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Dedicated to my wife Jolanta

Abstract. A definable subset of a Euclidean space X is called perfectly situated if
it can be represented in some linear system of coordinates as a finite union of (graphs
of) definable Cl-maps with bounded derivatives. Two subsets of X are called simply
separated if they satisfy the Lojasiewicz inequality with exponent 1. We show that every
closed definable subset of X of dimension k£ can be decomposed into a finite family of
closed definable subsets each of which is perfectly situated and such that any two different
sets of the decomposition are simply separated and their intersection is of dimension < k.

Introduction. We will assume that there is given an o-minimal struc-
ture in the ordered field R of real numbers (see [1] for the definition and
fundamental properties of o-minimal structures).

Let M be a C'-submanifold of R™ of dimension [ and let V be a linear
subspace of R™ of dimension n — k, where k > [. We will call M perfectly
situated relative to V if the set of the tangents {T, M | a € M} is a relatively
compact subset of the set {W € G;(R") | WNV = {0}}, open in the
Grassmann manifold of /-dimensional linear subspaces of R™. Let A now be
a definable subset of R™ of dimension < k. Then A is a finite union | J; M;
of definable C!-submanifolds. We will call A perfectly situated relative to V
if so is each M;. (This does not depend on the representation A = |J, M;;
cf. [1, Chap. 7, (3.2)].)

PRrROPOSITION 0. Let W be a linear complement of V in R™; i.e. R™ =
W @ V. The following conditions are equivalent:

(1) A is perfectly situated relative to V.
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(2) A is a finite disjoint union \J; $; of graphs of definable C'-maps
©; : Ay — V defined on C'-submanifolds A; C W with bounded derivatives
(here @; stands for the graph {w + p;(w) | w € A;} of ;).

(3) There is C > 0 such that if a € A, (x,)ven is a sequence of points

f A\ {a} convergent to a and v = lim, o (x, — a)/|x, — a|, then d(v,V)
C ).

(4) Every definable subset of A is perfectly situated relative to V.

(5) A is perfectly situated relative to V' for all V' from a neighbourhood
Vin Gk (R™).

(6) A is perfectly situated relative to any linear subspace of V.

Proof. (1)<(2) by [1, Chap. 7, (3.2)]. (1)<(3) by curve selection (cf. [1,
Chap. 6, (1.5)] and the fact that a definable curve is C! at its extremity. The
others are simple consequences.

The notion of a perfectly situated subset was used by the author in [5,
Chap. II].

Let P and @ be any two subsets of R". We will say that P and @Q are
simply separated if there exists C' > 0 such that for each x € P, d(z,Q) >
Cd(x, PN Q). This condition is symmetric with respect to P and Q. Indeed,
for each y € Q and € > 0, there is x € P such that d(y, P)+¢ > |y—z|; hence
(C+1)y—2] > d(z, P)+Cly—a| > C(d(z, PNQ)+|y—zl) > Cd(y, PNQ);
consequently, d(y, P) > CLHd(y, PNQ@). In other words, P and @ are simply
separated if they satisfy the (global) Lojasiewicz inequality with exponent
1 (cf. [3, p- 139]).

The main result of the present paper is the following

THEOREM 0. Let ¥ ={c |oc C{l,...,n},cardo=n—k}={o1,...,0m},
where m = (Z) Let Vi =@, c,, Re, (i =1,...,m), wherees, ..., e, denote
the canonical basis in R™. Any definable closed subset E of R™ of dimension
k is the union E = J;~, S; of definable closed subsets S; such that for each
i, Si 1is perfectly situated relative to V; and for each j # i, S; and S; are
simply separated and dim(S; NS;) < k.

In the subanalytic case similar results have been formulated and proved
in a different way by Parusiiiski [4]. We prove Theorem 0 by a construction
based on Lemma 1 below and the Mean Value Theorem.

In the proof of Theorem 0 we will use the following

LEMMA 0. Let V; (i =1,...,m) be as in Theorem 0. If E is a definable
subset of R™of constant dimension k (i.e., every nonempty open definable
subset of E is of dimension k), then E = |J;~, E;, where for each i, E; is
definable of constant dimension k, perfectly situated relative to V;.

(M) d(z, A) = inf{|z — a| | a € A} if A # 0 and d(z,0) = 1.



A decomposition into perfectly situated sets 173

Proof. Tt reduces to the case that E is a C''-submanifold, when it follows
from linear algebra and the fact that the Gauss mapping £ 3 x — T, FE €
G (R"™) is definable.

REMARK 0. If the set F is of constant dimension [, where [ < k, then
again F = |J;-, E;, where for each ¢, E; is definable of constant dimension
l, perfectly situated relative to V;. Indeed, if W; (j =1,...,p,p= (7)) are
the corresponding linear subspaces of dimension n — [ and E = U§:1 E},

where for each j, £’ is of constant dimension [ perfectly situated relative to
Wj, we put B; = U{E; | V; C W]}

Acknowledgements. The author thanks Professor Stanistaw F.oja-
siewicz and the anonymous referee for helpful comments and remarks on
the paper. He also thanks Mr. Jerzy Trzeciak for pointing out several lan-
guage mistakes in the original text.

1. Key lemma and consequences. The proof of Theorem 0 is based
on the following elementary

LEMMA 1. Let f;: E - R (i =1,...,p) be a finite family of definable
bounded functions on the same definable set E C R™ and letn > 0. Then E
can be represented as a finite union E = Uu A, of definable sets A, C R™
such that for each p there exists €, € (0,m) such that for each i, either
|fil <en on Ay, or|fi] > 4e, on A,.

Proof. Let A={6|6 C {1,...,p}} andforeachd € Aande € (0, 1), let
Q06,e)={y=(y1,...,yp) ER? | |y;| <eifi €d, |y;| >4eif i ¢ §}. Then
the sets £2(9, ) form an open covering of RP. Let f = (f1,..., fp) : E — RP.
Since f(F) is bounded there is a finite family {{2(4,,,¢,)} covering f(FE) and
the lemma follows.

LEMMA 2. Let f;: E - R (i =1,...,p) be a finite family of definable
functions on the same set E C R™ and let K > 0. Then E can be represented
as a finite union B = Uu A, of definable sets A, such that for each p there
exists M, > K such that for each i, either |f;| < M, on A, or|f;| > 4M,
on A,.

Proof. Take 1/f; in place of f; in Lemma 1.

LEMMA 3. Let m: R™ — R™~! denote the projection m(x1,...,Tm) =
(1, Tm—1). Let A be any finite family of definable subsets of R"™. Then
there exists a definable cell decomposition C of R™ compatible with A and
such that for each C1,Co € C, if dimCy = dimCy = m — 1 and 7(Cy) =
7(Cy) is open in R™™L, then there is v € R™\ {0} such that C; and Cy are
perfectly situated relative to Ru.
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Proof. We have C; = {(u,p;(u)) | u € 2}, 1 = 1,2, where {2 is open
in R~ and u = (z1,...,2,m_1). By [1, Chap. 7, (3.2)], we can assume g,
are C! and, by Lemma 2, that there is M > 1 such that, for each i = 1,2,
j=1,...,m—1,|0¢;/0x;| < M on {2 or |0p;/0x;| > 4M on 2. Moreover,
one can assume that there exist p, v € {1,...,m—1} such that |0¢,/0z,| >
|0¢1/0x;| and |Ops/0x,| > |0pa/0x;| on {2, for each j =1,...,m —1, and
each of the functions 0p;/0z; is of constant sign on f2.

CASE It |0¢1/0x,| < M and |0p2/0z,| < M. We take v = (0,...,0,1).

Casg II: |0¢1/0x,| > 4M and |[0ps/0x,| < M. Put v = (a1,...,am),
where a; = 0 for j # p,m, a, = %Mfl and a,, = 1. Then the sine of the
angle a; between v and the tangent to C is

11 —a,(0p1/0x,)| - iMﬁllagal/@:cu] _ 1

lv[/1+ |gradp, 2 ~ |[vlv/m|0p1/0x,|  4lv|y/m M
On the other hand, the sine of the angle as between v and the tangent to
CQ is

|1 —a,(0ps/0x,)| S 1= sM~'M 1
’U‘«/l—k‘gradgpQP - "I}’\/EM Q‘U’ﬁM
Casg III: |0p1/0x,| > 4M and |0p2/0x,| > 4M, where p = v. Take

the same v as in Case II.

CASE IV: [0p1/0x,| > 4M, \8@2/6351,] > 4M ,u, 7é v and (0¢1/0x,) X
(0¢1/0z,) > 0 on 2. Put a, = £ M~ =2M~ =1land a; =0 if
j # w,v,m. Then

11— a,(0p1/0z,) — a,(9p1/02,)|

sinoy =
lv|\/1 4+ |grad @1 |2
o 10u(9¢1/0z,,) + 0, (91 /0,)| — 1 > |au(9p1/0x,)| — 1
- [v]\/1 4+ |grad ¢1|? [v]\/1 + |grad ¢1 |2
|01 /0, (a, — |91/ 0z, ) S 1
2T lm e /O llm
271 _lar-1 _
Sy > SM™0po/0x,| — M~ 0pa/Ox,| — 1

[v]/1 + |grad o |?

%M*1]8¢2/8xy| — %M*1|&p2/8$y| -1

[v[\/1 + |grad @22
TM~0ps/0x,| — 1 - 1

o[+ gradgal? — 12oly/m M’

AV
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CASE V: |0p1/0z,| > 4M, |0p2/0x,| > 4M, pn # v and (0¢1/0x,) X
(8¢1/0x,) < 0 on £2. One easily modifies Case IV, putting a, = M ",
a, = —% 1 ay, =1and a; =0 for j # p,v,m.

Let X be a subset of R™ and let @ > 0. As in [6, p. 79], we call X
a-reqular if there exists C' > 0 such that any two points a,b of X can be
joined in X by a rectifiable arc v : [0,1] — X of length |y| < Cla — b|*.

THEOREM 1 (Kurdyka [2], Parusinski [4]). If 2 is any definable open
subset of R™, then there exists a finite family (G;); of disjoint, definable,
open, 1-reqular subsets of £2 such that dim(£2\ |J, G;) <m

Proof. Consider the following two assertions:

(A,,)  For any definable subset 2 of R™ and any nonempty open subset V
of R™\ {0}, there exists a finite family (G;); of disjoint, definable,
open, 1-reqular subsets of {2 such that dim(£2\|J, G;) < m and, for
each i, there is v; € V' such that 0G; is perfectly situated relative
to Rvi.

(Bm)  For any definable open subset D of R™ there exists a finite family
(Hj); of disjoint, definable open subsets of D such that dim(D \
U; Hj) <m and, for each j, there is v; € R™ \ {0} such that OH,
is perfectly situated relative to Rv;.

( m—1)=(By,). By Lemma 3, we can assume that D is an open cell

= (u Tm) | u € 2, p1(u) < xmm < p2(u)} such that C; = @1 and
C = @9 are perfectly situated relative to a common line Rv (the cases
1 = —00 Or 2 = +00 can also occur but they will follow by a modification).
By Proposition 0 and (A,,—1), we can assume that 7w(v) # 0 and 0f2 is
perfectly situated relative to R7(v). Then 0D C Cy U Cy U (082 x R) is
perfectly situated relative to Rv.

(Ap—1&By,)=(A,,). Using (B,,), Proposition 0 and a linear change of
coordinates, we reduce to the case 2 = {(u,z,) | v € @, p1(u) < T <
@2(u)}, where Q is open in R™™1 o, : Q@ — R (i = 1,2) are definable
C!-functions such that ¢1 < @2 on Q, and |9¢;/0z;| < M on Q for i =
1,2,j=1,...,m—1, for some M > 1 (or p; = —00 or 2 = +0o0). We can
assume that V = A x (a—e, a+¢), where A is open bounded in R™~1\ {0},
a,e € R, e>0.

Take L > 0 such that |u| < L for each u € A. Dividing ) we can assume
that, for each ¢, j, there exists 6;; € R such that |0p;/0x; — 05| < n on Q,
where 0 < 7 < ¢/(8Ly/m — 1). Moreover, by (A,,—1), we can assume that
Q is 1-regular and 0Q) is perfectly situated relative to some u € A.
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Put v = (u,a,,). The sine of the angle between v and the tangent to
Ci=q;is
|am — (u, grad ;)| S lam — (u,0;) — (u, grad @; — 6;)|
ol /1 F faad g ol M
|am — (u, 0i)] — |ul - |grad @i — 6] _ e/4— Ly'm—1n _ £
vly/m M — plymM T 8lulym M’
where 6; = (0i1,...,0im—1) and a,, € {a — /2, a, a4 €/2} is such that
lam — (u,0;)| >e/4  (i=1,2).

In order to prove that (2 is 1-regular, we first observe that ¢; are Lipschitz
(because @ is l-regular and all first derivatives of ¢; are bounded; cf. [6,
p. 76]). Taking the image of {2 under the Lipschitz automorphism

QXRB (u7xm)'_>(uaxm_901(u)) GQXR

we can assume that ¢1 = 0. Since @ is 1-regular and 5 is Lipschitz, @ is
1-regular. Let now a = (u,a,,) € 2 and b = (w, b,,) € 2, where a,, < by,.
Take an arc v : [0,1] — @ such that v(0) = u,y(1) = w and |y| < C|lu — w|.
Then the arc § = (7, @) U ({w} X [@m, b)) joins a and b, lies in @ x (0, +00)
and [0 < (C'+ 1)|a —b|. If 6 Z £2, let ¢ be the first and d the last point
of 0 that lies on @s. Take an arc A joining ¢ and d on @3 such that |\ <
C'le—d| < C'6| < C'(C+1)|a—b|. Replacing the part of § between ¢ and d
by A, moving the resulting arc slightly downwards and adding suitable small
vertical line segments, we obtain the required arc.

>

2. Admissible arcs. Let A = (A1,...,\n) : (o, 3) — R™ be C! on
(a, B), where a, f € R and a < 3. We will call A\ an admissible arc in R™ if
it satisfies the following conditions:

1) each of the functions A; and each of the derivatives A} is of constant
sign;

2) for each i, either |[\;| > 1 on (o, 3) or |A;| <1 on (a, B);

3) for each i and j, either |\{| < [Ai] on (o, 3) or [A]| > [AL] on (o, 3).

For any admissible arc A\, we put

v(A) =min{i | [Xj| > [Nj] on (o, B), j=1,...,m} and fr= ).
For each s,t € (a,8) and each j = 1,...,m,

(%) L) = FA(8)] = [A(E) — Az (s)]-

To see this we can assume that f{ > 0, replacing perhaps A by Aa+ [ —t).
Then, for any fixed s € («, 3), consider the functions 6;(t) = fx(t) — fi(s) —
[Aj(t) = Aj(s)| for t € [s, B). Since 0}(t) = f}(t) & [\;(¢)| > 0 and 0;(s) =0,
we have 6; > 0 and f\(t) — fa(s) > [X;(t) — A ()]
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We will say that A is an admissible arc of the first kind if |f{] > 1;
otherwise A is of the second kind. For any admissible arc A of the first
kind, we put ¢y = « if |f\| is increasing and ¢y = (3 if |fy] is decreasing.
Since the limit lim; ., fi(t) € R exists, it follows from (%) that the limit
lim; ., A(t) € R™ also exists; it will be denoted by A(cy).

LEMMA 4. Let A : (a,B) — R™ be an admissible arc of the first kind.
Let M(t) = (t, A\(t)) and T =R x {0} C R'™™. Then, for each t € (o, ),

(A1), T) > —— [X(t) — M(es)].

Proof. Replacing perhaps A by —\ or by FA(a+ 3 —t), we reduce to the
case fy > 0 and f{ > 1 on (a, ). Then ¢y = . Apart from (x), we have
[/A(8) = fx(s)] = [t — sl; hence,

A1), T) = IMB)] > Fr() > Fr(t) — fale) > ——— X(t) - X

A(t) — M)l
s I3() = )
All the above definitions and Lemma 4 extend to arcs A : (o, 00) — R™
(o € R), when ¢\ = «, and to arcs A : (—o0,3) — R™ (8 € R), when
C\ = ﬁ

3. Simple separation relative to a set. Let P, Q and Z be any
subsets of R™. We will say that P and @ are simply separated relative to Z
(or simply Z-separated) if there exists C' > 0 such that d(z, Q) > Cd(x, Z)
for each x € P.

PROPOSITION 1. The following conditions are equivalent:

(i) P and Q are simply separated relative to Z,
(i) PNQ C Z and PUZ, QU Z are simply separated.

Proof. (i)=(ii). If z € PN Q, d(z,Q) = 0 > Cd(2,Z) = 0, s0 z €
Therefore (PU Z)N (QU Z) = Z. Let x € P. Then either d(z,Q U
= d(z,Q) > Cd(z,Z) > min(C,1)d(z,Z) or d(z,Q U Z) = d(x,Z)
min(C, 1)d(z, Z).

(i)=(@1). If z € P, then d(z,Q U Z) > Cd(z,Z) and either d(z,Q)
dz,QU Z) > min(C,1)d(z,Z) or d(z,Q) > d(z,Q U Z) = d(z,2)
min(C, 1)d(z, Z).

We will use the following easy

v NI

AVARI

PROPOSITION 2.

(1) If P,Q are simply Z-separated, P’ C P, Q' C Q, Z C Z', then P',Q’
are simply Z'-separated.

(2) If P;,Q; are simply Z;-separated for i = 1,...,s, then |, P;, U, Qi
are simply |, Z;-separated.
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(3) If P,Q are simply S-separated and S, Q are simply T-separated, then
P,Q are simply T-separated.

4) If Q' C Q, d(z,Q) = d(z,Q’) for each x € P, and P,Q" are simply
Z-separated, then P, Q) are simply Z-separated.

Proof. 1t is left to the reader.

LEMMA 5. Let C ={z = (u,xx) | u= (z1,...,25-1) € D, a(u) < z, <
B(u)} be an open definable cell in R possibly with o = —0o or 3 = +o0 but
not both at the same time. Let ¢ = (o1, 0m), ¥ = (V1,...,¢m) : C —
R™ be C! definable mappings and ¢ be Lipschitz. Assume that there is M > 1
such that |0p;/0z,| < M for each i € {1,...,m} and |0y;/0xy| > 2M for
some j € {1,...,m}. Assume that, for each u € D,

(a(u), B(w)) 3w = P(u, x) — p(u, 2x) € R™

is an admissible arc (of the first kind necessarily). Then (the graphs (*) of )
© and ¢ are simply separated relative to ¥\ 1.

Proof. Let © = (u,z;) € C. By Lemma 4 we have
d((z, ¥(z) — ¢(2)),C x {0})

1

> T, () — p(x)) — (U, Cou, (1, cy) — ©(u, Cy))l,

> \/m—+1|( (@) = (x)) = (U, cu, Y(u, cu) — p(u, cu))|
where ¢, € {a(u),B(u)}. Now, it is enough to apply to this inequality the
Lipschitz automorphism

C xR™3 (z,y) — (z,y +p(x)) € C x R™.

LEMMA 6. Let ¢ : £2 — R™ be a Lipschitz mapping on an open subset
2 of R¥. Then @ and RFT™\ (2 x R™) are simply separated (i.e., they are
simply (@ \ ¢)-separated).
Proof. Let a € 2 and b € 912 be such that |a — b| = d(a,0(2). Then
d((a,(a)),R¥™\ (2 x R™)) = |a — b] > L™ Yp(a) = B(b)],

hence

d((a, p(a)), R¥™\ (2 x R™)) > Li 71(a w(a)) = (b,2(b))]-

COROLLARY. If S is any subset of RFT™\ (2 x R™), then ¢ and S are
simply (@ \ ¢)-separated.

LEMMA 7. Let (£2,), be a finite family of open definable disjoint subsets
of R*. For every p, let ¢, : 2, — R™ (v € J,) be a finite family of C*
definable disjoint (as graphs) mappings such that there exists M, > 1 such

(?) Here and in what follows we will identify a mapping with its graph.
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that for each v € J,, i € {1,...,m}, j € {1,...,k}, either [0p,.:/0z;| <
M,, or |0puwi/0x;| > 2M, on §2,. Put

A= U{So/w ‘VZ,] : |890uui/al’j| < Mu},

B = U{‘PW | 30,5 ¢ |0ppuvi/Oxj| > 2M,,}.

Then there exists M > 0 such that for each pair of definable sets A’ C A
and B' C B and any set S C (R*\ U, £2.) x R™ there exists a definable

set Z C A'UB' of dimension < k such that B'U S and A’ are simply
Z-separated with constant M, i.e., for each a € B'US, d(a, A") > Md(a, Z).

Proof. Special case: A’ = A and B’ = B. Let

I'=A{(u,v) [ Vi,j : |0puwi /0| < My},
Aj = {(Iu,y) ’ Ji ’aso/wi/amﬂ > 2MM} (] =1,.. .,k).

Then B = J; Bj, where B; = J{puv | (1, v) € 45}

It suffices to prove the lemma for each B; in place of B; then we will take
zZ= 2 where Z; corresponds to B;. Of course, it is enough to consider
the case j = k. Consequently, we will assume that B = By. By Theorem 1,
we can assume that each 2, is 1-regular; thus, all (¢u.) (1, v) € I') are
Lipschitz with a common constant L.

By a suitable cell decomposition compatible with all 2,,, we can assume
that each {2, is an open definable cell C' = {z = (u,z) | u € D, au) <
zp < B(u) }, and for each u € D, (u,v) € I' and (p,0) € Ay,

(a(u)7ﬁ(u)) STk — %m(U’ka) - @uu(uw%'k) € R™
is an admissible arc. Now, by Lemma 5 and Corollary to Lemma 6, we obtain

the required conclusion with Z =J, ,(¥,,,, \ ¢uw) and M depending only
on L, M,,m and k.

General case. This reduces to the special case by taking a cell decom-
position C of R* compatible with all sets 2, 7(¢,, N A") and 7(¢,, N B’),
where m : R¥*™ — RF is the projection 7(z1,...,25m) = (T1,...,Tk),
and considering the family ¢, |C, where C' € C open is contained in 2,,.
Then ¢,,|C ((u,v) € I') are Lipschitz with the same constant L as in the
special case and the argument of the special case follows.

4. Decompositions

PROPOSITION 3. Let E be a definable subset of R" = RF x R*™* of
dimension | < k. Let C be a definable subset of E of constant dimension
[ perfectly situated relative to R*™*. Then E = AU B, where A and B are
definable, A is of constant dimension | perfectly situated relative to R,
C C A and there is M > 0 such that for each pair of definable sets A’ C A
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and B' C B, there is a definable set Z C A’UB’ of dimension < 1 such that
A’ B’ are simply Z-separated with constant M.

Proof. CASE I: | = k. By a cell decomposition, Proposition 0 and Lem-
ma 1, F can be represented in the form

E:USO;WUSy

v

where ¢, and S are as in Lemma 7 (where m = n—k) and (J{¢u | ¢ C
C, (u,v) € I'} is dense in C. Lemma 7 concludes the proof.

CASE II: | < k. By Proposition 0 and Lemma 0, C' = C1 U...UCs, where
each C; is definable of constant dimension I and there exists a permutation
of variables o; : R¥ — RF such that C; = (a; x id|R"7*)(C;) is perfectly
situated relative to R™.

If now (a; x id|R*"*)(E) = A; U B; are appropriate decompositions
following from Case I, it is enough to put

S S
A={J(o;' xidR"*)(4;) and B=)(a; ' x id[R"*)(B).
i=1 =1

Now we will modify the set Z; in particular, we will be able to have Z
perfectly situated relative to R" %,

LEMMA 8. Let A,B,A.,B.,Z,Z,,C,S and T be subsets of R"™ such
that A, B are simply Z-separated, Z C S UT and C C A is such that
d(y,A) = d(y,C) for each y € T. Assume that T U C = A, U B, where
A, B, are simply Z.-separated. Then:

(1) if C C Ay, then A, B are simply S U (A, NT) U Z,-separated;
(2) if T C Ay, then A, B are simply S U (A, NC) U Z,-separated.

Proof. (1) Let = € A. There exists y € Z such that d(z, B) > 2Md(z, Z)
> M|z — y|. Suppose y € SU (A, NT). Then y € B, NT; hence, |z — y|
>d(z,A) =d(z,C) > d(y, As) > M|y — z|, where z € Z,. Consequently,

|z —z| < |z —y[+|y— 2] < (1+1/M)[z —y|
< (1/M)(1+1/M)d(z, B).

(2) Let = € A. There is y € Z such that d(z, B) > M|z — y|. Suppose
y & S. Then y € T, and so y € A,. There is z € C such that |z — y| >

Ifz€ A, thenz€ A,NCand |z — 2| < |z —y|+ |y — 2| < 3z —y| <
SM~'d(z, B).
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Suppose now that z € A,. Consequently, z € B, and |y—z| > d(z, A,) >
M|z — t|, for somet € Z,. Then

o —t] <o — 2| + |z =t < o — 2| + M7y — ]
Slz—yl+ly =2+ M7y —2[ < |z =yl + 201+ M|z —y|
=B+2M Yz —yl < M3 +2M Yd(x, B).

LEMMA 9. If P C Q are two definable subsets of R™, Q is closed of
constant dimension q (¢ > 1) and dim P < q, then there exists a definable
set P' C Q of constant dimension ¢ — 1 such that P C P’.

Proof. Use a triangulation [1, Chap. 8, (2.9)] compatible with P and Q.

PROPOSITION 4. Let A and B be definable subsets of R™ of constant
dimension | < k simply separated relative to a definable set Z C AU B of
dimension < l. Suppose that A is perfectly situated relative to R" k. Then
there exists a definable set Z C AU B of dimension < 1 perfectly situated
relative to R F such that A, B are simply separated relative to Z.

Proof. Induction on . By Lemma 9, Z C SUT, where S, T are definable
of constant dimension [ — 1 such that S C A and T' C B, and there exists a
definable set C' C A of constant dimension [ — 1 such that for each y € T,
d(y,A) = d(y,C). By Proposition 3, T U C = A, U B,, where A,, B, are
definable of constant dimension [ — 1, A, is perfectly situated relative to
R % C c A, and A,, B, are simply separated relative to a definable set
Z. C A, U B, of dimension < [ — 1. By the induction hypothesis we can
assume Z, is perfectly situated relative to R”~* and, by Lemma 8(1), A, B
are simply separated relative to the set SU (A, NT)U Z,, perfectly situated
relative to R™ %,

PROPOSITION 5. Let A and B be definable subsets of R™ of constant
dimension | < k simply separated relative to a definable set Z C AU B of
dimension < . Suppose that A is perfectly situated relative to R™ . Then
there exists a definable set Z C B of dimension < 1 perfectly situated relative
to R"™* such that A, B are simply separated relative to Z.

Proof. Induction on [. By Proposition 4, we can assume that Z is per-
fectly situated relative to R®™*. Put S = Z N B and let T be a definable
subset of A of constant dimension [—1 such that ZNA C T. Let C be a defin-
able subset of B of constant dimension [ — 1 such that d(z, B) = d(x, C) for
each x € T. By Proposition 3 and the induction hypothesis, TUC = A,UB,,
where A,, B, are definable sets of constant dimension [ — 1, A, is perfectly
situated relative to R"‘k, T C A, and A,, B, are simply separated relative
to a definable set Z, C B, of dimension < [ — 1, perfectly situated relative
to R %, Since A, N B, is nowhere dense in B, and B, is of constant dimen-
sion, we have B, € C C B and Z, C B. By Lemma 8(2), A, B are simply
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separated relative to S U (A, N C) U Z,, which is a subset of B perfectly
situated relative to R™~*,

PROPOSITION 6. Let P and @ be closed definable subsets of R™ of di-
mensions < k and let P be perfectly situated relative to R"~%. Then there
exists a closed definable set S C Q perfectly situated relative to R" =%, of
dimension < min(dim P, dim @), such that P, Q are simply S-separated.

Proof. CASE I: P and @ are both of constant dimension [. By Proposi-
tions 3 and 5, PUQ = AUB, where A, B are closed definable sets of constant
dimension [, A is perfectly situated relative to R*™*, P C A and A, B are
simply separated relative to a closed definable set Z C B of dimension < I,
perfectly situated relative to R"~*. Since B\ Z ¢ B\ A C Q and B is of
constant dimension /, we have B C Q. By Proposition 2(2), (Q\B)UA= A
and (Q\ B)U B = Q are simply (Q \ B) U Z-separated; hence, P and @ are
S-separated, where S =Q\BUZ (C (ANQ)U Z).

CASE II: P and @ are both of constant dimensions p and g, respectively,
and p # ¢. This reduces to Case I by Lemma 9 and Proposition 2(4).

CaAsk III: general, reduces to the previous ones by representing P and
@ as finite unions of sets of constant dimension and using Proposition 2(2).

5. Proof of Theorem 0

Part 1. We have E = E°UFE*, where E° is closed of constant dimension
k and E* is closed of dimension < k. By Lemma O,

E:Qm

where E7 is definable closed of constant dimension k, perfectly situated
relative to V;. By Proposition 3,

E° = A, UB,,

where Ay, B; are closed definable of constant dimension k, A; is perfectly
situated relative to Vi, Ef C A, and any pair of definable subsets A}
and Bi of A; and By, respectively, is simply separated relative to some set
7y € A} U By of dimension < k.

Then ES\ Ay C By is of constant dimension k, perfectly situated relative
to Vs. By Proposition 3,

By = Az U By,

where As, Bs are closed definable of constant dimension k, As is perfectly
situated relative to Va, ES \ A; C As, and any pair of definable subsets A,
and B of Ay and Bs, respectively, is simply separated relative to some set
Zy C AL, U B} of dimension < k.



A decomposition into perfectly situated sets 183

Then Ef\ (A1 UAs) C By is of constant dimension k, perfectly situated

relative to V3. By Proposition 3,
By = A3 U Bs,

where A3, Bs are closed definable of constant dimension k, As is perfectly
situated relative to Vs, ES\ (A1 UAs) C As, and any pair of definable subsets
A% and BY of A3 and Bs, respectively, is simply separated relative to some
set Zs C AL U B} of dimension < k.

We continue this process by induction up to the mth step, when

B,,_1=A4,,UB,,.

Since E° = E}U...UE; C AjU...UA,, we have E° = A, U...UA4,,
(and since B,, is of constant dimension k& and dim B,,, = dim(B,, N (4; U
L UAR)) <dim((BiNA)U...U(By,NAg)) <k, we have B,,, = 0).

By Proposition 5, for each pair 4,5 € {1,...,m} such that i < j there
exists a closed definable set Z;; C A; of dimension < k, perfectly situated
relative to Vj, such that A; and A; are simply Z;;-separated.

By Remark 0, m
Ef = U E¥,
i=1

where EY is closed definable perfectly situated relative to V;.

Put P, = A;UE; (i =1,...,m). Then P; is closed perfectly situated
relative to V;. By Propositions 6 and 2(2), for any i,5 € {1,...,m} such
that 7 < j, there exists a closed definable set T;; C P; of dimension < &,
perfectly situated relative to Vj, such that P;, P; are simply T;;-separated.

Part 2. Now we define a family (Cy,..;,,) of closed definable sets, where
1< <...<i, <v<m are integers. We use induction on v.

Ifv= 1, we put Cl = Pl. Ifv= 2, we put CQ = PQ and 012 = T12.

Let v > 1. We define C}, ;,, by induction on p.

Ifpu=0 weput C, =P,.If u=1, we put C;,, =T;,,.

Suppose 1 < u < v. Then the set D¥ defined by

D= JChrjor | 1S j1 < ... <jo <v,0 < p}

is perfectly situated relative to V.

If now 1 <y <... <1, <v are integers, there exists a closed definable

set Cz‘l...zpv C Cil...iu of dimension < k, perfectly situated relative to V,,,
such that DY and Cj, . ;, are simply Cj, . ;,,-separated.

LEMMA 10. Let 1 < ji < ... < Jo<A<mand 1 <i; < ... <1, <
v < m be integers and A < v.

m

(1) If p <o, then Cj,. j » and Ci,...i,v are simply separated relative to

Cir.cjorv-
(2) If p> 0 and i1 > A, then Cj,j  and Cy,
rated relative to Cj, . j,Nigyy...ipv-

iyv are simply sepa-
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Proof. (1) This follows from Cj,. ., C DgtL.

(2) We use induction on g —o. If u = o, see (1). Suppose p > o. By (1),
Cj,..jox and Ciy i 4, , are simply separated relative to Cj, . j, i, - Hence,
Cj,...j,x and Cy, ;. are simply separated relative to Cj, . j, i, By the
induction hypothesis Cj, _j, xi,., and Cj, ;. are simply separated relative
to Cj,..j, Nigt1...i,v and we conclude by Proposition 2(3).

Part 3. Put S, = (J{Cs..i,v | 1 <1 < ... <y < v} for each v €
{1,...,m}. Then S, is perfectly situated relative to V,,.

We will show that if 1 < A < v < m, then S, and S, are simply
separated.

By Proposition 2(2), it suffices to check that if we have two sequences
1<ji<...<jo<Xand 1<iy <...<iy,<v,then Cj jxand Cy ;..
are simply Sy NS, -separated. If u < o, this follows from Lemma 10(1); and
if 4 > o and i,41 > A, this follows from Lemma 10(2).

Suppose now that © > o and i,41 < A. If A occurs among ig41,.-.,%u,
then C;, _;,, C SxNS, and clearly Cj, _j, x and Cj, . ;,, are simply SxN.S, -
separated. Otherwise, take p € {1,...,u} such that i, < A and i, > X if
0 < w < p. By Lemma 10(1), Cj,..5, and Cj, ., x are simply Cj i -
separated; hence, Cz‘l...zpu and Cj, ., » are simply Ci,...i,n-separated. By
Lemma 10(2), Cy,..,n and Cj, i, are simply Cj, i xi,,,...i,,-Separated.
By Proposition 2(3), Cj,. i, and Cj . j,x are simply Ci, . i, xiyp...ip0-
separated; hence, simply Sy N S, -separated. This ends the proof.
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