), (u|v)

for the inner product. For u ∈ Lp(RN ), |u|p is the usual Lp norm.
• 2∗ = 2N/(N − 2) is the critical exponent for Sobolev embedding.
• For any P ∈ RN and r > 0 we denote by B(P, r) the open ball in RN

with center P and radius r, while Br = B(0, r).
• {e1, . . . , eN} is the usual vector basis of RN .
• o(1) is any asymptotically vanishing quantity.
• If E is a Banach space we define L(E) to be the space of bounded

linear operators from E to E, with norm ‖T‖L = sup‖u‖E=1 ‖Tu‖E .

• If E is a Hilbert space and f ∈ C1(E,E), we denote by f ′ or ∇f the
gradient of f .
• We use C to indicate any fixed positive constant.

The author thanks A. Ambrosetti for useful discussions.

2. The abstract setting. In this section we give the general setting
in which we study problem (1). We want to reduce problem (1) to the
problem of looking for critical points of a functional defined in ZR. For this
we construct a “perturbed manifold”, near ZR, and we show that the critical
points of J , constrained on this manifold, are true critical points, hence
solutions of (1). Then we will look for critical points of this constrained
functional by making use of suitable asymptotic expansions. In Sections 3,
4 we will apply these general results to obtain existence of solutions.

Let K = (−∆ + 1)−1 : H−1 → H1 be the usual isomorphism. We can
write (1) as

u = K(b|u|p−1u).

We define z to be the unique positive radial solution of the equation
{
−∆u+ u = b∞|u|p−1u,
u ∈ H1(RN ),

(5)
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which we can write as u = K(b∞|u|p−1u), so that z satisfies

z = Kb∞zp.
For the existence, uniqueness and other properties of z see [9], [10], [14]. We
recall in particular the asymptotic decay of z: there is η > 0 such that

z(x) exp(|x|)|x|(N−1)/2→ η as |x| → ∞.(6)

Let zθ(x) = z(x−θ) be a translation of z. Notice that the partial derivatives
Dizθ satisfy the linearized equation{

−∆u+ u = pb∞z
p−1
θ u,

u ∈ H1(RN ).
(7)

It is well known (see [19] and the references therein) that the subspace
Kθ = span{Dizθ : i = 1, . . . , N} gives all solutions of (7).

As mentioned in the introduction, we now want to build a manifold Z̃R,
near ZR and locally diffeomorphic to it, which is a natural constraint for J .
We will write

Z̃R = {zθ + wθ : |θ| > R},
for a suitable wθ ∈ H1(RN ), and we want to find wθ. For this, consider the
function Fθ : H1(RN )→ H1(RN ) defined by

Fθ(w) = w +Kb∞zpθ −Kb[|zθ + w|p−1(zθ + w)].(8)

Let K⊥θ be the orthogonal complement of Kθ in H1, and Pθ the orthogonal
projection of H1 on K⊥θ . Now, for any θ outside a compact set, we want to
find wθ ∈ K⊥θ such that Fθ(wθ) ∈ Kθ, that is, we want to find solutions of
the following problem:

w ∈ K⊥θ , PθFθ(w) = 0.(9)

The next theorem gives our main result concerning the solutions of (9), while
Theorem 2.2 says that the manifold Z̃R that we construct with such wθ’s is
indeed a natural constraint for J .

Theorem 2.1. There are a positive number R and a function w :
RN \ BR → H1(RN ) such that , for all θ ∈ RN \ BR, w(θ) satisfies (9).
Furthermore, w is a C1 function of θ and ‖w(θ)‖ and ‖Dθjw(θ)‖ go to
zero as |θ| → ∞.

We will prove Theorem 2.1 in a sequence of lemmas. First, we rewrite
(9) as a fixed point equation. For this, write

Fθ(w) = Fθ(0) + F ′θ(0)w +Nθ(w),

and notice that, setting
a(x) = b(x)− b∞,

we have
Fθ(0) = −Kazpθ , F ′θ(0)w = w − pKbzp−1

θ w,
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which implies

Nθ(w) = −Kb[|zθ + w|p−1(zθ + w)− zpθ − pz
p−1
θ w].

We can write (9) as

w ∈ K⊥θ , PθF
′
θ(0)w = −PθFθ(0)− PθNθ(w).(10)

Define
Lθ = PθF

′
θ(0) ∈ L(K⊥θ ).

In the following lemma we prove that Lθ is invertible.

Lemma 2.1. There is R > 0 such that , for all θ with |θ| ≥ R, Lθ is
invertible.

Proof. We prove the following property, which implies the invertibility
of Lθ: there is γ > 0 such that for all |θ| large enough and for all ϕ ∈ K⊥θ
with ‖ϕ‖ = 1,

‖Lθϕ‖ ≥ γ.(11)

To prove (11) we write Lθ = L1
θ + L2

θ where

L1
θϕ = Pθ(ϕ− pb∞Kzp−1

θ ϕ), L2
θϕ = −pPθK[azp−1

θ ϕ].

As mentioned above, Kθ is the kernel of the operator ϕ 7→ ϕ− pb∞Kzp−1
θ ϕ,

so L1
θ : K⊥θ → K⊥θ is invertible and it is easy to see that there is γ1 > 0

such that for all |θ| we have ‖L1
θϕ‖ ≥ γ1 if ϕ ∈ K⊥θ and ‖ϕ‖ = 1. Hence, the

assertion follows from the following claim:

‖L2
θ‖L → 0 as |θ| → ∞.

To prove the claim, we notice that

‖L2
θ‖L = sup

‖v‖=1
‖L2

θv‖ = sup
‖v‖,‖w‖=1

p
�

RN
azp−1
θ vw dx

≤ sup
‖v‖,‖w‖=1

p
( �

RN
|a|N/2z(p−1)N/2

θ dx
)2/N

|v|2∗|w|2∗

≤ C
( �

RN
|a|N/2z(p−1)N/2

θ dx
)2/N

.

It is easy to see that � RN |a|N/2z(p−1)N/2
θ dx→ 0 as |θ| → ∞, hence the claim

is proved, and so is the lemma.

Thanks to the previous lemma we can write (10) in the following way:

w ∈ K⊥θ , w = −L−1
θ [PθFθ(0) + PθNθ(w)].(12)

Define Gθ : K⊥θ → K⊥θ by Gθ(w) = −L−1
θ [PθFθ(0) + PθNθ(w)]. To solve

(12) means to find a fixed point of Gθ. In the next lemma we prove that
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Gθ, when restricted to little balls, is a contraction. For any δ > 0 define
B⊥δ = {ϕ ∈ K⊥θ : ‖ϕ‖ < δ}.

Lemma 2.2. For any δ small enough there is R > 0 such that for all
|θ| > R, Gθ(B⊥δ ) ⊂ B⊥δ and Gθ |B⊥δ is a contraction.

Proof. By some lengthy computations that we skip, it is not difficult to
get the following statements:

(i) Fθ(0) = −Kazpθ → 0 as |θ| → ∞.
(ii) ‖Nθ(w)‖ = o(‖w‖) as ‖w‖ → 0 uniformly with respect to θ.

(iii) ‖Nθ(w1)−Nθ(w2)‖ ≤ o(1)‖w1 − w2‖ uniformly with respect to θ.

From (i)–(iii), the assertion follows easily.

As Gθ |B⊥δ is a contraction, it has a unique fixed point, which we call wθ.
So wθ is the solution of (9) we were looking for. It is defined for |θ| > R,
where R is given by the previous lemma. We now want to prove the other
properties stated in Theorem 2.1. We first obtain some information on the
asymptotic behavior of wθ.

Lemma 2.3. The following inequality holds:

‖wθ‖ ≤ C
( �

RN
|a|zp+1

θ dx
)p/(p+1)

.

In particular ‖wθ‖ → 0 as |θ| → ∞.

Proof. Let G(k)
θ be the kth iterate of Gθ. As wθ is the fixed point of the

contraction Gθ, we have (setting G(0)
θ (0) = 0)

‖wθ‖ = ‖ lim
k
G

(k)
θ (0)‖ =

∥∥∥
∞∑

k=1

[G(k)
θ (0)−G(k−1)

θ (0)]
∥∥∥

≤
∞∑

k=1

λk−1‖Gθ(0)− 0‖ ≤ C‖Gθ(0)‖ ≤ C‖azpθ‖H−1 ,

where λ is a contraction constant for Gθ. It is easy to see that

‖azpθ‖H−1 ≤ C
( �

RN
|a|(p+1)/pzp+1

θ dx
)p/(p+1)

(13)

≤ C
( �

RN
|a|zp+1

θ dx
)p/(p+1)

.

Let us rewrite (9) in the following form:

Fθ(wθ) =
N∑

i=1

αiθDizθ,(14)
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where αθ = (α1
θ, . . . , α

N
θ ) ∈ RN . We now want to prove that wθ, αθ are

C1 functions of θ. First, we prove that also αθ vanishes asymptotically for
large θ’s.

Lemma 2.4. αθ → 0 as |θ| → ∞.

Proof. From (14) we get, by taking the inner product with Djzθ (and
recalling that wθ ∈ K⊥θ ),

Cαjθ = −
�

RN
a|zθ+wθ|p−1(zθ+wθ)Djzθ−b∞

�

RN
[|zθ+wθ|p−1(zθ+wθ)−zpθ ]Djzθ

and it is easy to see that the right-hand terms vanish as |θ| → ∞.

To prove that w,α are C1 functions of θ, we apply the Implicit Function
Theorem. For R > 0 set AR = RN \BR. Consider the function

Φ = (Φ1, Φ2) : AR ×H1 × RN → H1 × RN(15)

where

Φ1(θ, w, α) = w +Kb∞zpθ −Kb|zθ + w|p−1(zθ + w)−
∑

i

αiDizθ,

Φ2(θ, w, α) = ((w|D1zθ), . . . , (w|DNzθ)).

Notice that
Φ(θ, wθ, αθ) = (0, 0).

We want to solve the equation Φ = 0 near any point (θ, wθ, αθ). We will
apply the Implicit Function Theorem to get, in a neighborhood of (θ, wθ, αθ),
functions w̃(τ), α̃(τ) such that Φ(τ, w̃(τ), α̃(τ)) = 0. Of course we have to
compute the differential of Φ with respect to (w,α), and it is not difficult
to obtain

DΦ(θ, wθ, αθ)[v, β] = (DΦ1(θ, wθ, αθ)[v, β],DΦ2(θ, wθ, αθ)[v, β])

=
(
v − pKb|zθ + wθ|p−1v −

∑

i

βiDizθ; (v|D1zθ), . . . , (v|DNzθ)
)
.

Here D means the differential with respect to (w,α). In the space H1×RN ,
we consider the norm ‖(v, β)‖1 = ‖v‖ + |α|. Then we prove the following
lemma.

Lemma 2.5. There exist γ,R1 > 0 such that , for all |θ| > R1 and all
(v, β) ∈ H1 × RN ,

‖DΦ(θ, wθ, αθ)[v, β]‖1 ≥ γ‖(v, β)‖1.
Proof. We argue by contradiction. If the conclusion is not true, then

there are sequences {θk} ⊂ RN and {(vk, βk)} ⊂ H1 × RN such that

|θk| → ∞, ‖(vk, βk)‖1 = 1, ‖DΦ(θk, wθk , αθk)[vk, βk]‖1 → 0.

Setting wk = wθk and zk = zθk , we have
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o(1) = DΦ1(θk, wk, αθk)[vk, βk](16)

= vk − pKb|zk + wk|p−1vk −
∑

i

βikDizk

= vk − pb∞Kzp−1
k vk

+ pb∞Kzp−1
k vk − pKb|zk + wk|p−1vk −

∑

i

βikDizk

= L1
θk
vk − pKa|zk + wk|p−1vk

− pb∞K[|zk + wk|p−1 − zp−1
k ]vk −

∑

i

βikDizk.

Since |θk| → ∞, we have ‖wk‖ → 0, hence we easily obtain

Ka|zk + wk|p−1vk → 0, K[|zk + wk|p−1 − zp−1
k ]vk → 0 as |θk| → ∞.

Recalling that L1
θDjzk = 0, from (16) we get, by taking the inner product

with Djzk,
βjk → 0, hence βk → 0 as k →∞.

Recall that DΦ2(θk, wθk , αθk)vk → 0, that is, (vk|Djzθk)→ 0, j = 1, . . . , N .
Hence, if we write vk = v1

k + v2
k where v1

k ∈ Kθk and v2
k ∈ K⊥θk , we obtain

v1
k → 0. From this we deduce ‖L1

θk
vk‖ = ‖L1

θk
v2
k‖ ≥ γ1‖v2

k‖ = γ1‖vk‖+ o(1).
From (16) we get

γ1‖vk‖ ≤ o(1),

so vk → 0 and βk → 0, contrary to the hypothesis ‖(vk, βk)‖1 = 1.

Thanks to Lemma 2.5, we can apply the Implicit Function Theorem at
any point (θ, wθ, αθ) with |θ| > R (it is not restrictive to assume R > R1),
and we get, in the neighborhood of such a point, two C1 functions w̃(τ), α̃(τ)
such that Φ(τ, α̃(τ), w̃(τ)) = 0. This equation means exactly that w̃(τ) ∈ K⊥τ
and that w̃(τ) satisfies (9). We know that wτ is the unique point satisfying
these conditions, so we must have wτ = w̃(τ) in this entire neighborhood
of θ. In particular we get wθ = w̃(θ) for all θ and wθ is a C1 function of θ. In
the same way αθ = α̃(θ) is a C1 function of θ. This gives the C1 regularity
of wθ (and also of αθ), and to complete the proof of Theorem 2.1 we just
have to prove that the derivatives Dθjw vanish as |θ| → ∞.

Lemma 2.6. ‖Dθiw‖ → 0 and |Dθiα| → 0 as |θ| → ∞.

Proof. We differentiate (14) with respect to θj , and recall that (w(θ)|Dizθ)
= 0, to obtain the following system of equations satisfied by Dθiw, Dθiα:

(17)





Dθjw + pb∞Kzp−1
θ Djzθ − pKb|zθ + w|p−1(Djzθ +Dθjw)

=
N∑

i=1

Dθjα
jDizθ + αiDijzθ,

(w|Dijzθ) + (Dθjw|Dizθ) = 0.



A semilinear elliptic equation 147

Notice that the equality

(w|Dijzθ) + (Dθjw|Dizθ) = 0

implies that

(Dθjw|Dizθ) = o(1) as |θ| → ∞,(18)

because w = w(θ) = o(1) and Dijzθ is bounded. We write the first equation
of (17) in the following way:

0 = Dθjw + pKb∞zp−1
θ Djzθ − pKb|zθ + w|p−1(Djzθ +Dθjw)(19)

−
N∑

i=1

[Dθjα
jDizθ + αiDijzθ]

= Dθjw − pKa|zθ + w|p−1Djzθ − pb∞K(|zθ + w|p−1 − zp−1
θ )Djzθ

− pKb|zθ + w|p−1Dθjw −
N∑

i=1

[Dθjα
jDizθ + αiDijzθ]

= Dθjw − pb∞Kzp−1
θ Dθjw

− pb∞K(|zθ + w|p−1 − zp−1
θ )(Djzθ +Dθjw)

− pKa|zθ + w|p−1(Djzθ +Dθjw)−
N∑

i=1

[Dθjα
iDizθ + αiDijzθ].

Multiplying this equation by Djzθ and recalling that L1
θDjzθ = 0, and that

|zθ + w|p−1 − zp−1
θ and a|zθ + w|p−1 go to zero as |θ| → ∞ in the relevant

norms, it is easy to see that

|Dθjα
i| = o(1)(1 + ‖Dθjw‖).(20)

Write Dθjw = ζ1,θ + ζ2,θ where ζ1,θ ∈ Kθ, ζ2,θ ∈ K⊥θ . Then (18) shows that

ζ1,θ = o(1) as |θ| → ∞.(21)

Now, substituting (20) and (21) in (19) and recalling that ‖L1
θζ2,θ‖≥ γ1‖ζ2,θ‖

we get
‖ζ2,θ‖ ≤ o(1)(1 + ‖ζ2,θ‖),

hence ‖ζ2,θ‖ = o(1), so ‖Dθjw‖ = o(1), which implies |Dθjα| = o(1) and the
lemma is proved.

Now we can introduce the perturbed manifold that we announced at the
beginning of this section. Define

Z̃R = Z̃ = {zθ + w(θ) : |θ| > R}.(22)

Thanks to the previous results, Z̃ is a smooth manifold. We consider the
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constrained functional J|Z̃ and we then get the following basic result, which
states that the constrained critical points of J|Z̃ are true critical points.

Theorem 2.2. If u ∈ Z̃ and ∇J|Z̃(u) = 0, then ∇J(u) = 0.

Proof. One has just to repeat the arguments of Lemma 2.1 in [3].

Now our goal is to prove the existence of critical points of J|Z̃ . For this
we notice that, by easy computations, the following development holds (for
simplicity we set w = w(θ)):

J(zθ + w) =
1
2
‖zθ + w‖2 − 1

p+ 1

�

RN
b|zθ + w|p+1 dx(23)

=
1
2
‖zθ‖2 + (zθ|w) +

1
2
‖w‖2 − b∞

p+ 1

�

RN
zp+1
θ dx

+
b∞
p+ 1

�

RN
zp+1
θ dx− 1

p+ 1

�

RN
b|zθ + w|p+1 dx

= c0 −
1

p+ 1

�

RN
azp+1
θ dx−

�

RN
azpθw dx+ o(‖w‖),

where we have set

c0 =
1
2
‖zθ‖2 −

b∞
p+ 1

�

RN
zp+1
θ dx.

Now we have at hand all the abstract machinery that we need: we have
reduced problem (1) to the finite-dimensional problem of finding critical
points of J|Z̃ , and we also have an asymptotic expansion of J|Z̃ . In the next
sections we will prove, using these results and suitable assumptions on b, the
existence of infinitely many critical points of J|Z̃ , hence of solutions to (1).

3. Existence results for a with constant sign. To obtain existence
of solutions for problem (1), we first estimate the terms in (23).

Lemma 3.1. Assume that a does not change sign. Then, as |θ| → ∞,
∣∣∣

�

RN
azpθw dx

∣∣∣ ≤ o(1)
∣∣∣

�

RN
azp+1
θ dx

∣∣∣.(24)

Proof. We have, by the Hölder inequality,
∣∣∣

�

RN
azpθw dx

∣∣∣ ≤
[ �

RN
|a|(p+1)/pzp+1

θ dx
]p/(p+1)

‖w‖

≤ C
[ �

RN
|a|zp+1

θ dx
]p/(p+1)

‖w‖.
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Hence, by Lemma 2.3 we obtain
∣∣∣

�

RN
azpθw dx

∣∣∣ ≤
[ �

RN
|a|zp+1

θ dx
]2p/(p+1)

(25)

=
[ �

RN
|a|zp+1

θ dx
][ �

RN
|a|zp+1

θ dx
](p−1)/(p+1)

= o(1)
[ �

RN
|a|zp+1

θ dx
]

= o(1)
∣∣∣

�

RN
azp+1
θ dx

∣∣∣

if a does not change sign.

Lemmas 2.3, 3.1 and formula (23) imply the following theorem.

Theorem 3.1. Define Γ (θ) = � RN azp+1
θ dx. Then the functional J|Z̃

satisfies the following equation:

J(zθ + w(θ)) = c0 −
1

p+ 1
Γ (θ) + o(Γ (θ)).

This theorem says that we can study, instead of the functional J|Z̃ , the

functional Γ : RN → R, which is of course much easier. In the following
theorems we will prove that, under suitable hypotheses on a (that is, on b),
Γ has infinitely many local maxima or minima, which gives rise to infinitely
many solutions of (1).

Theorem 3.2. Assume that a ≥ 0 and that the following hypotheses
hold.

(i) There are T, r > 0 and sequences {Pk}k ⊂ RN and {αk}k ⊂ R such
that αk > 0, |Pk| → +∞ and

a(x) ≥ αk ∀x ∈ B(Pk, r), a(x) ≤ Tαk ∀|x| ≥ |Pk|/2.

(ii) There are sequences {rk}k, {Rk}k, {βk}k such that rk, Rk > 0,
βk ≥ 0, rk → +∞, Rk − rk → +∞, Rk < |Pk|/2 and

a(x) ≤ βk ∀x ∈ Σk = {x ∈ RN : rk ≤ |x| ≤ Rk}.

(iii) There exist µ > 1, δ ∈ ]0, p+ 1[ and C > 0 such that for large k,

αk > µc3βk + C exp
(
−δ Rk − rk

2

)
,

where c3 = c2/c1, c2 = � RN zp+1(x) dx, c1 = � |x|≤r zp+1(x) dx.

Then there are infinitely many solutions of (1).
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Proof. The proof is in two steps: we first prove that Γ has infinitely many
local maxima; then we prove that this oscillatory behavior is preserved when
passing from Γ to J|Z̃ , which is a perturbation of Γ .

Step 1. By (i) we have

Γ (Pk) =
�

RN
zp+1(x− Pk)a dx ≥

�

B(Pk,r)

zp+1(x− Pk)a dx

≥ αk
�

B(Pk,r)

zp+1(x− Pk) dx = αk
�

B(0,r)

zp+1(x) dx = c1αk.

On the other hand, pick any ξ ∈ RN such that |ξ| = (Rk + rk)/2. We get

Γ (ξ) =
�

Σk

zp+1(x− ξ)a dx+
�

|x|<rk
zp+1(x− ξ)a dx+

�

|x|>Rk
zp+1(x− ξ)a dx

≤ βk
�

Σk

zp+1(x−ξ) dx+ C
�

|x|<rk
zp+1(x−ξ) dx+ C

�

|x|>Rk
zp+1(x−ξ) dx.

We estimate � Σk zp+1(x − ξ) dx < � RN zp+1(x − ξ) dx = c2. On the other
hand, � |x|≤rk zp+1(x− ξ) dx = � |y+ξ|≤rk z

p+1(y) dy. But it is easy to see that
|y + ξ| ≤ rk and |ξ| = (Rk + rk)/2 imply |y| ≥ (Rk − rk)/2 so that

�

|y+ξ|≤rk
zp+1(y) dy ≤

�

|y|≥(Rk−rk)/2

zp+1(y) dy = O

(
exp
(
−δ1

Rk − rk
2

))
,

where δ < δ1 < p+ 1. In the same way
�

|x|≥Rk
zp+1(x− ξ) dx =

�

|x+ξ|≥Rk
zp+1(x) dx ≤

�

|y|≥(Rk−rk)/2

zp+1(y) dy

= O

(
exp
(
−δ1

Rk − rk
2

))
.

Hence

Γ (ξ) ≤ c2βk + C exp
(
−δ1

Rk − rk
2

)
, while Γ (Pk) ≥ c1αk.

These estimates and (iii) prove that

Γ (Pk) > Γ (ξ)(26)

when |ξ| = (Rk + rk)/2.

Step 2. We now want to prove that (26) is stable under perturbations,
that is,

Γ (Pk) + o(Γ (Pk)) > Γ (ξ) + o(Γ (ξ)).(27)
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For this we have to estimate Γ (Pk) from above. We have

0 < Γ (Pk) =
�

RN
azp+1(x− Pk) dx

=
�

|x|<|Pk|/2
azp+1(x− Pk) dx+

�

|x|≥|Pk |/2
azp+1(x− Pk) dx

≤ C
�

|x+Pk|<|Pk|/2
zp+1(x) dx+ Tαkc2

≤ C exp(−δ1|Pk|/2) + Tαkc2.

Hence we can say that there is a vanishing sequence {εk}k such that

Γ (Pk) + o(Γ (Pk)) ≥ c1αk(1− c3Tεk)− εkC exp(−δ1|Pk|/2).

On the other hand we trivially get

Γ (ξ) + o(Γ (ξ)) ≤
[
c2βk + C exp

(
−δ1

Rk − rk
2

)]
(1 + εk),

so to obtain (27) it is enough to prove

c1αk(1− c3Tεk)

≥
[
c2βk + C exp

(
−δ1

Rk − rk
2

)]
(1 + εk) + C εk exp

(
−δ1
|Pk|

2

)
.

But we have
[
c2βk + C exp

(
−δ1

Rk − rk
2

)]
(1 + εk) + C εk exp(−δ1|Pk|/2)

≤ c2(1 + εk)βk + C exp
(
−δ1

Rk − rk
2

)

(recall that |Pk|/2 > Rk and that C is any positive constant); hence it is
enough to prove

αk ≥ c3
1 + εk

1− c3Tεk
βk +

C

1− c3Tεk
exp
(
−δ1

Rk − rk
2

)
.(28)

But now recall that we assume (iii), that εk → 0 and that δ1 > δ; hence it
is easy to prove that (28) holds, and so also (27) is proved.

Now we can conclude. Define

φ(θ) = c0 − J(zθ + w(θ)) =
1

p+ 1
Γ (θ) + o(Γ (θ)).

From (27) we see that φ has infinitely many local maximum points. Indeed,
we have
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φ(Pk) > φ(ξ) > 0
(

when |ξ| = Rk + rk
2

)
,

|Pk| > Rk >
Rk + rk

2
and φ(θ)→ 0 as |θ| → ∞.

Hence J|Z̃ has infinitely many local maximum points, which gives rise to
infinitely many solutions of (1). Notice that the solutions {uk} we find have
the following form:

uk = zθk + w(θk),(29)

where the θk’s are the critical points of J|Z̃ . By construction {θk}k is not
bounded. Passing to a subsequence we can assume that |θk − θk−1| > 1 and
|θk| → ∞, hence |w(θk)| → 0. This implies that all the uk’s given by (29)
are distinct, for large k’s.

We have a similar result for the case a ≤ 0. We do not give the proof,
which is the same as that of the previous theorem.

Theorem 3.3. Assume that a ≤ 0 and that the following hypotheses
hold.

(i) There are T, r > 0 and sequences {Pk}k ⊂ RN and {αk}k ⊂ R such
that αk < 0, |Pk| → +∞ and

a(x) ≤ αk ∀x ∈ B(Pk, r), a(x) ≥ Tαk ∀|x| ≥ |Pk|/2.
(ii) There are sequences {rk}k, {Rk}k, {βk}k such that rk, Rk > 0,

βk ≤ 0, rk → +∞, Rk − rk → +∞, Rk < |Pk|/2 and

a(x) ≥ βk ∀x ∈ Σk = {x ∈ RN : rk ≤ |x| ≤ Rk}.
(iii) There are µ > 1, δ ∈ ]0, p+ 1[ and C > 0 such that for large k,

αk < µc0βk + C exp
(
−δRk − rk

2

)
.

Then there are infinitely many solutions of (1).

Example. Let us give a more concrete example of a function b satisfying
the assumptions of Theorem 3.3. Set b∞ = 1 and consider b0 ∈ C(RN ) such
that b0(x) = 1 − 1/|x|α if |x| ≥ 1. We do not require anything about b0 in
B1, it can also assume negative values there. Let ϕ ∈ C0(B2) be such that
0 ≤ ϕ ≤ 1 and ϕ(x) = 1 for all x ∈ B1. Define Pk = 4eke1, αk = −1/kα,
ϕk(x) = ϕ(x− Pk). Then we consider the function

b(x) = b0(x) +
∞∑

k=2

αkϕk(x).

It is easy to see that the hypotheses of Theorem 3.3 are satisfied if we set,
for k ≥ 3, rk = ek + 3, Rk = ek+1− 3, βk = −2/|rk|α = −2/|ek + 3|α, r = 2,
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T = 3. We then obtain infinitely many solutions for (1). Notice that in this
case (b−b∞)− does not decay exponentially, so the results of [6, 7] cannot be
applied, and that we allow b to assume negative values (in B1). By a similar
construction it would be simple to prove some density results analogous to
those of [1].

4. Existence results for a with changing sign. The previous results
can be extended to the case in which a changes sign. However, we need to
make some more precise assumptions on the asymptotic behavior of a. We
begin by recalling a known result (Proposition 1.2 in [6]).

Lemma 4.1. Let ϕ ∈ C(RN ) ∩ L∞(RN ) and ψ ∈ C(RN ) be radially
symmetric and satisfy , for some α ≥ 0, β ≥ 0, γ ∈ R,

ϕ(x) exp(α|x|)|x|β → γ as |x| → ∞,
�

RN
|ψ(x)| exp(α|x|)(1 + |x|β) dx <∞.(30)

Then
�

RN
ϕ(x+y)ψ(x) dx exp(α|y|)|y|β → γ

�

RN
ψ(x) exp(−α|x1|) dx as |y| → ∞.

We now need to prove a result analogous to Lemma 3.1. For this we
use the previous lemma, and, as a is not radial, we introduce some radial
functions linked to it. Set

a1(x) = inf
|y|=|x|

a(y), a2(x) = sup
|y|=|x|

a(y),

and denote by a+
i , a

−
i the positive and negative parts of ai. We then assume

that there are 0 ≤ α < p + 1, β ≥ 0 and γ+
i , γ

−
i ∈ [0,+∞[ (i = 1, 2) such

that
|a±i (x)| exp(α|x|)|x|β → γ±i .(31)

We obtain the following lemma.

Lemma 4.2. Assume that (31) holds and also

γ+
1 > γ−1 or γ+

2 < γ−2 .(32)

Then the same conclusion of Lemma 3.1 holds, that is,
∣∣∣

�

RN
azpθw dx

∣∣∣ ≤ o(1)
∣∣∣

�

RN
azp+1
θ dx

∣∣∣.(33)

Proof. From (25) we have
∣∣∣

�

RN
azpθw dx

∣∣∣ = o(1)
�

RN
|a|zp+1

θ dx.
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We apply Lemma 4.1 with ϕ = a±i , ψ = zp+1 to obtain
�

RN
zp+1(x+θ)a±i dx exp(α|θ|)|θ|β → γ±i

�

RN
a±i exp(−α|x1|) dx as |θ| → ∞,

which implies

(34)
�

RN
zp+1(x+ θ)|ai(x)| dx exp(α|θ|)|θ|β

→ (γ+
i + γ−i )

�

RN
|ai(x)| exp(−αx1) dx as |θ| → ∞.

and

(35)
�

RN
zp+1(x+ θ)ai(x) dx exp(α|θ|)|θ|β

→ (γ+
i − γ−i )

�

RN
ai(x) exp(−αx1) dx as |θ| → ∞.

As a1 ≤ a ≤ a2, (32) and (35) imply that there are 0 < c1 ≤ c2 such that

c1 exp(−α|θ|)|θ|−β ≤
∣∣∣

�

RN
zp+1(x+ θ)a(x) dx

∣∣∣ ≤ c2 exp(−α|θ|)|θ|−β.(36)

On the other hand, |a(x)| ≤ max{|a1(x)|, |a2(x)|}, hence (34) implies that
�

RN
zp+1(x+ θ)|a(x)| dx = O(exp(−α|θ|)|θ|−β).

From this and from (36) we easily obtain (33).

We then get the following theorem:

Theorem 4.1. Under the hypotheses of Lemma 4.2, suppose moreover
that :

(i) There are sequences {Pk}k ⊂ RN and {%k}, {αk}k ⊂ R such that
αk > 0, %k, |Pk| → ∞ and

a(x) ≥ αk ∀x ∈ B(Pk, %k).

(ii) There are sequences {rk}k, {Rk}k, {βk}k such that rk, Rk > 0,
βk ≤ 0, rk → +∞, Rk − rk → +∞ and

a(x) ≤ βk ∀x ∈ Σk = {x ∈ RN : rk ≤ |x| ≤ Rk}.
(iii) There are µ > 1, δ ∈ ]0, p+ 1[ and C > 0 such that , for large k,

αk > µ|βk|+ C exp
(
−δ Rk − rk

2

)
.

Then there are infinitely many solutions of (1).

Proof. Notice that we can always assume, passing to subsequences if
necessary, that %k > Rk for all k. Using arguments similar to those for the
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lemmas of the previous section, it is not difficult to see that

Γ (Pk) + o(Γ (Pk)) ≥ αkσk + exp(−δ1%k),

where δ1 > δ and σk → � RN zp+1 dx. We also obtain, for any ξ with |ξ| =
(rk +Rk)/2,

Γ (ξ) + o(Γ (ξ)) ≤ βkσk + C exp
(
−δ1

rk +Rk
2

)
.

The result can be easily derived from these estimates.

Rmark 4.1. Notice that if a is radial, then a1 = a2 and γ+
1 = γ+

2 , γ−1
= γ−2 . Hence in this case the hypotheses (32) just mean that γ+

1 6= γ−1 .
Roughly speaking, this forbids a to have “symmetric” oscillations. Also no-
tice that (31) in any case allows a to have a polynomial decay at infinity.
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