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Lower bounds for Jung constants of Orlicz sequence spaces

by Z. D. Ren (Riverside, CA)

Abstract. A new lower bound for the Jung constant JC(l(Φ)) of the Orlicz sequence
space l(Φ) defined by an N -function Φ is found. It is proved that if l(Φ) is reflexive and the
function tΦ′(t)/Φ(t) is increasing on (0, Φ−1(1)], then

JC(l(Φ)) ≥ Φ−1(1/2)

Φ−1(1)
.

Examples in Section 3 show that the above estimate is better than in Zhang’s paper (2003)
in some cases and that the results given in Yan’s paper (2004) are not accurate.

1. Introduction. We begin by recalling some definitions.

Definition 1 (Jung [6]). Let X be a normed linear sqace. The number
JC(X) of X, called the Jung constant, is defined by

JC(X) = sup
{
r(A,X)
d(A)

: A ⊂ X bounded and d(A) > 0
}
,

where r(A,X) = inf{sup(‖x − z‖ : x ∈ A) : z ∈ X} is the absolute Cheby-
shev radius of A and d(A) = sup{‖x− y‖ : x, y ∈ A}, the diameter of A.

Clearly, 1/2 ≤ JC(X) ≤ 1. Note that in Amir [1] and Franchetti [5],
2JC(X) is called the Jung constant of X and denoted by J(X). Historical
notes on the Jung constant can be found in Appell, Franchetti and Seme-
nov [2] as well as in Rao and Ren [10, Ch. 4].

Definition 2 (Bynum [3]). The normal structure coefficient of a Ba-
nach space X is defined as

N(X) = inf
{
d(A)
r(A)

: A ⊂ X bounded, closed and convex, d(A) > 0
}
,

where r(A) = inf{sup(‖x−y‖ : x ∈ A) : y ∈ co(A)} is the relative Chebyshev
radius of A with respect to co(A), and co(A) is the closure of the convex
hull of A.
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It can be seen that 1 ≤ N(X) ≤ 2. We say that X has the uniform
normal structure provided N(X) > 1. If X is infinite-dimensional, then
N(X) ≤

√
2 (cf. Maluta [8]). If X is nonreflexive, then N(X) = 1.

Definition 3 (Maluta [8]). For a Banach space X, the self-Jung con-
stant Ñ(X) is defined by Ñ(X) = sup{r(A)/d(A) : A ⊂ X is as in the
definition of N(X)}.

In [1], 2Ñ(X) is called the self-Jung constant ofX and denoted by Js(X).
Since Ñ(X) = 1/N(X) and JC(X) ≤ Ñ(X), for every Banach space X we
have

1/2 ≤ JC(X) ≤ 1/N(X) ≤ 1,(1)

which is used in Sections 4 and 5.
Now we turn to N -functions and the corresponding Orlicz sequence

spaces.

Definition 4. A function Φ : R → [0,∞) is termed an N -function if
(i) Φ is even and convex; (ii) Φ(u) = 0 ⇔ u = 0, (iii) limu→0 Φ(u)/u = 0
and (iv) limu→∞ Φ(u)/u =∞ (cf. Krasnosel’skĭı and Rutickĭı [7, pp. 6–9] as
well as Rao and Ren [10, p. 1]).

An N -function Φ(u) is said to satisfy the ∆2-condition for small u [for
large u], in symbols Φ ∈ ∆2(0) [Φ ∈ ∆2(∞)], if there exist K > 2 and u0 > 0
such that Φ(2u) ≤ KΦ(u) for 0 ≤ u ≤ u0 [for u ≥ u0]. Φ(u) is said to satisfy
the ∇2-condition for small u [for large u], written Φ ∈ ∇2(0) [Φ ∈ ∇2(∞)],
if there are C > 1 and u0 > 0 such that 2CΦ(u) ≤ Φ(Cu) for 0 ≤ u ≤ u0

[for u ≥ u0].
If Φ is an N -function, its complementary function Ψ is given by Ψ(v) =

sup{u|v| − Φ(u) : u ≥ 0}, which is also an N -function.

It is known that Φ ∈ ∇2(0) [Φ ∈ ∇2(∞)] ⇔ Ψ ∈ ∆2(0) [Ψ ∈ ∆2(∞)],
where Ψ is complementary to Φ. For a pair (Φ, Ψ) of complementary N -
functions the Orlicz sequence space lΦ is defined as

lΦ =
{
x = (x(1), x(2), . . .) : ρΦ(λx) =

∞∑
i=1

Φ(λx(i)) <∞ for some λ > 0
}
,

on which the gauge norm (also called the Luxemburg norm in [7], [4] and
[2]) and the Orlicz norm are given respectively by

‖x‖(Φ) = inf{c > 0 : ρΦ(x/c) ≤ 1}(2)

and

‖x‖Φ = sup
{ ∞∑
i=1

|x(i)y(i)| : ρΨ (y) ≤ 1
}
.(3)



Lower bounds for Jung constants 25

These norms are equivalent: ‖x‖(Φ) ≤ ‖x‖Φ ≤ 2‖x‖(Φ). We set l(Φ) =
(lΦ, ‖ · ‖(Φ)) and lΦ = (lΦ, ‖ · ‖Φ). Of course, l(Φ) and lΦ are Banach spaces.
It is known that for an N -function Φ, l(Φ) and lΦ are reflexive ⇔ Φ ∈
∆2(0) ∩ ∇2(0). The Jung constants of l(Φ) and lΦ have been studied before
by Zhang [15]. The main results in [15] can be summarized in the following
two propositions.

Proposition 1. Let Φ be an N -function. Then

(i) Φ /∈ ∆2(0) ∩∇2(0)⇒ JC(l(Φ)) = JC(lΦ) = 1;
(ii) Φ ∈ ∆2(0) ∩∇2(0)⇒ max(JC(l(Φ)), JC(lΦ)) < 1.

The first part of Proposition 1 is nontrivial and the second part is a
consequence of (1) and Theorem 3.1 in Chen [4, p. 107] (cf. [12] and [13]).

Proposition 2. Let Φ(u) =
	|u|
0 ϕ(t) dt and Ψ(v) =

	|v|
0 ψ(s) ds denote a

pair of complementary N -functions and let Φ ∈ ∆2(0) ∩∇2(0). Then

JC(l(Φ)) ≥ max
(

1
2α0

Φ

, β0
Φ

)
,(4)

where

α0
Φ = lim inf

u→0

Φ−1(u)
Φ−1(2u)

, β0
Φ = lim sup

u→0

Φ−1(u)
Φ−1(2u)

,(5)

and

JC(lΦ) ≥ max
(
β0
Ψ ,

1
2α0

Ψ

)
,(6)

where α0
Ψ and β0

Ψ are defined similarly to (5).

Corollary 1. Let (Φ, Ψ) be as in Proposition 2. If the limit C0
Φ =

limt→0 tϕ(t)/Φ(t) exists, then (4) and (6) reduce to

min(JC(l(Φ)), JC(lΦ)) ≥ max(21/C0
Φ−1, 2−1/C0

Φ).(7)

Proof. Note that 1 < C0
Φ <∞ because Φ ∈ ∆2(0)∩∇2(0) (cf. Theorem 2

in [10, p. 3]). Hence (7) follows from Theorem 15 in [10, p. 11] and Corollary
9 in [10, p. 8].

We often use (7) in concrete examples, e.g. in [10, p. 144, Example 7] it is
proved that JC(lp) = max(21/p−1, 2−1/p) for 1 < p <∞; see also Example 4
in Section 3.

2. Results. We start by introducing spaces having a symmetric norm.

Definition 5. A basis {xi} of a real Banach space X is called symmetric
if it is equivalent to the basis {xπ(i)} for every rearrangement π of the set of
natural numbers. An infinite-dimensional Banach space X with a symmetric
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basis {xi}∞i=1 is said to have a symmetric norm if for every real sequence
{ai}∞i=1 with

∑∞
i=1 aixi ∈ X,∥∥∥ ∞∑

i=1

aixi

∥∥∥
X

=
∥∥∥ ∞∑
i=1

θiaixπ(i)

∥∥∥
X

for all choices of signs θi = ±1 and all permulations π of the natural numbers.

The following lemma will be used.

Lemma 1 (Franchetti [5, Lemma 2]). Let X be an infinite-dimensional
Banach space with symmetric basis {ei}∞i=1 and symmetric norm. Define
f : N = {1, 2, . . .} → R+ by f(k,X) = ‖

∑k
i=1 ei‖X . Then

JC(X) ≥ sup
k∈N

f(k,X)
f(2k,X)

.(8)

Theorem 1. Let Φ(u) =
	|u|
0 ϕ(t) dt and Ψ(v) =

	|v|
0 ψ(s) ds denote a

pair of complementary N -functions and let Φ ∈ ∆2(0) ∩∇2(0). Define

β′Φ = sup
k∈N

Φ−1(1/2k)
Φ−1(1/k)

, α′Ψ = inf
k∈N

Ψ−1(1/2k)
Ψ−1(1/k)

.(9)

Then

JC(l(Φ)) ≥ β′Φ,(10)

JC(lΦ) ≥ 1
2α′Ψ

.(11)

Proof. Let e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), etc. The canonical basis
{ei}∞i=1 is symmetric in l(Φ) as well as in lΦ since Φ ∈ ∆2(0) (cf. [4, p. 47]).
The norms (2) and (3) are symmetric. It can be seen from (2) that

f(k, l(Φ)) =
∥∥∥ k∑
i=1

ei

∥∥∥
(Φ)

= inf{c > 0 : kΦ(1/c) ≤ 1} =
1

Φ−1(1/k)
.(12)

Thus (10) follows from (8), (12) and (9). Let λ0 satisfy the equation

1 = ρΨ

[
ϕ
(
λ0

k∑
i=1

ei

)]
= kΨ [ϕ(λ0)].

Then ϕ(λ0) = Ψ−1(1/k). By Proposition 14 in [9, p. 70] we have

f(k, lΦ) =
∥∥∥ k∑
i=1

ei

∥∥∥
Φ

=
〈 k∑
i=1

ei, ϕ
(
λ0

k∑
i=1

ei

)〉
= kϕ(λ0) = kΨ−1(1/k).(13)

Finally, (11) follows from (8), (13) and (9).
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Theorem 2. Let Φ(u) =
	|u|
0 ϕ(t) dt and Ψ(v) =

	|v|
0 ψ(s) ds be as in

Theorem 1 and let FΦ(t) = tϕ(t)/Φ(t), t > 0. Assume that ϕ is continuous
and strictly increasing on [0,max{Φ−1(1), ψ[Ψ−1(1)]}].

(i) If FΦ(t) is increasing on (0, Φ−1(1)], then

JC(l(Φ)) ≥ max
(

21/C0
Φ−1,

Φ−1(1/2)
Φ−1(1)

)
,(14)

where

C0
Φ = lim

t→0
FΦ(t).(15)

(ii) If FΦ(t) is increasing on (0, ψ[Ψ−1(1)]], then

JC(lΦ) ≥ max
(

21/C0
Φ−1,

Ψ−1(1)
2Ψ−1(1/2)

)
.(16)

Proof. (i) Since FΦ(t) is increasing on (0, Φ−1(1)] and Φ ∈ ∆2(0)∩∇2(0),
the limit C0

Φ exists and 1 < C0
Φ <∞ as noted before. Further, the function

GΦ(u) = Φ−1(u)/Φ−1(2u) for u > 0 is increasing on (0, 1/2] (cf. [10, p. 93])
and γ0

Φ = limu→0GΦ(u) exists. It follows from (9) and Corollary 9 in [10,
p. 8] that

β′Φ =
Φ−1(1/2)
Φ−1(1)

= GΦ(1/2) ≥ lim
u→0

GΦ(u) = γ0
Φ = 2−1/C0

Φ ,

which proves (14) by (10) and (7).
(ii) Recall that the Young inequality |uv| ≤ Φ(u) + Ψ(v) becomes an

equality when |v| = ϕ(|u|) or |u| = ψ(|v|) (see [9, p. 10]). Note that ϕ(t)
is strictly increasing on (0, ψ[Ψ−1(1)]] if and only of ψ(s) is continuous on
(0, Ψ−1(1)]. By letting s = ϕ(t), 0 < t ≤ ψ[Ψ−1(1)], we see that t = ψ(s)
and

FΨ (s) =
sψ(s)
Ψ(s)

=
tϕ(t)

tϕ(t)− Φ(t)
=

FΦ(t)
FΦ(t)− 1

,

or
1

FΦ(t)
+

1
FΦ(s)

= 1, 0 < s = ϕ(t) ≤ Ψ−1(1),(17)

which implies
1
C0
Φ

+
1
C0
Ψ

= 1,(18)

where C0
Ψ = lims→0 FΨ (s). By the assumption on FΦ(t) and (17), FΨ (s) is

decreasing on (0, Ψ−1(1)] so that GΨ (v) = Ψ−1(v)/Ψ−1(2v) is decreasing on
(0, 1/2] and γ0

Ψ = limv→0GΨ (v) exists. Finally,

2α′Ψ =
2Ψ−1(1/2)
Ψ−1(1)

= 2GΨ (1/2) ≤ 2α0
Ψ = 2γ0

Ψ = 21−1/C0
Ψ ,

so that (16) follows from (11), (7) and (18).
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3. Examples. To illustrate Theorems 1 and 2 we present some ex-
amples, that were considered by Zhang [15] and Yan [14], except Example 4.

Example 1. Consider the following pair of complementary N -functions:

Φ(u) = e|u| − |u| − 1, Ψ(v) = (1 + |v|) ln(1 + |v|)− |v|.
In [10, p. 9] it was proved that FΦ(t) (= tΦ′(t)/Φ(t)) is increasing on (0,∞)
and C0

Φ = limt→0 FΦ(t) = 2, so that Φ ∈ ∆2(0) ∩ ∇2(0). By Theorem 2 we
obtain

JC(l(Φ)) ≥ Φ−1(1/2)
Φ−1(1)

≈ 0.7483, JC(lΦ) ≥ Ψ−1(1)
2Ψ−1(1/2)

≈ 0.7435,

which refine the inequalities JC(l(Φ)), JC(lΦ) ≥ 1/
√

2 in [15, Example
2.12]. In fact, Franchetti [5] proved that JC(X) ≥ 1/

√
2 for any infinite-

dimensional Banach space X with a symmetric norm (see also [2, Theo-
rem 1]).

Example 2. For the space l(Φp) generated by the N -function

Φp(u) = e|u|
p − 1, 1 < p <∞,(19)

we have

JC(l(Φp)) ≥
(

ln 3− ln 2
ln 2

)1/p

> max(21/p−1, 2−1/p)(20)

if 1 + a < p <∞, where

a =
1

ln 2
ln
(

ln 2
ln 3− ln 2

)
≈ 0.7736.(21)

Proof. The function FΦp(t) = ptpet
p
/(et

p − 1) is increasing on (0,∞)
and C0

Φp
= limt→0 FΦp(t) = p, so that Φp ∈ ∆2(0)∩∇2(0). We first consider

2 ≤ p <∞. Since Φ−1
p (u) = [ln(1 +u)]1/p for u > 0, from (14) in Theorem 2

we have

JC(l(Φp)) ≥
Φ−1
p (1/2)

Φ−1
p (1)

> 2−1/p ≥ 21/p−1, 2 ≤ p <∞,

which proves (20) when 2 ≤ p < ∞. Next we consider 1 < p < 2. It can be
seen that Φ−1

p (1/2)/Φ−1
p (1) > 21/p−1 if and only if 1 + a < p < 2, where a is

given by (21). Thus,

JC(l(Φp)) ≥
Φ−1
p (1/2)

Φ−1
p (1)

> 21/p−1 > 2−1/p, 1 + a < p < 2,(22)

which completes the proof of (20).

Remark 1. The estimate (20) improves the estimate in [15, Ex-
ample 2.11] when 1 + a < p < ∞. The estimate (22) shows that the exact
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value for JC(l(Φp)) given in [14, Example 2.7], JC(l(Φp)) = 21/p−1, 1 < p < 2,
is impossible at least when 1.7736 ≈ 1 + a < p < 2.

Example 3. Consider the N -function

Mp(u) = |u|2p + 2|u|p, 1 < p <∞.(23)

Then

JC(l(Mp)) ≥
(√

3−
√

2
2−
√

2

)1/p

> max(21/p−1, 2−1/p)(24)

if 1 + b < p <∞, where

b =
1

ln 2
ln
(

2−
√

2√
3−
√

2

)
≈ 0.8812.(25)

Proof. FMp(t) is increasing on (0,∞) from p to 2p and C0
Mp

= p, so that
Mp ∈ ∆2(0)∩∇2(0). The inverse of Mp is M−1

p (u) = (
√

1 + u−1)1/p, u > 0.
Thus, the proof is similar to that of Example 2.

Remark 2. The estimate (24) and (25) show that the exact value for
JC(l(Mp)) in [14, Example 2.6] is not true when 1 + b < p < 2.

Let us make a comparison between Corollary 1 and Theorem 2 when
C0
Φ exists to estimate the lower bounds of JC(l(Φ)) and JC(lΦ). If FΦ(t)

is increasing on (0, Φ−1(1)] or on (0, ψ[Ψ−1(1)]], then Theorem 2 is an im-
provement of Corollary 1, as shown by Examples 1–3. On the other hand,
Theorem 1 is not better than Proposition 2 if FΦ(t) is decreasing.

Example 4. Let Mp,λ(u) = |u|p[ln(1 + |u|)]r with 1 ≤ p < ∞ and
0 < λ < ∞, which is considered in [2, p. 184] when p = 2 and λ ≥ 0.
The function FMp,λ

(t) = p + {λt/[(1 + t) ln(1 + t)]} is decreasing on (0,∞)
and C0

Mp,λ
= p + λ > 1, so that Mp,λ ∈ ∆2(0) ∩ ∇2(0). It can be seen

that β′Mp,λ
≤ limu→0GMp,λ

(u) = β0
Mp,λ

. Therefore, Proposition 2 improves
Theorem 1. Finally, from Corollary 1 we obtain

min(JC(l(Mp,λ)), JC(lMp,λ)) ≥ max(21/p+λ−1, 2−1/p+λ) = JC(lp+λ)

(see the end of Section 1 for JC(lp)).

4. Intermediate Orlicz sequence spaces. Now we turn to certain in-
termediate N -functions and the corresponding intermediate Orlicz sequence
spaces.

Definition 6. Let Φ be an N -function and let Φ0(u) = u2. For each
0 < s ≤ 1 we define an intermediate N -function Φs between Φ and Φ0 at s
to be the inverse of

Φ−1
s (u) = [Φ−1(u)]1−s[Φ−1

0 (u)]s = [Φ−1(u)]1−s(
√
u)s, u ≥ 0.(26)
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The corresponding Orlicz sequence space l(Φs) [lΦs ] is called an intermediate
space between l(Φ) [lΦ] and l2 at s ∈ (0, 1] in the sense of Calderón (cf. [9,
p. 223]).

The author [11] proved that Φs ∈ ∆2 ∩ ∇2 if 0 < s ≤ 1, where ∆2 =
∆2(0) ∩∆2(∞) and ∇2 = ∇2(0) ∩ ∇2(∞), that is, Φs(u) satisfies both the
∆2- and ∇2-conditions for all u ≥ 0 (cf. [10, p. 40]).

The following result enables us to find the exact values of JC(l(Φs)) and
JC(lΦs) as well as the normal structure coefficients N(l(Φs)) and N(lΦs).

Lemma 2 (Ren [11]). Let Φ be an N -function and let Φs be the inverse
of (26). Then for every s ∈ (0, 1] we have

2s/2 ≤ min(N(l(Φs)), N(lΦs)).(27)

The proof of (27) can be found also in [10, p. 85]. The main result of this
section is given by:

Theorem 3. Let Φ and Φs be as in Lemma 2. Then

max
(
β′Φs ,

1
2α0

Φs

, β0
Φs

)
≤ JC(l(Φs)) ≤ 2−s/2,(28)

max
(

1
2α′

Ψ+
s

,
1

2α0
Φs

, β0
Φs

)
≤ JC(lΦs) ≤ 2−s/2,(29)

where Ψ+
s is complementary to Φs. In particular, if Φ 6∈ ∆2(0)∩∇2(0), then

JC(l(Φs)) = 2−s/2 = JC(lΦs).

Proof. (28) and (29) follow from (27), (1), Proposition 2, Theorem 1
and the fact that 2α0

Φs
β0
Ψ+
s

= 1 = 2α0
Ψ+
s
β0
Φs

(cf. [10, p. 15]). The proof of the
second part is the same as that of Theorem 9 in [10, p. 145].

Remark 3. Theorem 3 partly refines Theorem 6 in [10, p. 144].
For computing the exact value of the Jung constant in a special Banach

space we now present a simple example. Consider the N -function

Mp(u) = |u|pe−1/|u|, 1 < p <∞.

Its inverse M−1
p on [0,∞) is not obtained explicitly. Note that

C0
Mp

= lim
t→0

tM ′p(t)/Mp(t) = lim
t→0

(p+ 1/t) =∞,

so that Mp 6∈ ∆2(0). Let Φs be the inverse of the function Φ−1
s (u) =

[M−1
p (u)]1−s(

√
u)s, u ≥ 0 and 0 < s ≤ 1. By the second part of Theorem 3

we obtain the exact values JC(l(Φs)) = 2−s/2 = JC(lΦs).

For the upper bounds of the normal structure coefficients N(l(Φ)) and
N(lΦ) we have the following.



Lower bounds for Jung constants 31

Proposition 3. Let (Φ, Ψ) be a pair of complementary N -functions with
Φ ∈ ∆2(0) ∩∇2(0). Then

N(l(Φ)) ≤ min
(

2α0
Φ,

1
β0
Φ

,
1
β′Φ

)
,(30)

N(lΦ) ≤ min
(

2α0
Φ,

1
β0
Φ

, 2α′Ψ

)
,(31)

where α0
Φ, β

0
Φ, β

′
Φ and α′Ψ are as in (5) and (9).

Proof. In [10, p. 108] it was proved that

max(N(l(Φ)), N(lΦ)) ≤ min
(

2α0
Φ,

1
β0
Φ

)
.(32)

It should be noted that (32) can also be deduced immediately from Propo-
sition 2 and (1). By Theorem 1 we get

N(l(Φ)) ≤ 1/β′Φ, N(lΦ) ≤ 2α′Ψ .(33)

Finally, (30) and (31) follow from (32) and (33).

Corollary 2. Let (Φ, Ψ) and FΦ(t) be as in Theorem 2.

(i) If FΦ(t) is increasing on (0, Φ−1(1)], then

N(l(Φ)) ≤ min
(

21−1/C0
Φ ,

Φ−1(1)
Φ−1(1/2)

)
.(34)

(ii) If FΦ(t) is increasing on (0, ψ[Ψ−1(1)]], then

N(lΦ) ≤ min
(

21−1/C0
Φ ,

2Ψ−1(1/2)
Ψ−1(1)

)
.(35)

By Lemma 2 and Proposition 3 we get the desired result.

Theorem 4. Let Φ and Φs be as in Lemma 2. Then

2s/2 ≤ N(l(Φs)) ≤ min
(

2α0
Φs ,

1
β0
Φs

,
1
β′Φs

)
,(36)

2s/2 ≤ N(lΦs) ≤ min
(

2α0
Φs ,

1
β0
Φs

, 2α′
Ψ+
s

)
.

In particular, if Φ 6∈ ∆2(0) ∩∇2(0), we get N(l(Φs)) = 2s/2 = N(lΦs).

Remark 4. Theorem 4 partly refines Theorem 8 in [10, p. 114].

5. Supplements to examples. Now we apply Corollary 2, Theorems
3 and 4 to Examples 1–3 in Section 3.
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Example 5. Let (Φ, Ψ) be as in Example 1. By (34) and (35) we obtain

N(l(Φ)) ≤ Φ−1(1)
Φ−1(1/2)

≈ 1.3364, N(lΦ) ≤ 2Ψ−1(1/2)
Ψ−1(1)

≈ 1.3450.

Before studying the next two examples we have to prove the following.

Lemma 3. Let M(u) =
	|u|
0 p(t) dt be an N -function and let Φs(u) =	|u|

0 ϕs(t) dt be the inverse of Φ−1
s (u) = [M−1(u)]1−s(

√
u)s, u ≥ 0 and 0 <

s ≤ 1. Consider FM (t) = tp(t)/M(t), t > 0, and FΦs(t) = tϕs(t)/Φs(t),
t > 0. Then FM (t) is increasing on (0,M−1(1)] if and only if FΦs(ts) is
increasing on (0, Φ−1

s (1)].

Proof. Since lnΦ−1
s (u) = (1− s) lnM−1(u) + (s/2) lnu for u > 0 we get

by differentiation
1

Φ−1
s (u)ϕs[Φ−1

s (u)]
=

1− s
M−1(u)p[M−1(u)]

+
s

2u
,

so that
Φs[Φ−1

s (u)]
Φ−1
s (u)ϕs[Φ−1

s (u)]
=

(1− s)M [M−1(u)]
M−1(u)p[M−1(u)]

+
s

2
, u > 0.

By letting u = M(t) and ts = Φ−1
s (u) = Φ−1

s [M(t)] = t1−s[M(t)]s/2 in the
above, we see that 0 < ts ≤ [M−1(1)]1−s = Φ−1

s (1) if 0 < t ≤ M−1(1) and
that

1
FΦs(ts)

=
1− s
FM (t)

+
s

2
,(37)

which proves the lemma.

Example 6. Let Φp be given by (19) in Example 2.

(i) It follows from (34) in Corollary 2 that

N(l(Φp)) ≤
(

ln 2
ln 3− ln 2

)1/p

< min(21−1/p, 21/p)

if 1 + a < p <∞, where a is in (21).
(ii) Let Φs(u) be the intermediate N -function between Φp(u) and u2 at

s ∈ (0, 1], i.e.,

Φ−1
s (u) = [ln(1 + u)](1−s)/p(

√
u)s, u ≥ 0.(38)

By Lemma 3, FΦs(t) is increasing on (0, Φ−1
s (1)] and

β′Φs =
Φ−1
s (1/2)
Φ−1
s (1)

= (β′Φp)
1−s
(

1√
2

)s
.
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From Theorem 3 and Theorem 2 for 1 + a < p <∞ with a being from (21),
we have

2−s/2 ≥ JC(l(Φs)) ≥ β′Φs = 2−s/2
(

ln 3− ln 2
ln 2

)(1−s)/p
(39)

> max(2(1−s)/p+s/2−1, 2(s−1)/p−s/2).

(iii) Let Φs be the inverse of (38). By Theorem 4 we have 2s/2 ≤ N(l(Φs))
≤ 1/β′Φs if 1 + a < p <∞.

Remark 5. (39) shows that the exact value for JC(l(Φs)) in [14, Ex-
ample 2.7, equality (20)] is not valid when 1 + a < p < 2.

Also, (39) is an improvement of Example 8 in [10, p. 144].
(iii) in Example 6 refines Example 9 in [10, p. 115].

Example 7. Let Mp be given by (23) of Example 3. Similarly to Ex-
ample 6, we have the following assertions:

(i) Let 1 + b < p <∞ with b as in (25). Then

N(l(Mp)) ≤ 1
β′Mp

=
(

2−
√

2√
3−
√

2

)1/p

< min(21−1/p, 21/p).

(ii) Let Ms be the inverse of M−1
s (u) = (

√
1 + u− 1)(1−s)/p(

√
u)s, u ≥ 0

and 0 < s ≤ 1. Then note that

β′Ms
= (β′Mp

)1−s
(

1
2

)s/2
= 2−s/2

(√
3−
√

2
2−
√

2

)(1−s)/p

and that (37) implies

1
C0
Ms

=
1− s
C0
Mp

+
s

2
=

1− s
p

+
s

2
.

Moreover, it follows from Theorems 2 and 3 that for 1 + b < p <∞,

2−s/2 ≥ JC(l(Ms)) ≥ β′Ms
> max(21/C0

Ms
−1, 2−1/C0

Ms ).(40)

(iii) Let Ms be as in (ii). Then 2s/2 ≤ N(l(Ms)) ≤ 1/β′Ms
whenever

1 + b < p <∞.

Remark 6. (40) shows that the exact value in [14, Example 2.6] is not
true when 1.8821 ≈ 1 + b < p < 2. Also, (40) is an improvement of Example
3.7 in [15, p. 43].
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