Linear differential polynomials sharing the same 1-points with weight two

by Indrajit Lahiri (Kalyani)

Abstract. We prove a uniqueness theorem for meromorphic functions involving differential polynomials which improves some previous results and provides a better answer to a question of C. C. Yang.

1. Introduction and definitions. Let \(f \) and \(g \) be two nonconstant meromorphic functions defined in the open complex plane \(\mathbb{C} \). If for \(a \in \mathbb{C} \cup \{\infty\} \), \(f - a \) and \(g - a \) have the same set of zeros with the same multiplicities, we say that \(f \) and \(g \) share the value \(a \) CM (counting multiplicities) and if we do not consider the multiplicities, \(f \) and \(g \) are said to share the value \(a \) IM (ignoring multiplicities). We do not explain the standard notations and definitions of the value distribution theory as those are available in [2].

In [9] C. C. Yang asked: What can be said if two nonconstant entire functions \(f, g \) share the value 0 CM and their first derivatives share the value 1 CM?

A number of authors have worked on this question of Yang (e.g. [3, 6, 7, 10, 11]). To answer the question of Yang, K. Shibazaki [7] proved the following result.

Theorem A. Let \(f \) and \(g \) be two entire functions of finite order. If \(f' \) and \(g' \) share the value 1 CM with \(\delta(0; f) > 0 \) and 0 being lacunary for \(g \) then either \(f \equiv g \) or \(f'g' \equiv 1 \).

Improving Theorem A, H. X. Yi [12] obtained the following theorem.

Theorem B. Let \(f, g \) be two entire functions such that \(f^{(n)} \) and \(g^{(n)} \) share the value 1 CM. If \(\delta(0; f) + \delta(0; g) > 1 \) then either \(f \equiv g \) or \(f^{(n)}g^{(n)} \equiv 1 \).

For meromorphic functions H. X. Yi and C. C. Yang [13] proved the following result.

2000 Mathematics Subject Classification: Primary 30D35.
Key words and phrases: uniqueness, weighted sharing, differential polynomial.
Theorem C. Let \(f \) and \(g \) be two meromorphic functions such that \(\Theta(\infty; f) = \Theta(\infty; g) = 1 \). If \(f^{(n)} \) and \(g^{(n)} \) share the value 1 CM with \(\delta(0; f) + \delta(0; g) > 1 \) then either \(f \equiv g \) or \(f^{(n)}g^{(n)} \equiv 1 \).

In [3] the following question was asked: What can be said if two linear differential polynomials generated by two meromorphic functions \(f \) and \(g \) share the value 1 CM?

We denote by \(\Psi(D) \) a linear differential operator with constant coefficients of the form

\[
\Psi(D) = \sum_{i=1}^{p} \alpha_i D^i,
\]

where \(D = d/dz \).

Also we denote by \(N_k(r, a; f) \) the counting function of \(a \)-points of \(f \) where an \(a \)-point of multiplicity \(\mu \) is counted \(\mu \) times if \(\mu \leq k \) and \(k \) times if \(\mu > k \), where \(k \) is a positive integer. We put

\[
\delta_k(a; f) = \limsup_{r \to \infty} \frac{N_k(r, a; f)}{T(r, f)}.
\]

Clearly \(\delta(a; f) \leq \delta_k(a; f) \leq \delta_{k-1}(a; f) \leq \ldots \leq \delta_1(a; f) = \Theta(a; f) \).

In [3] the following two theorems were proved.

Theorem D. Let \(f \) and \(g \) be two meromorphic functions such that

(i) \(\Psi(D)f, \Psi(D)g \) are nonconstant and share 1 CM, and

(ii) \[
\frac{\sum_{a \neq \infty} \delta(a; f)}{1 + p(1 - \Theta(\infty; f))} + \frac{\sum_{a \neq \infty} \delta(a; g)}{1 + p(1 - \Theta(\infty; g))} > 1 + \frac{4(1 - \Theta(\infty; f))}{\sum_{a \neq \infty} \delta_p(a; f)} + \frac{4(1 - \Theta(\infty; g))}{\sum_{a \neq \infty} \delta_p(a; g)},
\]

where \(\sum_{a \neq \infty} \delta_p(a; f) > 0 \) and \(\sum_{a \neq \infty} \delta_p(a; g) > 0 \). Then either \([\Psi(D)f][\Psi(D)g] \equiv 1 \) or \(f - g \equiv s \) where \(s = s(z) \) is a solution of the differential equation \(\Psi(D)w = 0 \).

Theorem E. If \(f \) and \(g \) are of finite order then Theorem D still holds if condition (ii) is replaced by the following weaker one:

\[
\frac{\sum_{a \neq \infty} \delta(a; f)}{1 + p(1 - \Theta(\infty; f))} + \frac{\sum_{a \neq \infty} \delta(a; g)}{1 + p(1 - \Theta(\infty; g))} > 1 + \frac{2(1 - \Theta(\infty; f))}{\sum_{a \neq \infty} \delta_p(a; f)} + \frac{2(1 - \Theta(\infty; g))}{\sum_{a \neq \infty} \delta_p(a; g)},
\]

where \(\sum_{a \neq \infty} \delta_p(a; f) > 0 \) and \(\sum_{a \neq \infty} \delta_p(a; g) > 0 \).

H. X. Yi [10] also answered the question of Yang and proved the following result.
Theorem F. Let \(f \) and \(g \) be two nonconstant entire functions. Assume that \(f, g \) share 0 CM and \(f^{(n)}, g^{(n)} \) share 1 CM, where \(n \) is a nonnegative integer. If \(\delta(0; f) > 1/2 \) then either \(f \equiv g \) or \(f^{(n)} g^{(n)} \equiv 1 \).

As an application of Theorem D, in [3] the following answer to the question of Yang was given.

Theorem G. Let \(f \) and \(g \) be two nonconstant meromorphic functions with \(\Theta(\infty; f) = \Theta(\infty; g) = 1 \). Suppose that \(f^{(n)}, g^{(n)} (n \geq 1) \) share 1 CM and \(f, g \) share a value \(b (\neq \infty) \) IM. If \(\sum_{a \neq \infty} \delta(a; f) + \sum_{a \neq \infty} \delta(a; g) > 1 \) then either \(f \equiv g \) or \(f^{(n)} g^{(n)} \equiv 1 \).

The following example shows that in Theorems D and E sharing the value 1 cannot be relaxed from CM to IM.

Example 1. Let \(f = -ie^z, g = 2^{-p} e^{2z} - 2ie^2 \) and \(\Psi(D) = D^p \). Then
\[
\Psi(D)f, \Psi(D)g \text{ share the value } 1 \text{ IM and } \sum_{a \neq \infty} \delta(a; f) + \sum_{a \neq \infty} \delta(a; g) = 3/2
\]
but neither \(f \equiv g + Q \) nor \([\Psi(D)f][\Psi(D)g] \equiv 1 \) where \(Q \) is a polynomial of degree at most \(p - 1 \).

Now one may ask the following question: Is it possible in any way to relax the nature of sharing the value 1 in Theorems D and E?

The purpose of the paper is to study this problem. We shall not only relax the nature of sharing the value 1 but also weaken the condition on deficiencies. To this end we consider a gradation of sharing of values which measures how close a shared value is to being shared IM or being shared CM and is called weighted sharing of values as introduced in [4, 5].

Definition 1. Let \(k \) be a nonnegative integer or infinity. For \(a \in \mathbb{C} \cup \{ \infty \} \) we denote by \(E_k(a; f) \) the set of all \(a \)-points of \(f \) where an \(a \)-point of multiplicity \(m \) is counted \(m \) times if \(m \leq k \) and \(k + 1 \) times if \(m > k \).

If \(E_k(a; f) = E_k(a; g) \), we say that \(f, g \) share the value \(a \) with weight \(k \).

The definition implies that if \(f, g \) share a value \(a \) with weight \(k \) then \(z_0 \) is a zero of \(f - a \) with multiplicity \(m \) \((\leq k)\) if and only if \(z_0 \) is a zero of \(g - a \) with multiplicity \(m \) \((\leq k)\), and \(z_0 \) is a zero of \(f - a \) with multiplicity \(m \) \((> k)\) if and only if \(z_0 \) is a zero of \(g - a \) with multiplicity \(n \) \((> k)\) where \(m \) is not necessarily equal to \(n \).

We write “\(f, g \) share \((a, k)\)” to mean that \(f, g \) share the value \(a \) with weight \(k \). Clearly if \(f, g \) share \((a, k)\) then \(f, g \) share \((a, p)\) for any integer \(p \), \(0 \leq p < k \). Also we note that \(f, g \) share a value \(a \) IM or CM if and only if \(f, g \) share \((a, 0)\) or \((a, \infty)\) respectively.

Definition 2. We denote by \(N(r, a; f | = 1) \) the counting function of simple \(a \)-points of \(f \).
Definition 3. If \(s \) is a positive integer, we denote by \(\overline{N}(r, a; f \mid \geq s) \) the counting function of those \(a \)-points of \(f \) whose multiplicities are greater than or equal to \(s \), where each \(a \)-point is counted only once.

Definition 4. Let \(f, g \) share a value \(a \) IM. We denote by \(\overline{N}_s(r, a; f, g) \) the counting function of those \(a \)-points of \(f \) whose multiplicities are not equal to multiplicities of the corresponding \(a \)-points of \(g \), where each \(a \)-point is counted only once.

Clearly \(\overline{N}_s(r, a; f, g) \equiv \overline{N}_s(r, a; g, f) \).

Definition 5 (cf. [1]). For a meromorphic function \(f \) we put
\[
T_0(r, f) = \int_1^r \frac{T(t, f)}{t} \, dt, \quad N_0(r, a; f) = \int_1^r \frac{N(t, a; f)}{t} \, dt,
\]
\[
N_k^0(r, a; f) = \int_1^r \frac{N_k(t, a; f)}{t} \, dt, \quad m_0(r, f) = \int_1^r \frac{m(t, f)}{t} \, dt,
\]
\[
S_0(r, f) = \int_1^r \frac{S(t, f)}{t} \, dt.
\]

Definition 6. If \(f \) is a meromorphic function, we put, for \(a \in \mathbb{C} \cup \{\infty\} \),
\[
\delta_0(a; f) = 1 - \limsup_{r \to \infty} \frac{N_0(r, a; f)}{T_0(r, f)},
\]
\[
\Theta_0(a; f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}_0(r, a; f)}{T_0(r, f)},
\]
\[
\delta_k^0(a; f) = 1 - \limsup_{r \to \infty} \frac{N_k^0(r, a; f)}{T_0(r, f)}.
\]

2. Lemmas. In this section we present some lemmas which will be needed in what follows. Let \(f, g \) be two nonconstant meromorphic functions and we put
\[
h = \left(\frac{f'}{f} - \frac{2f'}{f-1} \right) - \left(\frac{g''}{g'} - \frac{2g'}{g-1} \right).
\]

Lemma 1. If \(f, g \) share \((1, 1)\) and \(h \neq 0 \) then

(i) \(N(r, 1; f \mid = 1) \leq N(r, h) + S(r, f) + S(r, g) \),

(ii) \(N(r, 1; g \mid = 1) \leq N(r, h) + S(r, f) + S(r, g) \).

Proof. Since \(f, g \) share \((1, 1)\), it follows that a simple 1-point of \(f \) is a simple 1-point of \(g \) and conversely. Let \(z_0 \) be a simple 1-point of \(f \) and \(g \). Then by a simple calculation we see that in some neighbourhood of \(z_0 \),
\[
h = (z - z_0)\phi(z),
\]
where \(\phi \) is analytic at \(z_0 \).
Hence by the first fundamental theorem and the Milloux theorem [2, p. 47] we get

\[N(r, 1; f | =1) \leq N(r, 0; h) \leq N(r, h) + S(r, f) + S(r, g), \]

which is (i).

Now (ii) follows from (i) because \(N(r, 1; f | =1) \equiv N(r, 1; g | =1). \) This proves the lemma.

Lemma 2. Let \(f, g \) share \((1,0)\) and \(h \neq 0. \) Then for any number \(b \) \((\neq 0, 1, \infty),\)

\[
N(r, h) \leq \overline{N}(r, \infty; f | \geq 2) + \overline{N}(r, 0; f | \geq 2) + \overline{N}(r, b; f | \geq 2) \\
+ \overline{N}(r, \infty; g | \geq 2) + \overline{N}(r, 0; g | \geq 2) + \overline{N}_\ast(r, 1; f, g) \\
+ \overline{N}_\odot(r, 0; f') + \overline{N}_\odot(r, 0; g'),
\]

where \(\overline{N}_\odot(r, 0; f') \) is the reduced counting function of those zeros of \(f' \) which are not zeros of \(f(f - 1)(f - b), \) and \(\overline{N}_\odot(r, 0; g') \) is the reduced counting function of those zeros of \(g' \) which are not zeros of \(g(g - 1). \)

Proof. We can easily verify that possible poles of \(h \) occur at (i) multiple zeros of \(f, g; \) (ii) multiple poles of \(f, g; \) (iii) zeros of \(f - 1, g - 1; \) (iv) multiple zeros of \(f - b; \) (v) zeros of \(f' \) which are not zeros of \(f(f - 1)(f - b); \) (vi) zeros of \(g' \) which are not zeros of \(g(g - 1). \)

Let \(z_0 \) be a zero of \(f - 1 \) with multiplicity \(m \) \((\geq 1)\) and of \(g - 1 \) with multiplicity \(n \) \((\geq 1). \) Then in some neighbourhood of \(z_0 \) we get

\[h = \frac{(n - m)\psi}{z - z_0} + \phi, \]

where \(\phi, \psi \) are analytic at \(z_0 \) and \(\psi(z_0) \neq 0. \)

This shows that if \(m = n \) then \(z_0 \) is not a pole of \(h \) and if \(m \neq n \) then \(z_0 \) is a simple pole of \(h. \) Since all the poles of \(h \) are simple, the lemma is proved.

Lemma 3. If \(f, g \) share \((1,2)\) then

\[
N_\odot(r, 0; g') + \overline{N}(r, 1; g | \geq 2) + \overline{N}_\ast(r, 1; f, g) \\
\leq \overline{N}(r, \infty; g) + \overline{N}(r, 0; g) + S(r, g),
\]

where \(N_\odot(r, 0; g') \) is the counting function of those zeros of \(g' \) which are not zeros of \(g(g - 1). \)

Proof. Since \(f, g \) share \((1,2)\), it follows that \(\overline{N}_\ast(r, 1; f, g) \leq \overline{N}(r, 1; g | \geq 3). \) So remembering the definition of \(N_\odot(r, 0; g') \) we get
(1) \[N_\otimes(r, 0; g') + N(r, 1; g \geq 2) + N_\ast(r, 1; f, g) + N(r, 0; g) = N(r, 0; g) \leq N_\otimes(r, 0; g') + N(r, 1; g \geq 2) + N(r, 1; g \geq 3) + N(r, 0; g) - N(r, 0; g) \leq N(r, 0; g'). \]

By the first fundamental theorem and the Milloux theorem [2, p. 55] we get

(2) \[N(r, 0; g') \leq N(r, 0; g' / g) + N(r, 0; g) - N(r, 0; g) \leq N(r, 0; g') + N(r, 0; g) - N(r, 0; g) + S(r, g) = N(r, \infty; g) + N(r, 0; g) + N(r, 0; g) - N(r, 0; g) + S(r, g) = N(r, \infty; g) + N(r, 0; g) + S(r, g). \]

Now the lemma follows from (1) and (2).

Lemma 4 (see [1]). \(\lim_{r \to \infty} S_0(r, f) / T_0(r, f) = 0 \) through all values of \(r \).

Lemma 5 (see [3]). For \(a \in \mathbb{C} \cup \{ \infty \} \), \(\delta(a; f) \leq \delta_0(a; f) \), \(\Theta(a; f) \leq \Theta_0(a; f) \) and \(\delta_k(a; f) \leq \delta_k^0(a; f) \).

Lemma 6 (see [3]).

(i) \(\lim_{r \to \infty} \inf \frac{T_0(r, \Psi(D) f)}{T_0(r, f)} \geq \sum_{a \neq \infty} \delta_0^0(a; f) \),

(ii) \(\delta_0(0; \Psi(D) f) \geq \frac{\sum_{a \neq \infty} \delta_0(a; f)}{1 + p(1 - \Theta_0(\infty; f))} \).

Lemma 7 (see [3]). If \(\sum_{a \neq \infty} \delta_0^0(a; f) > 0 \) then

\(\Theta_0(\infty; \Psi(D) f) \geq 1 - \frac{1 - \Theta_0(\infty; f)}{\sum_{a \neq \infty} \delta_0^0(a; f)} \).

Lemma 8 (see [8]). If \(f \) is transcendental then \(\lim_{r \to \infty} T_0(r, f) / (\log r)^2 = \infty \) through all values of \(r \).

3. The main result. In this section we discuss the main result of the paper.

Theorem 1. Let \(f, g \) be two meromorphic functions such that

(i) \(\Psi(D) f, \Psi(D) g \) are transcendental and share \((1, 2) \) and
We put

\[(\text{ii}) \quad \frac{\sum_{a \neq \infty} \delta(a; f)}{1 + p(1 - \Theta(\infty; f))} + \frac{\sum_{a \neq \infty} \delta(a; g)}{1 + p(1 - \Theta(\infty; g))} + \min\{\delta_2(b; \Psi(D)f), \delta_2(b; \Psi(D)g)\} > 1 + \frac{2(1 - \Theta(\infty; f))}{\sum_{a \neq \infty} \delta_p(a; f)} + \frac{2(1 - \Theta(\infty; g))}{\sum_{a \neq \infty} \delta_p(a; g)} \]

for some \(b \neq 0, 1, \infty, 1/2, 2, -\omega, -\omega^2\), with \(\sum_{a \neq \infty} \delta_p(a; f) > 0\), \(\sum_{a \neq \infty} \delta_p(a; g) > 0\) and \(\omega\) being the imaginary cube root of unity.

Then either \([\Psi(D)f][\Psi(D)g] \equiv 1\) or \(f - g \equiv s\), where \(s = s(z)\) is a solution of the differential equation \(\Psi(D)w = 0\).

The following example shows that Theorem 1 is sharp.

Example 2. Let \(f = \frac{1}{2}e^z(e^z - 1)\), \(g = \frac{1}{2}e^{-z}(\frac{1}{2} - \frac{1}{5}e^{-z})\) and \(\Psi(D) = D^2 - 3D\). Then \(\Psi(D)f = e^z(1 - e^z)\), \(\Psi(D)g = e^{-z}(1 - e^{-z})\), \(\sum_{a \neq \infty} \delta(a; f) = \sum_{a \neq \infty} \delta(a; g) = 1/2\), \(\Theta(\infty; f) = \Theta(\infty; g) = 1\), \(\delta_2(b; \Psi(D)f) = \delta_2(b; \Psi(D)g) = 0\) for \(b \neq 0, \infty\) and \(\Psi(D)f, \Psi(D)g\) share \((1, 2)\). It is easily seen that neither \([\Psi(D)f][\Psi(D)g] \equiv 1\) nor \(f - g \equiv c_1 - c_2e^{3z}\) for any constants \(c_1\) and \(c_2\).

Proof of Theorem 1. Let \(F = \Psi(D)f\) and \(G = \Psi(D)g\). Then in view of Lemmas 5–7 condition (ii) implies

\[(3) \quad \delta_0(0; F) + \delta_0(0; G) + 2\Theta_0(\infty; F) + 2\Theta_0(\infty; G) + \min\{\delta_2^0(b; F), \delta_2^0(b; G)\} > 5.\]

We put

\[H = \left(\frac{F''}{F'} - \frac{2F'}{F - 1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G - 1}\right).\]

Suppose \(H \not\equiv 0\). Then by Lemmas 1–3 we get

\[(4) \quad N(r, 1; F = 1) \leq \bar{N}(r, \infty; F = 2) + \bar{N}(r, 0; F = 2) + \bar{N}(r, b; F = 2) + \bar{N}(r, \infty; G = 2) + \bar{N}(r, 0; G = 2) + \bar{N}(r, 0; F') + \bar{N}(r, \infty; G) + \bar{N}(r, 0; G) - \bar{N}(r, 1; G = 2) + S(r, F) + S(r, G).\]

By the second fundamental theorem we get

\[(5) \quad 2T(r, F) \leq \bar{N}(r, \infty; F) + \bar{N}(r, 1; F) + \bar{N}(r, b; F') + \bar{N}(r, 0; F) - N_\oplus(r, 0; F') + S(r, F),\]

where \(N_\oplus(r, 0; F')\) is the counting function of those zeros of \(F'\) which are not zeros of \(F(F - 1)(F - b)\).

Since \(F, G\) share \((1, 2)\), we see that

\[(6) \quad \bar{N}(r, 1; F) = \bar{N}(r, 1; F = 1) + \bar{N}(r, 1; F = 2) = \bar{N}(r, 1; F = 1) + \bar{N}(r, 1; G = 2).\]

Linear differential polynomials
Since $N_2(r, \infty; F) \leq 2\overline{N}(r, \infty; F)$ and $N_2(r, \infty; G) \leq 2\overline{N}(r, \infty; G)$, we get from (4)–(6) on integration
\begin{align*}
(7) \quad 2T_0(r, F) &\leq N_2^0(r, 0; F) + N_2^0(r, b; F) + N_2^0(r, 0; G) + 2\overline{N}_0(r, \infty; F) \\
&\quad + 2\overline{N}_0(r, \infty; G) + S_0(r, F) + S_0(r, G).
\end{align*}

Similarly we obtain
\begin{align*}
(8) \quad 2T_0(r, G) &\leq N_2^0(r, 0; F) + N_2^0(r, b; G) + N_2^0(r, 0; G) + 2\overline{N}_0(r, \infty; F) \\
&\quad + 2\overline{N}_0(r, \infty; G) + S_0(r, F) + S_0(r, G).
\end{align*}

From (7) and (8) we get
\begin{align*}
(9) \quad 2T_0(r) &\leq N_2^0(r, 0; F) + N_2^0(r, 0; G) + 2\overline{N}_0(r, \infty; F) \\
&\quad + 2\overline{N}_0(r, \infty; G) + S_0(r, F) + S_0(r, G),
\end{align*}

where $T_0(r) = \max\{T_0(r, F), T_0(r, G)\}$ and $N_2^0(r, b) = \max\{N_2^0(r, b; F), N_2^0(r, b; G)\}$.

Since (9) contradicts (3), it follows that $H \equiv 0$. Then
\begin{align*}
(10) \quad F = \frac{AB + C}{CG + D},
\end{align*}

where A, B, C, D are complex numbers such that $AD - BC \neq 0$.

In view of (10) we get
\begin{align*}
(11) \quad T_0(r, F) = T_0(r, G) + O(\log r).
\end{align*}

Now we consider the following cases.

Case 1: $AC \neq 0$. Then
\begin{align*}
(12) \quad F - \frac{A}{C} = \frac{B - \frac{AD}{C}}{CG + D}.
\end{align*}

Subcase 1.1: $A/C \neq b$. Then by the second fundamental theorem we get on integration
\begin{align*}
2T_0(r, F) &\leq \overline{N}_0(r, \infty; F) + \overline{N}_0(r, 0; F) + \overline{N}_0(r, A/C; F) + \overline{N}_0(r, b; F) + S_0(r, F) \\
&\quad = \overline{N}_0(r, \infty; F) + \overline{N}_0(r, 0; F) + \overline{N}_0(r, b; F) + \overline{N}_0(r, \infty; G) + S_0(r, F),
\end{align*}

which implies (9) in view of (11) and Lemma 8 and finally contradicts (3).

Subcase 1.2: $A/C = b$. Also we suppose that $BD \neq 0$. Then $B/D \neq b$ because $AD - BC \neq 0$. So by the second fundamental theorem we get on integration
\begin{align*}
2T_0(r, F) &\leq \overline{N}_0(r, \infty; F) + \overline{N}_0(r, 0; F) + \overline{N}_0(r, b; F) + \overline{N}_0(r, B/D; F) + S_0(r, F) \\
&\quad = \overline{N}_0(r, \infty; F) + \overline{N}_0(r, 0; F) + \overline{N}_0(r, b; F) + \overline{N}_0(r, 0; G) + S_0(r, F),
\end{align*}

which by (11) and Lemma 8 implies (9) and so contradicts (3).
Let $B = 0$. Then $D \neq 0$ because F is nonconstant. Now from (12) we get
\begin{equation}
F - b = \frac{-b}{\alpha G + 1},
\end{equation}
where $\alpha = C/D$.

Let 1 be a Picard exceptional value (e.v.P.) of F and so of G. Then by the second fundamental theorem we get on integration
\[
2T_0(r, F) \leq N_0(r, \infty; F) + N_0(r, 0; F) + N_0(r, b; F) + S_0(r, F),
\]
which implies (9) in view of (11) and Lemma 8 and so contradicts (3).

Let 1 be not an e.v.P. of F and G. Then from (13) we get $\alpha = \frac{1}{b-1}$ so that
\[
F = \frac{bG}{(b-1) + G}.
\]
Since $b \neq 1/2$, by the second fundamental theorem we get on integration
\[
2T_0(r, G) \leq N_0(r, \infty; G) + N_0(r, 0; G) + N_0(r, b; G) + N_0(r, 1-b; G) + S_0(r, G)
\]
\[
= N_0(r, \infty; G) + N_0(r, 0; G) + N_0(r, b; G) + N_0(r, \infty; F) + S_0(r, G),
\]
which by (11) and Lemma 8 implies (9) and so contradicts (3).

Suppose 1 is not an e.v.P. of F and G. Then from (14) we obtain
\begin{equation}
F = b + \frac{\beta}{G},
\end{equation}
where $\beta = B/C$.

If 1 is an e.v.P. of F and so of G, by the second fundamental theorem we get on integration
\[
2T_0(r, F) \leq N_0(r, \infty; F) + N_0(r, 0; F) + N_0(r, b; F) + S_0(r, F),
\]
which implies (9) in view of (11) and Lemma 8 and so contradicts (3).

Suppose 1 is not an e.v.P. of F and G. Then from (14) we get $\beta = 1 - b$ so that
\[
F = b + \frac{1-b}{G}.
\]
Since $b \neq -\omega, -\omega^2$, by the second fundamental theorem we get on integration
\[
2T_0(r, G) \leq N_0(r, \infty; G) + N_0(r, 0; G) + N_0(r, b; G) + N_0(r, 1-1/b; G) + S_0(r, G)
\]
\[
= N_0(r, \infty; G) + N_0(r, 0; G) + N_0(r, b; G) + N_0(r, 0; F) + S_0(r, G),
\]
which implies (9) in view of (11) and Lemma 8 and so contradicts (3).
CASE 2: $AC = 0$. Since F is nonconstant, it follows that A and C are not simultaneously zero.

SUBCASE 2.1: $A = 0$ and $C \neq 0$. Then $B \neq 0$ and from (10) we get

(15) \[\frac{1}{F} = \alpha G + \beta, \]

where $\alpha = C/B$ and $\beta = D/B$.

If 1 is an e.v.P. of F and G, by the second fundamental theorem we get on integration

$$2T_0(r, F) \leq \overline{N}_0(r, \infty; F) + \overline{N}_0(r, 0; F) + \overline{N}_0(r, b; F) + S_0(r, F),$$

which by (11) and Lemma 8 implies (9) and so contradicts (3).

Suppose 1 is not an e.v.P. of F and G. Then from (15) we get $1 = \frac{1}{F} + \frac{1}{1} = \frac{1}{1}$, i.e. $[\Psi(D)f][\Psi(D)g] \equiv 1$.

If $\alpha = 1$ then $FG \equiv 1$, i.e. $[\Psi(D)f][\Psi(D)g] \equiv 1$.

If $\alpha = 1 - 1/b$ then $F = \frac{b}{1 + (b-1)G}$.

Since $b \neq -\omega, -\omega^2$, by the second fundamental theorem we get on integration

$$2T_0(r, G) \leq \overline{N}_0(r, \infty; G) + \overline{N}_0(r, 0; G) + \overline{N}_0(r, b; G) + \overline{N}_0(r, 1/(1 - b); G) + S_0(r, G)$$

$$= \overline{N}_0(r, \infty; G) + \overline{N}_0(r, 0; G) + \overline{N}_0(r, b; G) + \overline{N}_0(r, \infty; F) + S_0(r, G),$$

which by (11) and Lemma 8 implies (9) and so contradicts (3).

SUBCASE 2.2: $A \neq 0$ and $C = 0$. Then $D \neq 0$ and from (10) we get

(16) \[F = \alpha G + \beta, \]

where $\alpha = A/D$, $\beta = B/D$.

If 1 is an e.v.P. of F and G, by the second fundamental theorem we get on integration

$$2T_0(r, F) \leq \overline{N}_0(r, \infty; F) + \overline{N}_0(r, 0; F) + \overline{N}_0(r, b; F) + S_0(r, F),$$

which implies (9) by (11) and Lemma 8 and so contradicts (3).
Suppose 1 is not an e.v.P. of F and G. Then from (16) we get $\alpha + \beta = 1$ and so

$$F = \alpha G + 1 - \alpha.$$

If $\alpha \neq 1, 1 - b$, by the second fundamental theorem we get on integration

$$2T_0(r, F) \leq N_0(r, \infty; F) + N_0(r, 0; F) + N_0(r, b; F) + N_0(r, 1 - \alpha; F) + S_0(r, F)$$

$$= N_0(r, \infty; F) + N_0(r, 0; F) + N_0(r, b; F) + N_0(r, 0; G) + S_0(r, F),$$

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).

If $\alpha = 1$ then $F \equiv G$ and so $f - g \equiv s$, where $s = s(z)$ is a solution of the differential equation $\Psi(D)w = 0$.

If $\alpha = 1 - b$ then

$$F = (1 - b)G + b.$$

Since $b \neq 2$, by the second fundamental theorem we get on integration

$$2T_0(r, G) \leq N_0(r, \infty; G) + N_0(r, 0; G) + N_0(r, b; G) + N_0(r, b/(b - 1); G) + S_0(r, G)$$

$$= N_0(r, \infty; G) + N_0(r, 0; G) + N_0(r, b; G) + N_0(r, 0; F) + S_0(r, G),$$

which by (11) and Lemma 8 implies (9) and so contradicts (3). This proves the theorem.

4. Applications. In this section we discuss two applications of the main theorem, the first of which improves a result of Yi and Yang [13] and the second gives a better answer to the question of Yang [9] mentioned in the introduction.

Theorem 2. Let f, g be two nonconstant meromorphic functions with $\Theta(\infty; f) = \Theta(\infty; g) = 1$. If for $n \geq 1$ the derivatives $f^{(n)}, g^{(n)}$ share $(1, 2)$ and

\begin{align*}
(i) \sum_{a \neq \infty} \delta(a; f) + \sum_{a \neq \infty} \delta(a; g) + \min\{\delta_2(b; f^{(n)}), \delta_2(b; g^{(n)})\} &> 1 \\
(ii) \Theta(\alpha; f) + \Theta(\alpha; g) &> 1
\end{align*}

for some $b \neq 0, 1, \infty, 1/2, 2, -\omega, -\omega^2$, and

\begin{align*}
(i) \sum_{a \neq \infty} \delta(a; f) + \sum_{a \neq \infty} \delta(a; g) + \min\{\delta_2(b; f^{(n)}), \delta_2(b; g^{(n)})\} &> 1 \\
(ii) \Theta(\alpha; f) + \Theta(\alpha; g) &> 1
\end{align*}

for some $\alpha \neq \infty$, then either (I) $f^{(n)}g^{(n)} \equiv 1$ or (II) $f \equiv g$.

Proof. From the given condition it follows that f, g are transcendental and so $f^{(n)}, g^{(n)}$ are transcendental. Choosing $\Psi(D) = D^n$ in Theorem 1 we get either $f^{(n)}g^{(n)} \equiv 1$ or $f - g \equiv Q$, where Q is a polynomial of degree at most $n - 1$. If possible let $Q \neq 0$. Then by Nevanlinna’s theorem on three
small functions [2, p. 47] we get
\[T(r, f) \leq \overline{N}(r, \alpha; f) + \overline{N}(r, \alpha + Q; f) + \overline{N}(r, \infty; f) + S(r, f) \]
\[= \overline{N}(r, \alpha; f) + \overline{N}(r, \alpha; g) + \overline{N}(r, \infty; f) + S(r, f). \]
Since \(f - g \equiv Q \), it follows that \(T(r, f) = T(r, g) + O(\log r) \). So \(\Theta(\alpha; f) + \Theta(\alpha; g) \leq 1 \), which is a contradiction. Therefore \(Q \equiv 0 \) and so \(f \equiv g \). This proves the theorem.

The following examples show that the condition \(\Theta(\alpha; f) + \Theta(\alpha; g) > 1 \) is necessary for the validity of case (II).

Example 3. Let \(f = 1 + e^z \) and \(g = e^z \). Then
\[\sum_{a \neq \infty} \delta(a; f) + \sum_{a \neq \infty} \delta(a; g) + \min\{\delta_2(b; f^{(n)}), \delta_2(b; g^{(n)})\} = 2 \]
for any \(b \neq 0, \infty, \Theta(\infty; f) = \Theta(\infty; g) = 1 \), \(\Theta(0; f) + \Theta(0; g) = 1 \), \(\Theta(1; f) + \Theta(1; g) = 1 \), \(\Theta(\alpha; f) + \Theta(\alpha; g) < 1 \) for \(\alpha \neq 0, 1, \infty \) and \(f^{(n)} \), \(g^{(n)} \) share \((1, 2)\) but \(f - g \equiv 1 \).

Example 4. Let \(f = 1 + e^z \) and \(g = (-1)^n e^{-z} \). Then
\[\sum_{a \neq \infty} \delta(a; f) + \sum_{a \neq \infty} \delta(a; g) + \min\{\delta_2(b; f^{(n)}), \delta_2(b; g^{(n)})\} = 2 \]
for any \(b \neq 0, \infty, \Theta(\infty; f) = \Theta(\infty; g) = 1 \), \(\Theta(0; f) + \Theta(0; g) = 1 \), \(\Theta(1; f) + \Theta(1; g) = 1 \), \(\Theta(\alpha; f) + \Theta(\alpha; g) < 1 \) for \(\alpha \neq 0, 1, \infty \) and \(f^{(n)} \), \(g^{(n)} \) share \((1, 2)\) but \(f^{(n)}g^{(n)} \equiv 1 \).

Remark 1. Theorem 2 improves Theorem C, a result of Yi and Yang [13] and also a recent result of Lahiri [3].

In the following theorem we provide a better answer to a question of Yang [9] than those given in Theorems F and G.

Theorem 3. Let \(f \) and \(g \) be two meromorphic functions such that \(f^{(n)} \), \(g^{(n)} \) \((n \geq 1) \) share \((1, 2)\), \(f \), \(g \) share \((\alpha, 0)\) for some \(\alpha \neq \infty \) and
\[\frac{\sum_{a \neq \infty} \delta(a; f)}{1 + p(1 - \Theta(\infty; f))} + \frac{\sum_{a \neq \infty} \delta(a; g)}{1 + p(1 - \Theta(\infty; g))} + \min\{\delta_2(b; f^{(n)}), \delta_2(b; g^{(n)})\} \]
\[> 1 + \frac{2(1 - \Theta(\infty; f))}{\sum_{a \neq \infty} \delta_p(a; f)} + \frac{2(1 - \Theta(\infty; g))}{\sum_{a \neq \infty} \delta_p(a; g)} \]
for some \(b \neq 0, 1, \infty, 1/2, 2, -\omega, -\omega^2 \), with \(\sum_{a \neq \infty} \delta_p(a; f) > 0 \), \(\sum_{a \neq \infty} \delta_p(a; g) > 0 \) and \(\omega \) being the imaginary cube root of unity. Then either \(f^{(n)}g^{(n)} \equiv 1 \) or \(f \equiv g \).

Proof. From the assumption it follows that \(f \) and \(g \) are transcendental and so \(f^{(n)} \) and \(g^{(n)} \) are transcendental. Choosing \(\Psi(D) = D^n \) we see from Theorem 1 that either \(f - g \equiv Q \) or \(f^{(n)}g^{(n)} \equiv 1 \), where \(Q \) is a polynomial of degree at most \(n - 1 \). If possible, let \(Q \neq 0 \). Since \(f, g \) share \((\alpha, 0)\), it follows
that $\overline{N}(r, \alpha; f) = \overline{N}(r, 0; Q) = O(\log r)$. Now by Nevanlinna’s theorem on three small functions [2, p. 47] we get
\[
T(r, f) \leq \overline{N}(r, \alpha; f) + \overline{N}(r, \alpha + Q; f) + \overline{N}(r, \infty; f) + S(r, f)
\]
\[
= \overline{N}(r, \alpha; f) + \overline{N}(r, \alpha; g) + \overline{N}(r, \infty; f) + S(r, f)
\]
which implies that $\Theta(\infty; f) = 0$. Similarly we see that $\Theta(\infty; g) = 0$. Since this contradicts the assumption, it follows that $Q \neq 0$ and so $f \equiv g$. This proves the theorem.

The following example shows that Theorem 3 is sharp.

Example 5. Let $f = -2^{-n}e^{2z} + (-1)^{n+1}2^{-n}e^{z} - 2^{-n}e^{-z}$ and $g = (-1)^{n+1}2^{-n}e^{2z} - 2^{-n}e^{-z}$. Then $f^{(n)}$, $g^{(n)}$ share $(1, 2)$, f, g share $(0, 0)$, $\Theta(\infty; f) = \Theta(\infty; g) = 1$ and $\sum_{a \neq \infty} \delta(a; f) + \sum_{a \neq \infty} \delta(a; g) + \min\{\delta_2(b; f^{(n)}), \delta_2(b; b^{(n)})\} = 1$ for any $b \neq 0, \infty$ but neither $f \equiv g$ nor $f^{(n)}g^{(n)} \equiv 1$.

Concluding Remark. Since Example 1 shows that in Theorem 1 sharing $(1, 2)$ cannot be relaxed to sharing $(1, 0)$, we conclude the paper with the following question: *Is it possible in Theorem 1 to relax sharing $(1, 2)$ to sharing $(1, 1)$?*

Acknowledgements. The author is grateful to the referee for valuable comments.

References

Department of Mathematics
University of Kalyani
West Bengal 741235, India
E-mail: indrajit@cal2.vsnl.net.in

*Reçu par la Rédaction le 5.9.2001
Révisé le 9.3.2002*