Uniqueness of entire functions and fixed points

by Xiao-Guang Qi and Lian-Zhong Yang (Jinan)

Abstract

Let f and g be entire functions, n, k and m be positive integers, and λ, μ be complex numbers with $|\lambda|+|\mu| \neq 0$. We prove that $\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}$ must have infinitely many fixed points if $n \geq k+2$; furthermore, if $\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}$ and $\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}$ have the same fixed points with the same multiplicities, then either $f \equiv c g$ for a constant c, or f and g assume certain forms provided that $n>2 k+m^{*}+4$, where m^{*} is an integer that depends only on λ.

1. Introduction and main results. In this paper, a meromorphic function will mean meromorphic in the whole complex plane. We shall use the standard notations of value distribution theory [10]: $T(r, f), m(r, f)$, $N(r, f), \bar{N}(r, f)$, etc. We denote by $S(r, f)$ any function that satisfies $S(r, f)$ $=o(T(r, f))$ as $r \rightarrow \infty$ possibly outside a set of finite linear measure.

We say that two meromorphic functions f and g share a small function $a(z) I M$ (ignoring multiplicities) when $f-a$ and $g-a$ have the same zeros. If f and g have the same zeros with the same multiplicities, then we say that f and g share $a(z) C M$ (counting multiplicities).

Let p be a positive integer and $a \in \mathbb{C}$. We denote by $N_{p}(r, 1 /(f-a))$ the counting function of the zeros of $f-a$, where an m-fold zero is counted m times if $m \leq p$ and p times if $m>p$. We say that a finite value z_{0} is a fixed point of f if $f\left(z_{0}\right)=z_{0}$.

In 1959, Hayman [4] proved the following result.
Theorem A. Let f be a transcendental entire function, and $n \geq 1$ be a positive integer. Then $f^{n} f^{\prime}-1$ has infinitely many zeros.

Wang [8] extended Theorem A, and proved the next result.
Theorem B. Let f be a transcendental meromorphic function, and n, k be positive integers with $n \geq k+1$. Then $\left(f^{n}\right)^{(k)}-1$ has infinitely many zeros.

[^0]It is of interest to establish uniqueness theorems corresponding to the above results. Fang and Hua [2], Yang and Hua [9] obtained the following results.

Theorem C. Let f and g be nonconstant entire functions, and $n \geq 6$ be a positive integer. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share $1 C M$, then either $f(z)=$ $c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$, where c_{1}, c_{2} and c are constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}$ $=-1$, or $f=t g$ for a constant t such that $t^{n+1}=1$.

Theorem D. Let f and g be nonconstant entire functions, and n and k be positive integers with $n>2 k+4$. If $\left(f^{n}\right)^{(k)}$ and $\left(g^{n}\right)^{(k)}$ share $1 C M$, then either $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$, where c_{1}, c_{2} and c are constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=-1$, or $f=t g$ for a constant t such that $t^{n}=1$.

In [1], Fang also obtained the following results.
Theorem E. Let f be a transcendental entire function, and n and k be positive integers with $n \geq k+2$. Then $\left(f^{n}(f-1)\right)^{(k)}-1$ has infinitely many zeros.

TheOrem F. Let f and g be nonconstant entire functions, and n, k be positive integers with $n \geq 2 k+8$. If $\left(f^{n}(f-1)\right)^{(k)}$ and $\left(g^{n}(g-1)\right)^{(k)}$ share $1 C M$, then $f=g$.

Corresponding to the above results, some authors considered uniqueness of entire functions that have fixed points (see Fang and Qiu [3], Lin and $\mathrm{Yi}[7])$. In the present paper, we consider the existence of fixed points of $\left(f^{n}\left(\lambda f^{m}+\mu\right)\right)^{(k)}$ and the corresponding uniqueness theorems, where n, m and k are positive integers, and we obtain the following results which generalize the above theorems.

Theorem 1. Let $f(z)$ be a transcendental entire function, n, k and m be positive integers, and λ, μ be complex numbers satisfying $|\lambda|+|\mu| \neq 0$. Then

$$
(n-k-1) T(r, f) \leq \bar{N}\left(r, \frac{1}{\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}-z}\right)+S(r, f)
$$

Corollary. Let $f(z)$ be a transcendental entire function, n, k and m be positive integers with $n \geq k+2$, and λ, μ be complex numbers such that $|\lambda|+|\mu| \neq 0$. Then $\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}$ has infinitely many fixed points.

REMARK 1. It is easy to see that a polynomial $P(z)$ with degree $n \geq 1$ has exactly n fixed points (counting multiplicities), but a transcendental entire function may have no fixed points. For example, the function $f=$ $e^{\alpha(z)}+z$ has no fixed points, where $\alpha(z)$ is an entire function.

We define an integer m^{*}, corresponding to the differential polynomials $\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}$ and $\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}$ in Theorem 2, by

$$
m^{*}= \begin{cases}m, & \lambda \neq 0 \\ 0, & \lambda=0\end{cases}
$$

Theorem 2. Let $f(z)$ and $g(z)$ be transcendental entire functions, n, m and k be positive integers, and λ and μ be constants that satisfy $|\lambda|+|\mu| \neq 0$. Suppose that $n>2 k+m^{*}+4$. If $\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}$ and $\left(g^{n}(z)\left(\lambda g^{m}(z)\right.\right.$ $+\mu))^{(k)}$ share $z C M$, then the following conclusions hold:
(i) If $\lambda \mu \neq 0$, then $f^{d}(z) \equiv g^{d}(z)$, where $d=\operatorname{GCD}(n, m)$; in particular, $f(z) \equiv g(z)$ when $d=1$.
(ii) If $\lambda \mu=0$, then either $f=c g$ for a constant c that satisfies $c^{n+m^{*}}=1$, or $k=1$ and $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$ for some constants b_{1}, b_{2} and b that satisfy $4(\lambda+\mu)^{2}\left(b_{1} b_{2}\right)^{n+m^{*}}\left(\left(n+m^{*}\right) b\right)^{2}=-1$.

2. Some lemmas

Lemma 1 (10$]$). Let f be a nonconstant meromorphic function, and a_{0}, a_{1}, \ldots, a_{n} be finite complex numbers such that $a_{n} \neq 0$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

LEMMA 2 (6]). Let f be a nonconstant meromorphic function, and p, k be positive integers. Then

$$
\begin{gather*}
N_{p}\left(r, 1 / f^{(k)}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}(r, 1 / f)+S(r, f) \tag{2.1}\\
\quad N_{p}\left(r, 1 / f^{(k)}\right) \leq k \bar{N}(r, f)+N_{p+k}(r, 1 / f)+S(r, f) \tag{2.2}
\end{gather*}
$$

Lemma 3 ([11]). Let

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{2.3}
\end{equation*}
$$

where F and G are nonconstant meromorphic functions. If F and G share $1 C M$ and $H \not \equiv 0$, then

$$
\begin{align*}
T(r, F)+T(r, G) \leq & 2\left(N_{2}(r, 1 / F)+N_{2}(r, 1 / G)\right. \tag{2.4}\\
& \left.+N_{2}(r, F)+N_{2}(r, G)\right)+S(r, F)+S(r, G)
\end{align*}
$$

LEMMA 4 (10]). Let $f(z)$ be a nonconstant meromorphic function, and $a_{1}(z), a_{2}(z)$ and $a_{3}(z)$ be distinct small functions of $f(z)$. Then

$$
T(r, f)<\sum_{j=1}^{3} \bar{N}\left(r, \frac{1}{f-a_{j}}\right)+S(r, f)
$$

LEMMA 5. Let f and g be nonconstant entire functions, n, m and k be positive integers, and let

$$
F=\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}, \quad G=\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}
$$

where $\lambda \mu \neq 0$. If there exist nonzero constants a_{1} and a_{2} such that

$$
\bar{N}\left(r, \frac{1}{F-a_{1}}\right)=\bar{N}\left(r, \frac{1}{G}\right), \quad \bar{N}\left(r, \frac{1}{G-a_{2}}\right)=\bar{N}\left(r, \frac{1}{F}\right)
$$

then $n \leq 2 k+2+m$.
Proof. By the second fundamental theorem, we have

$$
\begin{align*}
T(r, F) & \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-a_{1}}\right)+S(r, F) \tag{2.5}\\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, F) \\
& \leq N_{1}\left(r, \frac{1}{F}\right)+N_{1}\left(r, \frac{1}{G}\right)+S(r, F)
\end{align*}
$$

From 2.5. Lemma 1 and Lemma 2, we obtain

$$
\begin{aligned}
T(r, F) \leq & T(r, F)-T\left(r, f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right) \\
& +N_{k+1}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right) \\
& +N_{k+1}\left(r, \frac{1}{g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)}\right)+S(r, f)+S(r, g)
\end{aligned}
$$

Hence

$$
\begin{align*}
(n+m) T(r, f) \leq & N_{k+1}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right) \tag{2.6}\\
& +N_{k+1}\left(r, \frac{1}{g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)}\right)+S(r, f)+S(r, g) \\
\leq & (k+1)(\bar{N}(r, 1 / f)+\bar{N}(r, 1 / g)) \\
& +m(T(r, f)+T(r, g))+S(r, f)+S(r, g)
\end{align*}
$$

By a similar reasoning, we have

$$
\begin{align*}
(n+m) T(r, g) \leq & (k+1)(\bar{N}(r, 1 / f)+\bar{N}(r, 1 / g)) \tag{2.7}\\
& +m(T(r, f)+T(r, g))+S(r, f)+S(r, g)
\end{align*}
$$

From 2.6 and 2.7, we have

$$
(n-2 k-2-m)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

which implies that $n \leq 2 k+2+m$. Lemma 5 is thus proved.
Lemma 6. Suppose that F and G are given by Lemma 5. If $n>2 k+m$ and $F=G$, then $f^{d}(z) \equiv g^{d}(z)$, where $d=\operatorname{GCD}(n, m)$.

Proof. From $F=G$, we get

$$
\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}=\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}
$$

By integration, we have

$$
\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k-1)}=\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k-1)}+a_{k-1},
$$

where a_{k-1} is a constant. If $a_{k-1} \neq 0$, Lemma 5 yields $n \leq 2 k+m$, which is a contradiction. Hence $a_{k-1}=0$. Repeating the same process $k-1$ times, we obtain

$$
\begin{equation*}
f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)=g^{n}(z)\left(\lambda g^{m}(z)+\mu\right) \tag{2.8}
\end{equation*}
$$

Now we suppose that $h=f / g$. By 2.8, we get

$$
\lambda g^{m}\left(h^{n+m}-1\right)=\mu\left(1-h^{n}\right)
$$

When $h^{n+m}=1$, the above equation yields $h^{n}=1$, that is, $f^{n}=g^{n}$ and $f^{m}=g^{m}$, so $f^{d}(z) \equiv g^{d}(z)$, where $d=\operatorname{GCD}(n, m)$. When $h^{n+m} \not \equiv 1$, by substituting $f=g h$ into 2.8, we have

$$
g^{m}=-\frac{\mu}{\lambda} \cdot \frac{1+h+\cdots+h^{n-1}}{1+h+\cdots+h^{n+m-1}}=-\frac{\mu}{\lambda} \cdot \frac{\prod_{i=1}^{n-1}\left(h-\zeta_{i}\right)}{\prod_{i=1}^{n+m-1}\left(h-\eta_{i}\right)}
$$

where $\zeta_{i} \neq 1, \zeta_{i}^{n}=1$, and $\eta_{i} \neq 1, \eta_{i}^{n+m}=1$. Since g is an entire function, we know that every zero of $h^{n+m}-1$ has to be a zero of $h^{n}-1$. Noting that $n>2 k+m$, we deduce that h is a constant. Hence, g is a constant, which is a contradiction. Therefore, $f^{d}(z) \equiv g^{d}(z)$, where $d=\operatorname{GCD}(n, m)$.

Lemma 7. Let f and g be transcendental entire functions, n, m and k be positive integers, and $F=\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}, G=\left(g^{n}(z)\left(\lambda g^{m}(z)\right.\right.$ $+\mu))^{(k)}$, where $\lambda \mu \neq 0$. If $F G=z^{2}$, then $n \leq k+2$.

Proof. Suppose $n>k+2$. From $F G=z^{2}$, we have

$$
\begin{equation*}
\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}=z^{2} \tag{2.9}
\end{equation*}
$$

Suppose that z_{0} is a p-fold zero of f. Since $\lambda \mu \neq 0$, we know that z_{0} must be an $(n p-k)$-fold zero of $\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}$. As g is an entire function and $n>k+2$, it follows from 2.9 that z_{0} is a zero of z^{2} of order at least 3 , which is impossible. Thus f has no zeros. Let $f(z)=e^{\beta(z)}$, where $\beta(z)$ is a nonconstant entire function. Then

$$
\begin{align*}
\left(f^{m+n}\right)^{(k)} & =\left(e^{(m+n) \beta}\right)^{(k)}=P_{1}\left(\beta^{\prime}, \beta^{\prime \prime}, \ldots, \beta^{(k)}\right) e^{(m+n) \beta} \tag{2.10}\\
\left(f^{n}\right)^{(k)} & =\left(e^{n \beta}\right)^{(k)}=P_{2}\left(\beta^{\prime}, \beta^{\prime \prime}, \ldots, \beta^{(k)}\right) e^{n \beta} \tag{2.11}
\end{align*}
$$

where P_{1} and P_{2} are differential polynomials in $\beta^{\prime}, \beta^{\prime \prime}, \ldots, \beta^{(k)}$. It is easy to see that $P_{1} \not \equiv 0, P_{2} \not \equiv 0, T\left(r, P_{1}\right)=S(r, f)$ and $T\left(r, P_{2}\right)=S(r, f)$. From 2.9, 2.10 and 2.11 we obtain

$$
N\left(r, \frac{1}{\lambda P_{1} e^{m \beta}+\mu P_{2}}\right)=S(r, f)
$$

By Lemmas 4 and 1, we have

$$
\begin{aligned}
m T(r, f) & =T\left(r, P_{1} e^{m \beta}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{\lambda P_{1} e^{m \beta}+\mu P_{2}}\right)+\bar{N}\left(r, \frac{1}{P_{1} e^{m \beta}}\right)+S(r, f) \\
& =S(r, f)
\end{aligned}
$$

which is a contradiction. Thus $n \leq k+2$. This completes the proof of Lemma 7

LEMMA 8. Let f and g be nonconstant entire functions, n, m and k be positive integers, and $F=\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}, G=\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}$, where $|\lambda|+|\mu| \neq 0$, and $\lambda \mu=0$. If there exist nonzero constants a_{1} and a_{2} such that $\bar{N}\left(r, 1 /\left(F-a_{1}\right)\right)=\bar{N}(r, 1 / G)$ and $\bar{N}\left(r, 1 /\left(G-a_{2}\right)\right)=\bar{N}(r, 1 / F)$, then $n \leq 2 k+2-m^{*}$.

Proof. If $\lambda \neq 0$, by the same arguments as in the proof of Lemma 5, we have

$$
(n-2 k-2+m)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

which implies that $n \leq 2 k+2-m^{*}$.
If $\lambda=0$, a similar argument gives

$$
\begin{align*}
& n T(r, f) \leq(k+1)(\bar{N}(r, 1 / f)+\bar{N}(r, 1 / g))+S(r, f)+S(r, g) \tag{2.12}\\
& n T(r, g) \leq(k+1)(\bar{N}(r, 1 / f)+\bar{N}(r, 1 / g))+S(r, f)+S(r, g) \tag{2.13}
\end{align*}
$$

Hence

$$
(n-2 k-2)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

and we deduce that $n \leq 2 k+2$.
By the arguments much similar to the proof of Lemma 6, we have the following lemma.

Lemma 9. Suppose that F and G are given by Lemma 8. If $n>2 k-m^{*}$ and $F=G$, then $f=c g$ for a constant c that satisfies $c^{n+m^{*}}=1$.

Proof. Suppose that $\lambda \neq 0$. By using the same arguments as in the proof of Lemma 6, we have $\lambda f^{m+n}=\lambda g^{m+n}$ if $n>2 k-m$. If $\lambda=0$, then we have $\mu f^{n}=\mu g^{n}$. Thus we obtain the conclusion of Lemma 9 .

Lemma 10 ([5]). Suppose that f is a nonconstant meromorphic function, and $k \geq 2$ is an integer. If

$$
N(r, f)+N(r, 1 / f)+N\left(r, 1 / f^{(k)}\right)=S\left(r, f^{\prime} / f\right)
$$

then $f=e^{a z+b}$, where $a \neq 0, b$ are constants.

3. Proofs of theorems

Proof of Theorem 1. Set $F=f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)$. By Lemma 4, we have

$$
\begin{equation*}
T\left(r, F^{(k)}\right) \leq \bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \tag{3.1}
\end{equation*}
$$

Case 1: $\lambda \neq 0$. By (3.1 and Lemma 2 with $p=1$, we obtain

$$
\begin{align*}
& T\left(r, F^{(k)}\right) \leq N_{1}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \tag{3.2}\\
& \leq T\left(r, F^{(k)}\right)-T(r, F)+N_{k+1}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f)
\end{align*}
$$

and so

$$
\begin{aligned}
T(r, F) & \leq N_{k+1}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \\
& \leq N_{k+1}\left(r, \frac{1}{f^{n}}\right)+N_{k+1}\left(r, \frac{1}{\lambda f^{m}(z)+\mu}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \\
& \leq(k+1+m) T(r, f)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f)
\end{aligned}
$$

Since $T(r, F)=(m+n) T(r, f)+S(r, f)$, we have

$$
(n-k-1) T(r, f) \leq \bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f)
$$

Hence, the conclusion of Theorem 1 holds in this case.
Case 2: $\lambda=0$. Since $|\lambda|+|\mu| \neq 0$, we know that $\mu \neq 0$. By using the same arguments as above, we have

$$
\begin{aligned}
T(r, F) & \leq N_{k+1}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \\
& \leq N_{k+1}\left(r, \frac{1}{\mu f^{n}}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \\
& \leq(k+1) T(r, f)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f)
\end{aligned}
$$

Noting that $T(r, F)=n T(r, f)+S(r, f)$, we obtain

$$
(n-k-1) T(r, f) \leq \bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f)
$$

Theorem 1 follows.
Proof of Theorem 2. We consider the following two cases.
(i) $\lambda \mu \neq 0$. Let

$$
\begin{equation*}
F=\frac{\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}}{z}, \quad G=\frac{\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}}{z} \tag{3.3}
\end{equation*}
$$

Then F and G are transcendental meromorphic functions that share 1 CM. Let H be given by (2.3). If $H \not \equiv 0$, by Lemma 3 we know that (2.4) holds. From Lemma 2, we have

$$
\begin{align*}
N_{2}(r, 1 / F) \leq & N_{2}\left(r, \frac{1}{\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}}\right)+S(r, f) \tag{3.4}\\
\leq & T\left(r,\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}\right)-(m+n) T(r, f) \\
& +N_{k+2}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+S(r, f) \\
= & T(r, F)-(m+n) T(r, f) \\
& +N_{k+2}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+S(r, f)
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
N_{2}(r, 1 / G) \leq & T(r, G)-(m+n) T(r, g) \tag{3.5}\\
& +N_{k+2}\left(r, \frac{1}{g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)}\right)+S(r, g)
\end{align*}
$$

From (3.4) and (3.5), we obtain

$$
\begin{align*}
& N_{2}(r, 1 / F) \leq N_{k+2}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+S(r, f) \tag{3.6}\\
& N_{2}(r, 1 / G) \leq N_{k+2}\left(r, \frac{1}{g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)}\right)+S(r, g) \tag{3.7}
\end{align*}
$$

Again, from (3.4) and (3.5), we have

$$
\begin{aligned}
(m+n)(T & (r, f)+T(r, g)) \leq T(r, F)+T(r, G)-N_{2}(r, 1 / F)-N_{2}(r, 1 / G) \\
& +N_{k+2}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+N_{k+2}\left(r, \frac{1}{g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)}\right) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

Combining (3.6), 3.7 and Lemma 3, we get

$$
\begin{align*}
(m+n)(& T(r, f)+T(r, g)) \leq 2 N_{k+2}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right) \tag{3.8}\\
& +2 N_{k+2}\left(r, \frac{1}{g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)}\right)+S(r, f)+S(r, g) \\
\leq & (2 k+4)(\bar{N}(r, 1 / f)+\bar{N}(r, 1 / g))+2 N_{k+2}\left(r, \frac{1}{\lambda f^{m}(z)+\mu}\right) \\
& +2 N_{k+2}\left(r, \frac{1}{\lambda g^{m}(z)+\mu}\right)+S(r, f)+S(r, g)
\end{align*}
$$

Thus, we deduce that

$$
(m+n-2 k-4-2 m)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

which contradicts the assumption that $n>2 k+4+m$. Therefore $H \equiv 0$. Integrating twice, we deduce from (2.3) that

$$
\begin{equation*}
\frac{1}{F-1}=\frac{A}{G-1}+B \tag{3.9}
\end{equation*}
$$

where $A(\neq 0)$ and B are constants. From 3.9 we have

$$
\begin{equation*}
F=\frac{(B+1) G+(A-B-1)}{B G+(A-B)}, \quad G=\frac{(B-A) F+(A-B-1)}{B F-(B+1)} \tag{3.10}
\end{equation*}
$$

We consider the following three cases.
Case 1: $B \neq 0,-1$. From 3.10 we have $\bar{N}\left(r, \frac{1}{F-\frac{B+1}{B}}\right)=\bar{N}(r, G)$. From the second fundamental theorem,

$$
\begin{align*}
T(r, F) & \leq \bar{N}(r, 1 / F)+\bar{N}\left(r, \frac{1}{F-\frac{B+1}{B}}\right)+S(r, F) \tag{3.11}\\
& =\bar{N}(r, 1 / F)+\bar{N}(r, G)+S(r, F) \leq \bar{N}(r, 1 / F)+S(r, F)
\end{align*}
$$

By (3.11) and the same reasoning as in the proof of (3.4), we obtain

$$
\begin{aligned}
T(r, F) & \leq N_{1}(r, 1 / F)+S(r, f) \\
& \leq T(r, F)-(m+n) T(r, f)+N_{k+1}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+S(r, f)
\end{aligned}
$$

Hence

$$
\begin{aligned}
(m+n) T(r, f) & \leq(k+1) \bar{N}(r, 1 / f)+N_{k+1}\left(r, \frac{1}{\lambda f^{m}(z)+\mu}\right)+S(r, f) \\
& \leq(k+m+1) T(r, f)+S(r, f)
\end{aligned}
$$

which contradicts $n>2 k+4+m$.
Case 2: $B=0$. From 3.10 we have

$$
\begin{equation*}
F=\frac{G+(A-1)}{A}, \quad G=A F-(A-1) \tag{3.12}
\end{equation*}
$$

If $A \neq 1$, we infer from $(3.12$ that

$$
\bar{N}\left(r, \frac{1}{F-\frac{A-1}{A}}\right)=\bar{N}(r, 1 / G), \quad \bar{N}(r, 1 / F)=\bar{N}\left(r, \frac{1}{G+(A-1)}\right) .
$$

By Lemma 5, we have $n \leq 2 k+2+m$. This contradicts the assumption that $n>2 k+4+m$. Thus $A=1$ and $F=G$. By Lemma 6, we have $f^{d}(z) \equiv g^{d}(z)$, where $d=\operatorname{GCD}(n, m)$ in this case.

Case 3: $B=-1$. From 3.10 we obtain

$$
\begin{equation*}
F=\frac{A}{-G+(A+1)}, \quad G=\frac{(A+1) F-A}{F} \tag{3.13}
\end{equation*}
$$

If $A \neq-1$, we deduce from 3.13 that

$$
\bar{N}\left(r, \frac{1}{F-\frac{A}{A+1}}\right)=\bar{N}(r, 1 / G), \quad \bar{N}(r, F)=\bar{N}\left(r, \frac{1}{G-A-1}\right)
$$

By the same reasoning as in Cases 1 and 2, we get a contradiction. Hence $A=-1$. From (3.13), we have $F G=1$, that is,

$$
\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}=z^{2}
$$

by Lemma 7, which is impossible.
(ii) $\lambda \mu=0$. Since $|\lambda|+|\mu| \neq 0$, we distinguish two cases.

Case A: $\mu=0, \lambda \neq 0$. In this case, we have $F=\left(\lambda f^{n+m}(z)\right)^{(k)}$ and $G=\left(\lambda g^{n+m}(z)\right)^{(k)}$. Let

$$
F_{1}=\frac{\left(\lambda f^{n+m}(z)\right)^{(k)}}{z}, \quad G_{1}=\frac{\left(\lambda g^{n+m}(z)\right)^{(k)}}{z}
$$

Then F_{1} and G_{1} share 1 CM . By similar arguments to those in the proof of (i), we have $F_{1} \equiv G_{1}$ or $F_{1} G_{1} \equiv 1$. If $F_{1} \equiv G_{1}$, then Lemma 9 yields $f \equiv c g$, where c is a constant that satisfies $c^{n+m}=1$. Now we assume that $F_{1} G_{1}=1$.

If $k=1$, then

$$
\begin{equation*}
\lambda^{2}\left(f^{n+m}\right)^{\prime}\left(g^{n+m}\right)^{\prime}=z^{2} \tag{3.14}
\end{equation*}
$$

Since f and g are entire functions and $n>2 k+m+4$, by using similar arguments to the proof of Lemma 7 we deduce from (3.14) that f and g have no zeros. Let $f=e^{\alpha(z)}, g=e^{\beta(z)}$, where $\alpha(z), \beta(z)$ are nonconstant entire functions. Set

$$
\begin{equation*}
h(z)=\frac{1}{f(z) g(z)} \tag{3.15}
\end{equation*}
$$

we know that $h(z)=e^{\gamma(z)}$, where $\gamma(z)$ is an entire function.
We claim that $\gamma(z)$ is a constant. In fact, suppose $\gamma(z)$ is a nonconstant entire function. Then $h(z)$ is a transcendental entire function. From (3.14), we get

$$
\begin{equation*}
(m+n)^{2} \lambda^{2}\left(f^{n+m-1}\right) f^{\prime}\left(g^{n+m-1}\right) g^{\prime}=z^{2} \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16), we have

$$
\begin{equation*}
\left(\frac{g^{\prime}}{g}+\frac{1}{2} \frac{h^{\prime}}{h}\right)^{2}=\frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{(m+n)^{2} \lambda^{2}} \tag{3.17}
\end{equation*}
$$

Let $\xi=\frac{g^{\prime}}{g}+\frac{1}{2} \frac{h^{\prime}}{h}$. Then (3.17) becomes

$$
\begin{equation*}
\xi^{2}=\frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{(m+n)^{2} \lambda^{2}} \tag{3.18}
\end{equation*}
$$

If $\xi \equiv 0$, from 3.18$)$, we get

$$
\begin{equation*}
h^{m+n}=\frac{(m+n)^{2} \lambda^{2}}{4 z^{2}}\left(\frac{h^{\prime}}{h}\right)^{2} \tag{3.19}
\end{equation*}
$$

Since $h(z)=e^{\gamma(z)}$, from 3.19 we obtain

$$
\begin{aligned}
(m+n) T(r, h) & =(m+n) m(r, h)+O(1) \\
& \leq m\left(r, \frac{1}{4 z^{2}}\right)+2 m\left(r, \frac{h^{\prime}}{h}\right)+O(1)=S(r, h)
\end{aligned}
$$

Hence h is a constant, which is a contradiction. Therefore $\xi \not \equiv 0$. Differentiating (3.18), we have

$$
\begin{align*}
2 \xi \xi^{\prime} & =\frac{1}{2} \frac{h^{\prime}}{h}\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{2 z}{\lambda^{2}(m+n)^{2}} h^{m+n}-\frac{1}{\lambda^{2}(m+n)} z^{2} h^{m+n-1} h^{\prime} \tag{3.20}\\
& =\frac{1}{2} \frac{h^{\prime}}{h}\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{1}{\lambda^{2}(m+n)^{2}} h^{m+n-1}\left(2 z h+(m+n) z^{2} h^{\prime}\right)
\end{align*}
$$

From (3.18) and (3.20), we obtain

$$
\begin{align*}
\frac{1}{\lambda^{2}(m+n)^{2}} h^{m+n}\left(2 z+(m+n) z^{2} \frac{h^{\prime}}{h}\right. & \left.-2 z^{2} \frac{\xi^{\prime}}{\xi}\right) \tag{3.21}\\
& =\frac{1}{2} \frac{h^{\prime}}{h}\left(\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi}\right)
\end{align*}
$$

If $2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi} \equiv 0$, then we deduce from (3.21) that either $\frac{h^{\prime}}{h} \equiv 0$ or $\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi} \equiv 0$. If $\frac{h^{\prime}}{h} \equiv 0$, then h is a constant, which is a contradiction. If $\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi} \equiv 0$, we have

$$
\begin{equation*}
\frac{h^{\prime}}{h}=\frac{\xi}{d}, \tag{3.22}
\end{equation*}
$$

where $d(\neq 0)$ is a constant. Thus from 3.18 and 3.22 we get

$$
\begin{equation*}
\frac{z^{2} h^{m+n}}{\lambda^{2}(m+n)^{2}}=\left(\frac{1}{4}-d^{2}\right)\left(\frac{h^{\prime}}{h}\right)^{2} \tag{3.23}
\end{equation*}
$$

Hence, $(m+n) T(r, h)=S(r, h)$, which is also a contradiction.
Now we assume that $2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi} \not \equiv 0$. Since $h=e^{\gamma(z)}$ and $\xi=\frac{g^{\prime}}{g}+\frac{1}{2} \frac{h^{\prime}}{h}$, from (3.18) and (3.21) we have

$$
N\left(r, h^{\prime} / h\right)=S(r, h), \quad N(r, \xi)=S(r, h)
$$

and

$$
\begin{align*}
& (m+n) T(r, h)=(m+n) m(r, h) \tag{3.24}\\
\leq & m\left(r, \frac{1}{2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi}}\right) \\
& +m\left(r, \frac{h^{\prime}}{h}\left(\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi}\right)\right)+O(1) \\
\leq & m\left(r, \frac{h^{\prime}}{h}\left(\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi}\right)\right)+m\left(r, 2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi}\right) \\
& +N\left(r, 2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi}\right)+O(1) \\
\leq & N\left(r, \xi^{\prime} / \xi\right)+S(r, h)+S(r, \xi) \\
\leq & T(r, \xi)+S(r, h)+S(r, \xi) .
\end{align*}
$$

Noting that $h=e^{\gamma(z)}$ is a transcendental entire function, from 3.18) we get

$$
\begin{align*}
2 T(r, \xi)= & T\left(r, \xi^{2}\right)+S(r, \xi) \tag{3.25}\\
= & T\left(r, \frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{\lambda^{2}}\right)+S(r, \xi) \\
= & N\left(r, \frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{\lambda^{2}(m+n)^{2}}\right) \\
& +m\left(r, \frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{\lambda^{2}(m+n)^{2}}\right)+S(r, \xi) \\
\leq & (m+n) m(r, h)+N\left(r,\left(\frac{h^{\prime}}{h}\right)^{2}\right)+S(r, h)+S(r, \xi) \\
\leq & (m+n) T(r, h)+S(r, h)+S(r, \xi)
\end{align*}
$$

Combining this with (3.24), we have

$$
\frac{m+n}{2} T(r, h)=S(r, h)
$$

which is a contradiction. Thus, $\gamma(z)$ is a constant, and so $h(z)=e^{\gamma(z)}$ is also a constant. From 3.15, we obtain

$$
\begin{equation*}
f(z) g(z)=e^{\alpha(z)} e^{\beta(z)}=C \tag{3.26}
\end{equation*}
$$

where $C(\neq 0)$ is a constant. So we have

$$
\begin{equation*}
\beta(z)=-\alpha(z)+c_{1} \tag{3.27}
\end{equation*}
$$

for a constant c_{1}. Substituting $f=e^{\alpha(z)}, g=e^{\beta(z)}$ into (3.16), we infer from
3.26 and 3.27 that

$$
f(z)=b_{1} e^{b z^{2}}, \quad g(z)=b_{2} e^{-b z^{2}}
$$

where b_{1}, b_{2} and b are constants that satisfy $4 \lambda^{2}\left(b_{1} b_{2}\right)^{n+m}((m+n) b)^{2}=-1$.
If $k \geq 2$, then

$$
\begin{equation*}
\lambda^{2}\left(f^{n+m}\right)^{(k)}\left(g^{n+m}\right)^{(k)}=z^{2} \tag{3.28}
\end{equation*}
$$

Since f and g are entire functions and $n>2 k+m+4$, by using the arguments similar to the proof of Lemma 7 , we deduce from (3.14) that f and g have no zeros. Let

$$
\begin{equation*}
f=e^{\alpha(z)}, \quad g=e^{\beta(z)} \tag{3.29}
\end{equation*}
$$

where $\alpha(z), \beta(z)$ are nonconstant entire functions. By (3.28), we have

$$
\begin{equation*}
N\left(r, 1 /\left(f^{m+n}\right)^{(k)}\right) \leq N\left(r, 1 / z^{2}\right)=O(\log r) \tag{3.30}
\end{equation*}
$$

Combining (3.29) and 3.30, we obtain

$$
N\left(r, f^{m+n}\right)+N\left(r, 1 / f^{m+n}\right)+N\left(r, 1 /\left(f^{m+n}\right)^{(k)}\right)=O(\log r)
$$

By (3.29), $T\left(r,\left(f^{m+n}\right)^{\prime} / f^{m+n}\right)=T\left(r,(m+n) \alpha^{\prime}\right)$. If α is transcendental, we know from Lemma 10 that $f=e^{\alpha}=e^{a z+b}$ for some constants $a \neq 0$ and b. This is impossible. Hence α must be a polynomial, and so β is also a polynomial. Let $\operatorname{deg}(\alpha)=p$ and $\operatorname{deg}(\beta)=q$. If $p=q=1$, we have

$$
\begin{equation*}
f=e^{A z+B}, \quad g=e^{C z+D} \tag{3.31}
\end{equation*}
$$

where A, B, C and D are constants that satisfy $A C \neq 0$. Substituting (3.31) into (3.28), we obtain

$$
\lambda^{2}(m+n)^{2 k}(A C)^{k} e^{(m+n)(A+C) z+(m+n)(B+D)}=z^{2}
$$

which is impossible. Thus $\max \{p, q\}>1$. We can assume that $p>1$. Then $\left(f^{m+n}\right)^{(k)}=P e^{(m+n) \alpha}$, where P is a polynomial of degree $k p-k \geq k \geq 2$. From (3.28), we have $p=k=2$ and $q=1$. Suppose that

$$
f^{m+n}=e^{(m+n)\left(A_{1} z^{2}+B_{1} z+C_{1}\right)}, \quad g^{m+n}=e^{(m+n)\left(D_{1} z+E_{1}\right)}
$$

where $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$ are constants such that $A_{1} D_{1} \neq 0$. Then

$$
\begin{align*}
\left(f^{m+n}\right)^{\prime \prime}= & (m+n)\left(4(m+n) A_{1}^{2} z^{2}+4(m+n) A_{1} B_{1} z\right. \tag{3.32}\\
& \left.+(m+n) B_{1}^{2}+2 A_{1}\right) e^{(m+n)\left(A_{1} z^{2}+B_{1} z+C_{1}\right)} \\
\left(g^{m+n}\right)^{\prime \prime}= & (m+n)^{2} D_{1}^{2} e^{(m+n)\left(D_{1} z+E_{1}\right)} \tag{3.33}
\end{align*}
$$

Substituting (3.32) and (3.33) into (3.28), we have

$$
Q(z) e^{(m+n)\left(A_{1} z^{2}+\left(B_{1}+D_{1}\right) z+C_{1}+E_{1}\right)}=z^{2}
$$

where $Q(z)$ is a polynomial of degree 2 . Since $A_{1} \neq 0$, we get a contradiction.
Case B: $\lambda=0, \mu \neq 0$. In this case, by similar arguments to those in Case A, f and g must satisfy $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$ or $f=c g$, where
b_{1}, b_{2}, b and c are constants that satisfy $4 \mu^{2}\left(b_{1} b_{2}\right)^{n}(n b)^{2}=-1$ and $c^{n}=1$. This completes the proof of Theorem 2 .

Acknowledgements. The authors would like to thank the referee for his/her helpful suggestions and comments.

This work was supported by the NNSF of China (No. 10671109).

References

[1] M. L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl. 44 (2002), 823-831.
[2] M. L. Fang and X. H. Hua, Entire functions that share one value, Nanjing Daxue Xuebao Shuxue Bannian Kan 13 (1996), 44-48.
[3] M. L. Fang and H. L. Qiu, Meromorphic functions that share fixed-points, J. Math. Anal. Appl. 268 (2000), 426-439.
[4] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9-42.
[5] -, Meromorphic Functions, Oxford Univ. Press, 1964.
[6] W. C. Lin and H. X. Yi, Uniqueness theorems for meromorphic functions, Indian J. Pure Appl. Math. 35 (2004), 121-132.
[7] -, 一, Uniqueness theorems for meromorphic functions concerning fixed-points, Complex Var. Theory Appl. 49 (2004), 793-806.
[8] Y. F. Wang, On Mues' conjecture and Picard values, Sci. China 36 (1993), 28-35.
[9] C. C. Yang and X. H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), 395-406.
[10] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer, 2003.
[11] J. L. Zhang and L. Z. Yang, Some results related to a conjecture of R. Brück, J. Inequal. Pure Appl. Math. 8 (2007), no. 1, art. 18, 11 pp.

Xiao-Guang Qi, Lian-Zhong Yang

School of Mathematics
Shandong University
Jinan, Shandong, 250100, P.R. China
E-mail: xiaogqi@mail.sdu.edu.cn
lzyang@sdu.edu.cn

Received 15.2.2009
and in final form 10.4.2009

[^0]: 2010 Mathematics Subject Classification: 30D35, 30D20.
 Key words and phrases: uniqueness, fixed point, sharing value, entire solutions.

