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Positive solutions to a class of elastic beam equations
with semipositone nonlinearity

by Qingliu Yao (Nanjing)

Abstract. Let h ∈ L1[0, 1] ∩ C(0, 1) be nonnegative and f(t, u, v) + h(t) ≥ 0. We
study the existence and multiplicity of positive solutions for the nonlinear fourth-order
two-point boundary value problem

u(4)(t) = f(t, u(t), u′(t)), 0 < t < 1, u(0) = u′(0) = u′(1) = u′′′(1) = 0,

where the nonlinear term f(t, u, v) may be singular at t = 0 and t = 1. By constructing a
suitable cone and integrating certain height functions of f(t, u, v) on some bounded sets,
several new results are obtained. In mechanics, the problem models the deflection of an
elastic beam fixed at the left end and clamped at the right end by sliding clamps.

1. Introduction. In this paper, we study the existence and multiplicity
of positive solutions for the nonlinear fourth-order two-point boundary value
problem

(P )

{
u(4)(t) = f(t, u(t), u′(t)), 0 < t < 1,
u(0) = u′(0) = u′(1) = u′′′(1) = 0.

In mechanics, problem (P ) models the deflection of an elastic beam fixed
at the left end and clamped at the right end by sliding clamps. Here, the
function u∗ ∈ C1[0, 1] is called a positive solution of (P ) if u∗ is a solution
of (P ) and u∗(t) > 0 for 0 < t ≤ 1.

When f : [0, 1] × (−∞,∞) × (−∞,∞) → (−∞,∞) is continuous, the
solvability of (P ) has been studied by some authors, for example, see [3–5,
10, 11]. As is well known, only positive solutions are significant in most real
problems.

If h(t) ≡ 0 and f(t, u, v) is nonnegative, the problem (P ) is called pos-
itive. For the positive problem (P ), Dalmasso [3] considered the existence
of a single positive solution when f(t, u, v) = f(u) and Yao [10] verified the
existence of n positive solutions in some general cases.
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If h(t) ≥ 0 and f(t, u, v) + h(t) is nonnegative, the problem (P ) is called
semipositone. To the best of our knowledge, there are no results concerning
the solvability of the semipositone problem (P ).

In this paper, we will study the existence and multiplicity of positive
solutions for the semipositone problem (P ) with singularity. The primary
motivation comes from the research of other semipositone problems, for
example [1, 2, 8, 12, 16].

Throughout this paper, we assume

(H1) h ∈ L1[0, 1] ∩ C(0, 1) is nonnegative and M̄ =
	1
0 h(t) dt.

(H2) f : (0, 1)× [0,∞)× [0,∞)→ (−∞,∞) is continuous.
(H3) For each positive number r > 0, there exists a nonnegative function

jr ∈ L1[0, 1] ∩ C(0, 1) such that

|f(t, u, v)| ≤ jr(t), (t, u, v) ∈ (0, 1)× [0, r]× [0, r].

(H4) f(t, u, v) + h(t) ≥ 0 for (t, u, v) ∈ (0, 1)× [0,∞)× [0,∞).

The assumptions (H2) and (H3) mean that the nonlinear term f(t, u, v)
may be singular at t = 0 and t = 1.

The purpose of this paper is to establish several local existence theo-
rems for positive solutions under the assumptions (H1)–(H4). The proofs
are based on the Krasnosel’skĭı fixed point theorem of cone expansion-
compression type. For completeness, we recall it.

Lemma 1.1 (Krasnosel’skĭı). Let X be a Banach space, and let K be a
cone in X. Assume Ω1, Ω2 are bounded open subsets of K with 0 ∈ Ω1 ⊂
Ω1 ⊂ Ω2, and let T : K → K be a completely continuous operator such that
either

(1) ‖T (x)‖ ≤ ‖x‖, x ∈ ∂Ω1 and ‖T (x)‖ ≥ ‖x‖, x ∈ ∂Ω2, or
(2) ‖T (x)‖ ≥ ‖x‖, x ∈ ∂Ω1 and ‖T (x)‖ ≤ ‖x‖, x ∈ ∂Ω2.

Then T has a fixed point in Ω2 \Ω1.

In order to apply the fixed point theorem, we need an appropriate cone.
By considering the partial derivative ∂

∂tG(t, s) of the related Green function
G(t, s), we obtain a cone which satisfies our requirement.

We will improve the localization method used in [7, 9, 13–15]. The
method is applicable only to the boundary value problems with continu-
ous nonlinear term. We will introduce the height functions of the nonlinear
term f(t, u, v) on some bounded sets and estimate the growth changes of
f(t, u, v) by integrating the height functions. We will apply the improved
method to problem (P ) and establish the existence of n positive solutions.
All results only depend upon the properties of the nonlinear term f(t, u, v)
on some bounded sets and are independent of the existence of upper and
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lower solutions. Finally, we will give two examples to illustrate some appli-
cations of the main results.

2. Green function and cone. Let C1
0 [0, 1] = {u ∈ C1[0, 1] : u(0) = 0}

be the Banach space with the norm |||u||| = max{‖u‖, ‖u′‖}, where ‖u‖ =
max0≤t≤1 |u(t)|. In addition, let

H(s) =
1
2
s2, q(t) = t(1− t), p(t) =

t�

0

q(s) ds =
1
6
t2(3− 2t).

Define a cone K of nonnegative functions in C1
0 [0, 1] as follows:

K = {u ∈ C1
0 [0, 1] : u(t) ≥ ‖u‖p(t), u′(t) ≥ ‖u′‖q(t), 0 ≤ t ≤ 1}.

Let G(t, s) be the Green function of the homogeneous linear problem

u(4)(t) = 0, 0 ≤ t ≤ 1, u(0) = u′(0) = u′(1) = u′′′(1) = 0,

that is,

G(t, s) =

{
1
12s

2(6t− 2s− 3t2), 0 ≤ s ≤ t ≤ 1,
1
12 t

2(6s− 2t− 3s2), 0 ≤ t ≤ s ≤ 1.

Then
∂

∂t
G(t, s) =

{
1
2s

2(1− t), 0 ≤ s ≤ t ≤ 1,
1
2 t(2s− t− s

2), 0 ≤ t ≤ s ≤ 1.

It is easy to see that G(t, s) ≥ 0 and ∂
∂tG(t, s) ≥ 0 for 0 ≤ t, s ≤ 1.

Direct computations give

max
0≤t,s≤1

G(t, s) = G(1, 1) =
1
12
, max

0≤t,s≤1

∂

∂t
G(t, s) =

∂

∂t
G

(
2
3
,
2
3

)
=

2
27
.

If 0 < α < β ≤ 1, then

min
α≤t,s≤β

G(t, s) = G(α, β) =
α2(6β − 2α− 3β2)

12
,

min
α≤t,s≤β

∂

∂t
G(t, s) = min

{
∂

∂t
G(α, β),

∂

∂t
G(β, α)

}
= min

{
α(2β − α− β2)

2
,
α2(1− β)

2

}
.

Lemma 2.1. q(t)H(s) ≤ ∂
∂tG(t, s) ≤ H(s) for 0 ≤ t, s ≤ 1.

Proof. If 0 ≤ s ≤ t ≤ 1, then
∂

∂t
G(t, s) =

1
2
s2(1− t) ≤ 1

2
s2 = H(s),

∂

∂t
G(t, s) = (1− t)H(s) ≥ t(1− t)H(s) = q(t)H(s).
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If 0 ≤ t ≤ s ≤ 1, then

∂

∂t
G(t, s) =

1
2

(1− t)s2 − 1
2

(s− t)2 ≤ 1
2

(1− t)s2 ≤ 1
2
s2 = H(s),

∂

∂t
G(t, s) =

1
2

(2ts− t2 − ts2)

=
1
2

[2ts− t2 − ts2 + t(1− t)2s2 − t(1− t)2s2]

=
1
2
{t(1− t)2s2 + (1− s)[t(s− t) + ts(1− t)] + t2(1− t)s2}

≥ 1
2
s2{t(1− t)2 + t2(1− t)} = q(t)H(s).

Lemma 2.2. For 0 ≤ t ≤ 1,
1�

0

G(t, s)h(s) ds ≤ 2
9
M̄p(t),

1�

0

∂

∂t
G(t, s)h(s) ds ≤ 1

2
M̄q(t).

Proof. In fact, we have

G(t, s)
p(t)

=



s2(6t− 2s− 3t2)
2t2(3− 2t)

≤
max
0≤t≤1

(4t− 3t2)

2 min
0≤t≤1

(3− 2t)
=

2
9
, 0 ≤ s ≤ t ≤ 1,

t2(6s− 2t− 3s2)
2t2(3− 2t)

≤
max
0≤t≤1

(4t− 3t2)

2 min
0≤t≤1

(3− 2t)
=

2
9
, 0 ≤ t ≤ s ≤ 1;

∂
∂tG(t, s)
q(t)

=


s2(1− t)
2t(1− t)

≤ s2

2t
≤ 1

2
t ≤ 1

2
, 0 ≤ s ≤ t ≤ 1,

t(2s− t− s2)
2t(1− t)

≤ s(1− s)
2(1− t)

≤ 1
2
s ≤ 1

2
, 0 ≤ t ≤ s ≤ 1.

It follows that
	1
0G(t, s)h(s) ds

p(t)
≤ max

0≤t,s≤1

G(t, s)
p(t)

1�

0

h(s) ds ≤ 2
9

1�

0

h(s) ds =
2
9
M̄,

	1
0
∂
∂tG(t, s)h(s) ds

q(t)
≤ max

0≤t,s≤1

∂
∂tG(t, s)
q(t)

1�

0

h(s) ds ≤ 1
2

1�

0

h(s) ds =
1
2
M̄.

Lemma 2.3. If u ∈ K and |||u||| = r, then ‖u′‖ = r and 1
6r ≤ ‖u‖ ≤ r.

Proof. Since u(0) = 0, we have

u(t) =
t�

0

u′(s) ds ≥ ‖u′‖
t�

0

q(s) ds = ‖u′‖p(t), 0 ≤ t ≤ 1.
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It follows that

1
6
‖u′‖ = ‖u′‖ max

0≤t≤1
p(t) ≤ ‖u‖ ≤ max

0≤t≤1

t�

0

‖u′‖ ds = ‖u′‖.

So, ‖u′‖ = r and 1
6r ≤ ‖u‖ ≤ r.

3. Related integral operator. Let u0(t) =
	1
0G(t, s)h(s) ds for 0 ≤

t ≤ 1. Then u0 ∈ C1[0, 1] is a nonnegative function such that u0(0) =
u′0(0) = u′0(1) = u′′′0 (1) = 0 and u

(4)
0 (t) = h(t) for 0 < t < 1. Moreover, we

can prove u0 ∈ K by Lemma 2.1.
Write c[ = max{c, 0}.
Consider the fourth-order two-point boundary value problem

(Q)

{
u(4)(t) = f(t, (u(t)− u0(t))[, (u′(t)− u′0(t))[) + h(t), 0 ≤ t ≤ 1,
u(0) = u′(0) = u′(1) = u′′′(1) = 0.

For u ∈ K and 0 ≤ t ≤ 1, define the operator T as follows:

(Tu)(t) =
1�

0

G(t, s)[f(s, (u(s)− u0(s))[, (u′(s)− u′0(s))[) + h(s)] ds.

For convenience, we use the abbreviation

F (t, (u(t) + u0(t))[) = f(t, (u(t) + u0(t))[, (u′(t) + u′0(t))[).

Lemma 3.1. We have T : K → C1[0, 1] and

(Tu)′(t) =
1�

0

∂

∂t
G(t, s)[f(s, (u(s)− u0(s))[, (u′(s)− u′0(s))[) + h(s)] ds.

Proof. Let u ∈ K. Directly differentiating both sides of the expression
of (Tu)(t), we get

(Tu)′(t) =
1�

0

∂

∂t
G(t, s)[F (s, (u(s)− u0(s))[) + h(s)] ds, 0 < t < 1.

Since F (·, (u(·)− u0(·))[) ∈ C(0, 1) by the assumption (H2) and

|F (t, (u(t)− u0(t))[)| ≤ j‖|u|‖+‖|u0|‖+1(t), 0 < t < 1,

by the assumption (H3), we see that F (·, (u(·) − u0(·))[) + h(·) ∈ L1[0, 1].
Therefore, T, (T (·))′ : K → C[0, 1] and T : K → C1[0, 1].

Lemma 3.2. T : K → K.
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Proof. Let u∈K. Since G(0, s) = 0 for 0≤ s ≤ 1, we see that (Tu)(0) = 0
from the definition of T . By Lemma 3.1,

(Tu)(t) =
t�

0

(Tu)′(s)ds =
t�

0

1�

0

∂

∂s
G(s, τ)[F (τ, (u(τ)− u0(τ))[) + h(τ)] dτ ds.

Hence

‖Tu‖ = max
0≤t≤1

t�

0

(Tu)′(s) ds ≤
1�

0

‖(Tu)′‖ ds = ‖(Tu)′‖.

On the other hand, by Lemma 2.1,

(Tu)(t) =
t�

0

1�

0

∂

∂s
G(s, τ)[F (τ, (u(τ)− u0(τ))[) + h(τ)] dτ ds

≥
t�

0

q(s)
1�

0

H(τ)[F (τ, (u(τ)− u0(τ))[) + h(τ)] dτ ds

≥
t�

0

q(s) max
0≤s≤1

1�

0

∂

∂s
G(s, τ)[F (τ, (u(τ)− u0(τ))[) + h(τ)] dτ ds

= ‖(Tu)′‖
t�

0

q(s) ds = ‖(Tu)′‖p(t) ≥ ‖Tu‖p(t),

(Tu)′(t) =
1�

0

∂

∂t
G(t, s)[F (s, (u(s)− u0(s))[) + h(s)] ds

≥ q(t)
1�

0

H(s)[F (s, (u(s)− u0(s))[) + h(s)] ds

≥ q(t) max
0≤t≤1

1�

0

∂

∂t
G(t, s)[F (s, (u(s)−u0(s))[)+h(s)] ds=‖(Tu)′‖q(t).

Consequently, T : K → K.

Lemma 3.3. T : K → K is completely continuous.

Proof. By Lemmas 3.1 and 3.2, we have V ◦ J = T and W ◦ J = (T (·))′
where

(Ju)(t) = F (t, (u(t)− u0(t))[) + h(t),

(V u)(t) =
1�

0

G(t, s)u(s) ds, (Wu)(t) =
1�

0

∂

∂t
G(t, s)u(s) ds.

By the proof of Lemma 3.1, J : K → L1[0, 1].
Let u, uk ∈ K and ‖|uk − u|‖ → 0. Then

lim
k→∞

uk(t) = u(t), lim
k→∞

u′k(t) = u′(t), 0 ≤ t ≤ 1.
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By assumption (H1),

lim
k→∞

F (t, (uk(t)− u0(t))[) = F (t, (u(t)− u0(t))[), 0 < t < 1.

Since |||uk − u||| → 0, there exists N(u) such that, for any k ≥ N(u),

0 ≤ uk(t) ≤ |||u|||+ 1, 0 ≤ u′k(t) ≤ |||u|||+ 1, 0 ≤ t ≤ 1.

So, for any k ≥ N(u),

|F (t, (uk(t)− u0(t))[)| ≤ j|||u|||+|||u0|||+1(t), 0 < t < 1.

Applying the Lebesgue dominated convergence theorem ([6, (12.24), p. 172]),
we obtain

lim
k→∞

1�

0

|(Juk)(t)− (Ju)(t)| dt

= lim
k→∞

1�

0

|F (t, (uk(t)− u0(t))[)− F (t, (u(t)− u0(t))[)| dt

=
1�

0

lim
k→∞

|F (t, (uk(t)− u0(t))[)− F (t, (u(t)− u0(t))[)| dt = 0.

It follows that J : K → L1[0, 1] is continuous.
Obviously, V,W : L1[0, 1]→ C[0, 1] are bounded linear operators. Thus,

V,W : L1[0, 1]→ C[0, 1] are continuous.
Applying the Arzelà–Ascoli theorem, we conclude that V,W : L1[0, 1]→

C[0, 1] are completely continuous.
Therefore, T = V ◦ J and (T (·))′ = W ◦ J : K → C[0, 1] are completely

continuous. It follows that T : K → K is completely continuous.

Lemma 3.4. If ū ∈ K is a fixed point of the operator T and |||ū||| > 4
3M̄ ,

then u∗ = ū− u0 ∈ C1[0, 1] is a positive solution of problem (P ).

Proof. It is easy to prove that fixed points of the operator T are solutions
of problem (Q).

Since ū is a solution of problem (Q), we have{
ū(4)(t) = F (t, (ū(t)− u0(t))[ + h(t), 0 < t < 1,
ū(0) = ū′(0) = ū′(1) = ū′′′(1) = 0.

Let u∗(t) = ū(t)−u0(t), 0 ≤ t ≤ 1. Then u∗ ∈ C1[0, 1]. Since |||ū||| > 4
3M̄

and Lemma 2.3, we have ‖u′‖ > 4
3M̄ and ‖u‖ > 2

9M̄ . In addition, by Lemma
2.2, u0(t) ≤ 2

9M̄p(t) and u′0(t) ≤ 1
2M̄q(t) for 0 ≤ t ≤ 1. It follows that, for
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0 < t < 1,

u∗(t) = ū(t)− u0(t) ≥ ‖ū‖p(t)− 2
9
M̄p(t) >

(
2
9
M̄ − 2

9
M̄

)
p(t) = 0,

(u∗)′(t) = ū′(t)− u′0(t) ≥ ‖ū′‖q(t)− 1
2
M̄q(t) >

(
4
3
M̄ − 1

2
M̄

)
q(t) > 0.

From this, (u∗(t))[ = u∗(t) and ((u∗)′(t))[ = (u∗)′(t) for 0 ≤ t ≤ 1. Noticing
that u(4)

0 (t) = h(t), 0 < t < 1 and u0(0) = u′0(0) = u′0(1) = u′′′0 (1) = 0, we
have {

(u∗)(4)(t) = f(t, u∗(t), (u∗)′(t)), 0 < t < 1,

u∗(0) = (u∗)′(0) = (u∗)′(1) = (u∗)′′′(1) = 0.

Since u∗(t) ≥
(
‖ū‖ − 2

9M̄
)
p(t) > 0, 0 < t ≤ 1, u∗ is a positive solution of

problem (P ).

4. Main results. We introduce the following height functions and con-
trol constants:

ϕ(t, r) = max {f(t, u, v) : 0 ≤ u ≤ r, 0 ≤ v ≤ r}+ h(t),

ψ(t, r) = min

f(t, u, v) :

(
1
6rp(t)−

1
12M̄

)[ ≤ u ≤ r,(
rq(t)− 2

27 M̄
)[ ≤ v ≤ r

+ h(t),

A =
[

max
0≤t,s≤1

∂

∂t
G(t, s)

]−1

=
27
2
,

B =
[

min
α≤t,s≤β

∂

∂t
G(t, s)

]−1

= max
{

2
α(2β − α− β2)

,
2

α2(1− β)

}
.

By assumptions (H3) and (H4), ϕ(t, r) and ψ(t, r) are integrable and
nonnegative. In geometrical terms, ϕ(t, r) is the maximal height function of
f(t, u, v) + h(t) on the set (0, 1) × [0, r] × [0, r], and ψ(t, r) is the minimal
height function of f(t, u, v) + h(t) on the set{

(t, u, v) : 0 ≤ t ≤ 1,
(

1
6
rp(t)− 1

12
M̄

)[
≤ u ≤ r,

(
rq(t)− 2

27
M̄

)[
≤ v≤ r

}
.

We obtain the following local existence theorems.

Theorem 4.1. Assume that there exist four positive numbers 0 < a < b
and 0 < α < β < 1 such that a > 4

3M̄ and one of the following conditions
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is satisfied :

(a1)
1�

0

ϕ(t, a) dt ≤ Aa,
β�

α

ψ(t, b) dt ≥ Bb.

(a2)
β�

α

ψ(t, a) dt ≥ Ba,
1�

0

ϕ(t, b) dt ≤ Ab.

Then problem (P ) has at least one solution u∗ ∈ C1[0, 1] such that u∗ + u0

∈ K and a ≤ |||u∗ + u0||| ≤ b.
Proof. Without loss of generality, we only consider case (a1). Define

Ωr = {u ∈ K : |||u||| < r}, ∂Ωr = {u ∈ K : |||u||| = r}.
If u ∈ ∂Ωa, then |||u||| = a. By Lemma 2.3, ‖u′‖ = a and ‖u‖ ≤ a. So

0 ≤ u(t) ≤ a and 0 ≤ u′(t) ≤ a for 0 ≤ t ≤ 1. Thus,

0 ≤ (u(t)− u0(t))[ ≤ a, 0 ≤ (u′(t)− u′0(t))[ ≤ a, 0 ≤ t ≤ 1,

f(t, (u(t)− u0(t))[, (u′(t)− u′0(t))[) + h(t) ≤ ϕ(t, a), 0 < t < 1.

By Lemma 3.2, Tu ∈ K. By Lemma 2.3, we have

|||Tu||| = ‖(Tu)′‖

= max
0≤t≤1

1�

0

∂

∂t
G(t, s)[f(s, (u(s)− u0(s))[, (u′(s)− u′0(s))[) + h(s)] ds

≤ max
0≤t,s≤1

∂

∂t
G(t, s)

1�

0

[f(s, (u(s)− u0(s))[, (u′(s)− u′0(s))[) + h(s)] ds

≤ max
0≤t,s≤1

∂

∂t
G(t, s)

1�

0

ϕ(s, a) ds ≤ A−1Aa = a = |||u|||.

If u ∈ ∂Ωb, then |||u||| = b. By Lemma 2.3, ‖u′‖ = b and 1
6b ≤ ‖u‖ ≤ b. So

1
6
bp(t) ≤ u(t) ≤ b, bq(t) ≤ u′(t) ≤ b, 0 ≤ t ≤ 1.

Simple computations give ‖u0‖ ≤ 1
12M̄ and ‖u′0‖ ≤ 2

27M̄ . Therefore,(
1
6
bp(t)− 1

12
M̄

)[
≤ (u(t)− u0(t))[ ≤ b, 0 ≤ t ≤ 1,(

bq(t)− 2
27
M̄

)[
≤ (u′(t)− u′0(t))[ ≤ b, 0 ≤ t ≤ 1,

f(t, (u(t)− u0(t))[, (u′(t)− u′0(t))[) + h(t) ≥ ψ(t, b), α ≤ t ≤ β.
It follows that



44 Q. L. Yao

|||Tu||| = ‖(Tu)′‖

≥ max
α≤t≤β

β�

α

∂

∂t
G(t, s)[f(s, (u(s)− u0(s))[, (u′(s)− u′0(s))[) + h(s)] ds

≥ min
α≤t,s≤β

∂

∂t
G(t, s)

β�

α

[f(s, (u(s)− u0(s))[, (u′(s)− u′0(s))[) + h(s)] ds

≥ min
α≤t,s≤β

∂

∂t
G(t, s)

β�

α

ψ(s, b)ds ≥ B−1Bb = b = |||u|||.

By Lemmas 3.3 and 1.1, the operator T has a fixed point ū ∈ K and
a ≤ |||ū||| ≤ b. Since a > 4

3M̄ , by Lemma 3.4, u∗ = ū − u0 ∈ C1[0, 1] is a
positive solution of problem (P ).

Imitating the proof of Theorem 4.1, we can prove the following theorems,
where [c] is the integer part of c.

Theorem 4.2. Assume that there exist five positive numbers 0 < a <
b < c and 0 < α < β < 1 such that a > 4

3M̄ and one of the following
conditions is satisfied :

(b1)
1�

0

ϕ(t, a) dt ≤ Aa,
β�

α

ψ(t, b)dt > Bb,

1�

0

ϕ(t, c) dt ≤ Ac;

(b2)
β�

α

ψ(t, a) dt ≥ Ba,
1�

0

ϕ(t, b)dt <Ab,
β�

α

ψ(t, c) dt ≥ Bc.

Then problem (P ) has at least two positive solutions u∗1, u
∗
2 ∈ C1[0, 1] such

that u∗1 + u0, u
∗
2 + u0 ∈ K and a ≤ |||u∗1 + u0||| < b < |||u∗2 + u0||| ≤ c.

Theorem 4.3. Assume that there exist six positive numbers 0 < a <
b < c < d and 0 < α < β < 1 such that a > 4

3M̄ and one of the following
conditions is satisfied :

(c1)

1�

0

ϕ(t, a) dt ≤ Aa,
β�

α

ψ(t, b) dt > Bb,

1�

0

ϕ(t, c) dt < Ac,

β�

α

ψ(t, d) dt ≥ Bd;

(c2)

β�

α

ψ(t, a) dt ≥ Ba,
1�

0

ϕ(t, b) dt < Ab,

β�

α

ψ(t, c) dt > Bc,

1�

0

ϕ(t, d) dt ≤ Ad.
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Then problem (P ) has at least three positive solutions u∗1, u
∗
2, u
∗
3 ∈ C1[0, 1]

such that u∗i + u0 ∈ K, i = 1, 2, 3, and

a ≤ |||u∗1 + u0||| < b < |||u∗2 + u0||| < c < |||u∗3 + u0||| ≤ d.
Theorem 4.4. Assume that there exist n+3 positive numbers 0 < a1 <

a2 < · · · < an+1 and 0 < α < β < 1 such that a1 >
4
3M̄ and one of the

following conditions is satisfied :

(d1)

1�

0

ϕ(t, a2k−1 )dt < Aa2k−1, k = 1, . . . , [(n+ 2)/2],

β�

α

ψ(t, a2k) dt >Ba2k, k = 1, . . . , [(n+ 1)/2];

(d2)

β�

α

ψ(t, a2k−1 )dt > Ba2k−1, k = 1, . . . , [(n+ 2)/2],

1�

0

ϕ(t, a2k) dt < Aa2k, k = 1, . . . , [(n+ 1)/2].

Then problem (P ) has at least n solutions u∗k ∈ C1[0, 1], k = 1, . . . , n, such
that u∗k + u0 ∈ K and ak < |||u∗k + u0||| < ak+1.

Theorem 4.5 gives a sufficient condition for the existence of infinitely
many positive solutions.

Theorem 4.5. Assume that there exist two positive numbers 0 < α <
β < 1 such that

lim inf
r→∞

1
r

1�

0

ϕ(t, r) dt < A, lim sup
r→∞

1
r

β�

α

ψ(t, r) dt > B.

Then problem (P ) has a sequence {u∗k}∞k=1 ⊂ C1[0, 1] of positive solutions
such that u∗k + u0 ∈ K and |||u∗k||| → ∞.

Proof. The assumption implies that there exists a sequence {rk}∞k=1 of
positive numbers such that

4
3
M̄ ≤ r1 < r2 < · · · and rk →∞,

1�

0

ϕ(t, r2k−1) dt ≤ Ar2k−1,

β�

α

ψ(t, r2k) dt ≥ Br2k.

By Theorem 4.1, for every k, there exists a positive solution u∗k ∈ C1[0, 1]
such that u∗k + u0 ∈ K and r2k−1 ≤ |||u∗k + u0||| ≤ r2k. Consequently, we have
|||u∗k||| → ∞.
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5. Remarks and examples

Remark 5.1. We consider the special case of f(t, u, v) = f(t, u). Let
C[0, 1] be the Banach space with ‖u‖ = max0≤t≤1 |u(t)| and

K̃ = {u ∈ C[0, 1] : u(0) = 0, u(t) ≥ ‖u‖p(t), 0 ≤ t ≤ 1}.
In this remark, we assume that

(H1)′ h ∈ L1[0, 1] ∩ C(0, 1) is nonnegative and M̄ =
	1
0 h(t) dt.

(H2)′ f : (0, 1)× [0,∞)→ (−∞,∞) is continuous.
(H3)′ For each positive number r > 0, there exists a nonnegative func-

tion jr ∈ L1[0, 1] ∩ C(0, 1) such that |f(t, u)| ≤ jr(t) for (t, u) ∈
(0, 1)× [0, r].

(H4)′ f(t, u) + h(t) ≥ 0, (t, u) ∈ (0, 1)× [0,∞).

Consider the fourth-order boundary value problem

(P̃ )

{
u(4)(t) = f(t, u(t)), 0 < t < 1,
u(0) = u′(0) = u′(1) = u′′′(1) = 0.

We will use the following height functions and control constants:

ϕ̃(t, r) = max{f(t, u) : 0 ≤ u ≤ r}+ h(t),

ψ̃(t, r) = min
{
f(t, u) :

(
rp(t)− 1

12
M̄

)[
≤ u ≤ r

}
+ h(t),

Ã = [ max
0≤t,s≤1

G(t, s)]−1 = 12,

B̃ = [ min
α≤t,s≤β

G(t, s)]−1 =
12

α2(6β − 2α− 3β2)
.

Imitating Theorem 4.1, we can prove the following local existence theorem.

Existence Theorem. Assume that there exist four positive numbers
0 < a < b and 0 < α < β ≤ 1 such that a > 2

9M̄ and one of the following
conditions is satisfied :

1�

0

ϕ̃(t, a)dt ≤ Ãa and
β�

α

ψ̃(t, b) dt ≥ B̃b;(f1)

β�

α

ψ̃(t, a) dt ≥ B̃a and
1�

0

ϕ̃(t, b)dt ≤ Ãb.(f2)

Then problem (P̃ ) has at least one solution u∗ ∈ C[0, 1] such that u∗+u0 ∈ K̃
and a ≤ ‖u∗ + u0‖ ≤ b.

By applying the existence theorem and changing corresponding con-
stants, we can obtain results similar to Theorems 4.2–4.5.
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Remark 5.2. In Theorems 4.1–4.4, one of the crucial conditions is the
inequality

	β
α ψ(t, r) dt ≥ Br. Hence, we need to choose the subinterval [α, β].

The choice depends upon the behavior of the nonlinear term f(t, u, v) or
f(t, u).

In the studies of other nonlinear boundary value problems, the authors
usually choose α = 1/4, β = 3/4. The following example shows that the
choice is not unique and there may be a finer choice.

Consider the nonlinear boundary value problem{
u(4)(t) = 240

√
max{0, t− 3/4}u(t), 0 ≤ t ≤ 1,

u(0) = u′(0) = u′(1) = u′′′(1) = 0.

In this problem, f(t, u) = 240
√

max{0, t− 3/4}u. Hence f : [0, 1]×[0,∞)→
[0,∞) is continuous, h(t) ≡ 0 and M̄ = 0.

If α = 1/4, β = 3/4, then ψ̃(t, r) ≡ 0 for any r > 0. Hence, we cannot
derive the existence of any positive solution from Remark 5.1.

However, the problem has a positive solution for other [α, β]. In fact, let
α = 13/16, β = 1; then Ã = 12, B̃ = 24576

1859 ≈ 13.2200. Obviously,

ϕ̃(t, 100) ≤ 240 max{1
2

√
u : 0 ≤ u ≤ 100} = 1200, 0 ≤ t ≤ 1,

1�

0

ϕ̃(t, 100) dt = 1200 = 100Ã.

Since min13/16≤t≤1 p(t) = 1859
12288 , we have, for 13/16 ≤ t ≤ 1,

ψ̃

(
t,

1
10

)
≥ 240 min

{
1
4
√
u :

1
10
p(t) ≤ u ≤ 1

10

}
,

≥ 240 min
{

1
4
√
u :

1859
10× 12288

≤ u ≤ 1
10

}
= 60

√
1859

10× 12288
≈ 7.3799.

Thus
	1
13/16 ψ̃(t, 1/10) dt ≥ 1.3837 > 1.3220 ≈ 1

10B̃. By Remark 5.1, the
problem has a positive solution u∗ ∈ C[0, 1] and 1/10 ≤ ‖u∗‖ ≤ 100.

In Examples 5.3 and 5.4, we let α=1/4, β=3/4. So, A=27/2, B=128.

Example 5.3. Consider the semipositone boundary value problem{
u(4)(t) = 1

2 [(u′′)2(t) + u2(t)]− 1/
√

min{t, 1− t}, 0 < t < 1,
u(0) = u′(0) = u′(1) = u′′′(1) = 0.

In the problem, the nonlinear term f(t, u) = 1
2 [u2 + v2]− 1/

√
min{t, 1− t}

is singular at t = 0, t = 1 and has no lower bound for any fixed (u, v).
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Let h(t) = 1/
√

min{t, 1− t}. Then the assumptions (H1)–(H4) hold and
M̄ = 2

√
2.

It is easy to see that

ϕ(t, 10) = max
{

1
2

[u2 + v2] : 0 ≤ u, v ≤ 10
}

= 100, 0 ≤ t ≤ 1,

1�

0

ϕ(t, 10) dt = 100 < 135 = 10A.

Since min1/4≤t≤3/4 p(t) = 5/192, min1/4≤t≤3/4 q(t) = 1/4, we see that if
r > 64

√
2 ≈ 90.5097, then 1

6rp(t) −
1
12M̄ > 0 and rq(t) − 2

27M̄ > 0 for
1/4 ≤ t ≤ 3/4. It follows that, for 1/4 ≤ t ≤ 3/4,

ψ(t, 9000) = min

{
1
2 [u2 + v2] :

1500p(t)− 1
12M̄ ≤ u ≤ 9000,

9000q(t)− 2
27M̄ ≤ v ≤ 9000

}

≥ min

1
2 [u2 + v2] :

7500
192 −

√
2

6 ≤ u ≤ 9000,
9000

4 −
4
√

2
27 ≤ v ≤ 9000


=

1
2

{[
625
16
−
√

2
6

]2

+
[
2250− 4

√
2

27

]2}
≈ 2531532.3.

Hence,
	3/4
1/4 ψ(t, 9000) dt ≥ 1265766.1 > 1152000 = 9000B.

Since 10 > 8
√

2/3 = 4
3M̄ , by Theorem 4.1 the problem has a positive

solution u∗ ∈ C1[0, 1] such that u∗ + u0 ∈ K and 10 ≤ |||u∗ + u0||| ≤ 9000.
Here, u0(t) =

	1
0G(t, s) ds/

√
min{s, 1− s}.

Example 5.4. Let Q1 = 12, X1 = 4Q1+32, Y1 = 21B
9A X1+8 and Qn+1 =

Yn + 8, Xn+1 = 4Qn+1 + 32, Yn+1 = 21B
9A Xn+1 + 8, n = 1, 2, . . . . In addition,

let Zn = 21
10BXn, n = 1, 2, . . . .

Let g(u) be the function whose graph is an infinite broken line (0, 0)→
(10, 0) → (Q1, Z1) → (Y1, Z1) → (Q2, Z2) → (Y2, Z2) → (Q3, Z3) →
(Y3, Z3)→ · · · .

Consider the semipositone boundary value problem{
u(4)(t) = g(u′(t)) + sin2(u(t))− 27

√
2/
√

min{t, 1− t}, 0 < t < 1,
u(0) = u′(0) = u′(1) = u′′′(1) = 0.

Here f(t, u, v) = g(v)+sin2 u−27
√

2/
√

min{t, 1− t} is singular at t= 0, t= 1
and g(v) is continuous and nondecreasing. Let h(t) = 27

√
2/
√

min{t, 1− t}.
Then the assumptions (H1)–(H4) hold and M̄ = 108. In addition,
min1/4≤t≤3/4 q(t) = 1/4.
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It is easy to see that, for n = 1, 2, . . . and 0 ≤ t ≤ 1,

ϕ(t, Yn) ≤ max{g(v) + 1 : 0 ≤ v ≤ Yn} = Zn + 1 =
21
10
BXn + 1

=
21
10
B · 9A

21B
(Yn − 8) + 1 =

9
10
AYn −

72
10
A+ 1.

It follows that
1�

0

ψ(t, Yn) dt ≤ 9
10
AYn + 1 and lim inf

r→∞

1
r

1�

0

ϕ(t, r) dt < A.

On the other hand, for 1/4 ≤ t ≤ 3/4 and n = 1, 2, . . . ,

ψ(t,Xn) ≥ min
{
g(v) : Xnq(t)−

2
27
M̄ ≤ v ≤ Xn

}
≥ min

{
g(v) :

1
4
Xn − 8 ≤ v ≤ Xn

}
= min{g(v) : Qn ≤ v ≤ Xn} = Zn =

21
10
BXn.

Thus,
3/4�

1/4

ψ(t,Xn) dt ≥ 21
20
BXn and lim sup

r→∞

1
r

3/4�

1/4

ψ(t, r) dt > B.

By Theorem 4.5, the problem has a sequence {u∗k}∞k=1 ⊂ C1[0, 1] of pos-
itive solutions such that |||u∗k||| → ∞.

Examples 5.3 and 5.4 illustrate that our method can deal with more
complicated problems.
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