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Existence and multiplicity of solutions for a class
of damped vibration problems with impulsive effects

by Jianwen Zhou and Yongkun Li (Kunming)

Abstract. Some sufficient conditions on the existence and multiplicity of solutions
for the damped vibration problems with impulsive effects8><>:

u′′(t) + g(t)u′(t) + f(t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

∆u′(tj) = u′(t+j )− u′(t−j ) = Ij(u(tj)), j = 1, . . . , p,

are established, where t0 = 0<t1 < · · ·<tp<tp+1 = T , g ∈ L1(0, T ; R), f : [0, T ]× R→ R
is continuous, and Ij : R → R, j = 1, . . . , p, are continuous. The solutions are sought
by means of the Lax–Milgram theorem and some critical point theorems. Finally, two
examples are presented to illustrate the effectiveness of our results.

1. Introduction. Consider the damped vibration problems with im-
pulsive effects

u′′(t) + g(t)u′(t) + f(t, u(t)) = 0, a.e. t ∈ [0, T ],
u(0) = u(T ) = 0,
∆u′(tj) = u′(t+j )− u′(t−j ) = Ij(u(tj)), j = 1, . . . , p,

(1.1)

where t0 = 0 < t1 < · · · < tp < tp+1 = T , g ∈ L1(0, T ; R), f : [0, T ]×R→ R
is continuous, and Ij : R→ R, j = 1, . . . , p, are continuous.

Impulsive effects exist widely in many evolution processes whose states
change abruptly at certain moments of time. The theory of impulsive dif-
ferential systems has been developed by numerous mathematicians (see
[Ni, NR, ZY, LWCH, ZhaL]). In [Ni], the author proved a new existence
theorem for a nonlinear periodic boundary value problem for a first-order
differential equation with impulses at fixed times. It includes the cases when
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the nonlinearity and the impulsive functions are either bounded or have sub-
linear growth. In [ZY], the authors studied the existence and multiplicity of
solutions for the nonlinear Dirichlet value problem with impulses by vari-
ational methods and critical points theory, and gave some new criteria to
guarantee that the impulsive problem has at least one nontrivial solution,
assuming that the nonlinearity is superquadratic at infinity, subquadratic at
the origin, and the impulsive functions have sublinear growth. Impulsive dif-
ferential equations serve as basic models to study the dynamics of processes
that are subject to sudden changes in their states. Recent development in
this field has been motivated by many applied problems, such as control the-
ory [GNA, JL], population dynamics [Ne] and medicine [CGR, D, GCNT].

For a second order differential equation u′′ = f(t, u, u′), one usually
considers impulses in the position u and velocity u′. However, in the motion
of spacecraft one has to consider instantaneous impulses depending on the
position that result in jump discontinuities in velocity, but with no change
in position (see [Ca, NO]). The impulse only in the velocity occurs also in
impulsive mechanics (see [P]). An impulsive problem with impulses in the
derivative only is considered in [TG].

In recent years, impulsive and periodic boundary value problems have
been studied extensively. There have been many approaches to periodic so-
lutions of differential equations, including the method of lower and upper
solutions, fixed-point theory, and coincidence degree theory. In [LL], the au-
thors used the method of lower and upper solutions together with monotone
iterative technique to study impulsive differential equations. In [LJ], the au-
thors applied the Krasnosel’skĭı fixed point theorem in a cone to impulsive
differential equations and obtained the existence of positive solutions. How-
ever, the study of solutions for impulsive differential equations using the
variational method has received considerably less attention (see, for exam-
ple, [ZY, ZhaL, NO, TG, ZhoL]). The variational method we use is, to the
best of our knowledge, novel and it may open a new approach to nonlinear
problems with some type of discontinuities such as impulses.

When g(t) ≡ 0, Nieto and O’Regan [NO] showed the variational struc-
ture and obtained the existence of solutions for problem (1.1); Zhou and
Li [ZhoL] established the corresponding variational structure and obtained
the existence, uniqueness and multiplicity of solutions for (1.1). But, when
g(t) 6≡ 0, until now, it has been unknown whether problem (1.1) has a
variational structure or not.

In this paper, we investigate the existence of a variational construction
for problem (1.1) in an appropriate function space. As applications, we study
the existence, uniqueness and multiplicity of solutions for (1.1) by using some
critical point theorems. All these results are new.
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2. Preliminaries and statements. In this section, we recall some
basic facts which will be used in the proofs of our main results. In order to
apply the critical point theory, we introduce a variational structure. From
this variational structure, we can reduce the problem of finding solutions of
(1.1) to the one of seeking the critical points of a corresponding functional.

In the Sobolev space H1
0 (0, T ), consider the inner product

〈u, v〉H1
0 (0,T ) =

T�

0

u′(t)v′(t) dt, ∀u, v ∈ H1
0 (0, T ),

and the norm

‖u‖H1
0 (0,T ) =

( T�
0

(u′(t))2 dt
)1/2

, ∀u ∈ H1
0 (0, T ).

Since g ∈ L1(0, T ; R), define G(t) =
	t
0 g(s) ds; then G : [0, T ] → R is

continuous. Therefore

m = min
t∈[0,T ]

eG(t) > 0, M = max
t∈[0,T ]

eG(t) > 0.

We also consider the inner product

〈u, v〉 =
T�

0

eG(t)u′(t)v′(t) dt, ∀u, v ∈ H1
0 (0, T ),

and the norm

‖u‖ =
( T�

0

eG(t)(u′(t))2 dt
)1/2

, ∀u ∈ H1
0 (0, T ).

Then we have the following lemma:

Lemma 2.1. The norms ‖ · ‖ and ‖ · ‖H1
0 (0,T ) are equivalent.

Using the Poincaré inequality( T�
0

(u(t))2 dt
)1/2

≤ 1√
λ1

( T�
0

(u′(t))2 dt
)1/2

,

where λ1 = π2/T 2 is the first eigenvalue of the problem{
−u′′(t) = λu(t), t ∈ [0, T ],
u(0) = u(T ) = 0,

one can easily prove the following lemma.

Lemma 2.2. There exists C1 > 0 such that if u ∈ H1
0 (0, T ), then

‖u‖∞ ≤ C1‖u‖.
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Let λk (k = 1, 2, . . .) denote the eigenvalues of the eigenvalue problem
(2.1) and Xk the eigenspace associated to λk. Then H1

0 (0, T ) =
⊕

i∈NXi.
We denote by ‖ · ‖p the norm in Lp(0, T ).

For u ∈ H2(0, T ), the functions u and u′ are both absolutely continuous,
and u′′ ∈ L2(0, T ). Hence, ∆u′(t) = u′(t+)− u′(t−) = 0 for any t ∈ [0, T ].

If u ∈ H1
0 (0, T ), then u is absolutely continuous and u′ ∈ L2(0, T ). In

this case, ∆u′(t) = u′(t+)−u′(t−) = 0 may not hold for some t ∈ (0, T ) due
to the impulsive effects.

Take v ∈ H1
0 (0, T ), multiply both sides of the equality

u′′(t) + g(t)u′(t) + f(t, u(t)) = 0

by eG(t)v and integrate it from 0 to T , to obtain

(2.1)
T�

0

eG(t)u′′(t)v(t) dt+
T�

0

eG(t)g(t)u′(t)v(t) dt = −
T�

0

eG(t)f(t, u(t))v(t) dt.

Moreover,

T�

0

(
eG(t)u′′(t)v(t) + eG(t)g(t)u′(t)v(t)

)
dt

=
p∑
j=0

tj+1�

tj

(
eG(t)u′′(t)v(t) + eG(t)g(t)u′(t)v(t)

)
dt

=
p∑
j=0

tj+1�

tj

v(t) deG(t)u′(t)

=
p∑
j=0

(
eG(t−j+1)u′(t−j+1)v(t−j+1)− eG(t+j )u′(t+j )v(t+j )−

tj+1�

tj

eG(t)u′(t)v′(t) dt
)

= −
p∑
j=1

eG(tj)∆u′(tj)v(tj)− u′(0)v(0)+eG(T )u′(T )v(T )−
T�

0

eG(t)u′(t)v′(t) dt

= −
p∑
j=1

eG(tj)Ij(u(tj))v(tj)−
T�

0

eG(t)u′(t)v′(t) dt.

Combining this with (2.1), we have
T�

0

eG(t)u′(t)v′(t) dt+
p∑
j=1

eG(tj)Ij(u(tj))v(tj)−
T�

0

eG(t)f(t, u(t))v(t) dt = 0.

Considering the above, we introduce the following concept of solution for
problem (1.1).
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Definition 2.3. We say that a function u ∈ H1
0 (0, T ) is a weak solution

of problem (1.1) if the identity
T�

0

eG(t)u′(t)v′(t) dt+
p∑
j=1

eG(tj)Ij(u(tj))v(tj) =
T�

0

eG(t)f(t, u(t))v(t) dt

holds for any v ∈ H1
0 (0, T ).

Consider the functional ϕ : H1
0 (0, T )→ R defined by

ϕ(u) =
1
2
‖u‖2 +

p∑
j=1

eG(tj)

u(tj)�

0

Ij(t) dt−
T�

0

eG(t)F (t, u(t)) dt(2.2)

where F (t, s) =
	s
0 f(t, τ) dτ . Using the continuity of f and Ij , j = 1, . . . , p,

one finds that ϕ ∈ C1(H1
0 (0, T ),R). For any v ∈ H1

0 (0, T ), we have

ϕ′(u)v =
T�

0

eG(t)u′(t)v′(t) dt+
p∑
j=1

eG(tj)Ij(u(tj))v(tj)−
T�

0

eG(t)f(t, u(t))v(t) dt.

Thus, the weak solutions of problem (1.1) correspond to the critical points
of ϕ.

For the sake of convenience, we denote

l = min{eG(tj) : j = 1, . . . , p}, L = max{eG(tj) : j = 1, . . . , p}.
To prove our main results, we need the following definition and critical

point theorems.

Definition 2.4 ([MW, P81]). Let X be a real Banach space and I ∈
C1(X,R). Then I is said to satisfy to P.S. condition on X if any sequence
{xn} ⊂ X for which I(xn) is bounded and I ′(xn)→ 0 as n→∞, possesses
a convergent subsequence in X.

Theorem 2.5 (Lax–Milgram, [Ch]). Let H be a Hilbert space and a :
H × H → R be a bounded bilinear form. If a is coercive, i.e., there exists
α > 0 such that a(u, u) ≥ α‖u‖2 for every u ∈ H, then for any σ ∈ H ′ (the
conjugate space of H), there exists a unique u ∈ H such that

a(u, v) = (σ, v), ∀v ∈ H.
Moreover, if a is also symmetric, then the functional ψ : H → R defined by

ψ(v) =
1
2
a(v, v)− (σ, v)

attains its minimum at u.

Theorem 2.6 ([R, Theorem 9.12]). Let E be a Banach space. Let I ∈
C1(E,R) be an even functional which satisfies the P.S. condition and I(0)
= 0. If E = V ⊕W , where V is finite-dimensional, and I satisfies
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(I1) there are constants ρ, α > 0 such that I|∂Bρ∩W ≥ α, where Bρ =
{x ∈ E : ‖x‖ < ρ},

(I2) for each finite-dimensional subspace Ẽ ⊂ E, there is an R = R(Ẽ)
such that I ≤ 0 on Ẽ \B

R( eE)
,

then I possesses an unbounded sequence of critical values.

3. Main results. We are now in a position to state and prove our main
results.

Main Theorem 3.1. Let dj (j = 1, . . . , p) be fixed constants. If f(t, u) =
σ(t) ∈ L2(0, T ) and Ij(t) = dj (j = 1, . . . , p), then problem (1.1) has a
unique weak solution u and u minimizes the functional (2.2).

Proof. Define

a : H1
0 (0, T )×H1

0 (0, T )→ R, a(u, v) = 〈u, v〉,

and

l : H1
0 (0, T )→ R, l(v) =

T�

0

eG(t)σ(t)v(t) dt−
p∑
j=1

eG(tj)djv(tj).

It is evident that l is linear and that a is bilinear, continuous and symmetric.
By the Sobolev embedding theorem, there exists C2 > 0 such that

‖u‖2 ≤ C2‖u‖, ∀u ∈ H1
0 (0, T ).(3.1)

Let d = max{|d1|, . . . , |dp|}. Combining this with Lemma 2.2, for every
v ∈ H1

0 (0, T ), we have

|l(v)| ≤M‖σ‖2‖v‖2 + Ldp‖u‖∞ ≤MC2‖σ‖2‖v‖+ LdpC1‖v‖.

This implies that l is bounded. Since a(u, u) = ‖u‖2, a is coercive. By
Theorem 2.5, problem (1.1) has a unique weak solution u and u minimizes
the functional (2.2).

Main Theorem 3.2. Assume that the following conditions are satisfied.

(i) There exist a, b > 0 and γ ∈ [0, 1) such that

|f(t, u)| ≤ a+ b|u|γ for every (t, u) ∈ [0, T ]× R.

(ii) There exist aj , bj > 0 and γj ∈ [0, 1) (j = 1, . . . , p) such that

|Ij(u)| ≤ aj + bj |u|γj for every u ∈ R (j = 1, . . . , p).

Then problem (1.1) has at least one weak solution.
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Proof. Let M1 = max{a1, . . . , ap},M2 = max{b1, . . . , bp}. In view of (i),
(ii) and Lemma 2.2, we have

ϕ(u) =
1
2
‖u‖2 +

p∑
j=1

eG(tj)

u(tj)�

0

Ij(t) dt−
T�

0

eG(t)F (t, u(t)) dt

≥ 1
2
‖u‖2 −

p∑
j=1

eG(tj)

u(tj)�

0

(aj + bj |t|γj ) dt−
T�

0

eG(t)(a|u|+ b|u|γ+1) dt

≥ 1
2
‖u‖2 − pLM1‖u‖∞ − LM2

p∑
j=1

‖u‖γj+1
∞ − aMT‖u‖∞ − bMT‖u‖γ+1

∞

≥ 1
2
‖u‖2 − pLM1C1‖u‖ − LM2

p∑
j=1

C
γj+1
1 ‖u‖γj+1

− aMTC1‖u‖ − bMTCγ+1
1 ‖u‖γ+1

for all u ∈ H1
0 (0, T ). This implies that lim‖u‖→∞ ϕ(u) = ∞, and ϕ is coer-

cive.
On the other hand, we show that ϕ is weakly lower semi-continuous. If

{uk}k∈N ⊂ H1
0 (0, T ) and uk ⇀ u, then {uk}k∈N converges uniformly to u on

[0, T ] and lim infk→∞ ‖uk‖ ≥ ‖u‖. Thus

lim inf
k→∞

ϕ(uk)

= lim inf
k→∞

(
1
2
‖uk‖2 +

p∑
j=1

eG(tj)

uk(tj)�

0

Ij(t) dt−
T�

0

eG(t)F (t, uk(t)) dt
)

≥ 1
2
‖u‖2 +

p∑
j=1

eG(tj)

u(tj)�

0

Ij(t) dt−
T�

0

eG(t)F (t, u(t)) dt = ϕ(u).

By Theorem 1.1 of [MW], ϕ has a minimum point on H1
0 (0, T ), which is a

critical point of ϕ. Hence, problem (1.1) has at least one weak solution.

We readily have the following corollary.

Corollary 3.3. Assume that f is bounded and that the impulsive func-
tions Ij (j = 1, . . . , p) are bounded. Then problem (1.1) has at least one weak
solution.

Example 3.4. Let T = π/2 and t1 = 1/2. Consider the Dirichlet prob-
lem with impulse

(3.2)


u′′(t) + (sin t+ cos t)u′(t) + (t+ 4

√
u(t)) = 0, a.e. t ∈ [0, π/2],

u(0) = u(π/2) = 0,
∆u′(t1) = u′(t+1 )− u′(t−1 ) = 1 + 3

√
u(t1).
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It is easy to see that conditions (i) and (ii) of Theorem 3.2 hold. According
to Theorem 3.2, problem (3.2) has at least one weak solution.

Main Theorem 3.5. Assume that the condition (ii) of Theorem 3.2 and
the following conditions are satisfied.

(f1) f(t, u) is odd in u.
(f2) There exist r1, r2 > 0 and µ ∈ (1,∞) such that

|f(t, u)| ≤ r1 + r2|u|µ for every (t, u) ∈ [0, T ]× R.

(f3) There exist R > 0 and β > 2 such that for every t ∈ [0, T ] and
every u ∈ R with |u| ≥ R,

0 < βF (t, u) ≤ uf(t, u).

Moreover, f(t, u) = o(u) as u→ 0 uniformly in t.
(f4) Ij (j = 1, . . . , p) are odd and nondecreasing.

Then problem (1.1) has infinitely many nontrivial weak solutions.

Proof. We have ϕ ∈ C1(H1
0 (0, T ),R), by (f1) and (f4), ϕ is an even

functional and ϕ(0) = 0.
We divide our proof into three parts.
Firstly, we show that ϕ satisfies the P.S. condition.
Let {un}n∈N be a sequence in H1

0 (0, T ) such that {ϕ(un)} is bounded
and ϕ′(un)→ 0 as n→∞.

By (ii), (f3) and Lemma 2.2, we have

βϕ(un)− 〈ϕ′(un), un〉

=
(
β

2
− 1
)
‖un‖2 + β

p∑
j=1

eG(tj)

un(tj)�

0

Ij(t) dt−
p∑
j=1

eG(tj)Ij(un(tj))un(tj)

+
T�

0

eG(t)(unf(t, un)− βF (t, un)) dt

≥
(
β

2
− 1
)
‖un‖2 − L(β + 1)

(
pM1C1‖un‖+M2

p∑
j=1

C
γj+1
1 ‖un‖γj+1

)

−M
T�

0

max
t∈[0,T ], |un|≤R

|unf(t, un)− βF (t, un)| dt

≥
(
β

2
− 1
)
‖un‖2 − L(β + 1)

(
pM1C1‖un‖+M2

p∑
j=1

C
γj+1
1 ‖un‖γj+1

)
− C3,
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which implies that {un} is bounded in H1
0 (0, T ). Hence there exists a sub-

sequence of {un} (for simplicity denoted again by {un}) such that

un ⇀ u in H1
0 (0, T ),(3.3)

un → u uniformly in C([0, T ]).(3.4)

On the other hand, we have

(3.5) 〈ϕ′(un)− ϕ′(u), un − u〉

=
T�

0

eG(t)|u′n(t)− u′(t)|2 dt

+
p∑
j=1

eG(tj)
(
Ij(un(tj))− Ij(u(tj))

)
(un(tj)− u(tj))

+
T�

0

eG(t)
(
f(t, un(t))− f(t, u(t))

)
(un(t)− u(t)) dt.

From (f2), (3.3), (3.4) and (3.5), it follows that un → u in H1
0 (0, T ). Thus,

ϕ satisfies the P.S. condition.
Secondly, we verify the condition (I2) of Theorem 2.6.
By (f3), we have

β

u
≤ f(x, u)
F (x, u)

, u ≥ R,(3.6)

β

u
≥ f(x, u)
F (x, u)

, u ≤ −R.(3.7)

Integrating (3.6) and (3.7) for u from [R, u] and [u,−R], respectively, we
have

β ln
u

R
≤ ln

F (x, u)
F (x,R)

, u ≥ R,

β ln
R

−u
≥ ln

F (x, u)
F (x,−R)

, u ≤ −R.

That is,

F (x, u) ≥ F (x,R)(u/R)β, u ≥ R,(3.8)

F (x, u) ≥ F (x,−R)(−u/R)β, u ≤ −R.(3.9)

Combining (3.8) and (3.9), we have

F (x, u) ≥ α1|u|β, |u| ≥ R,(3.10)

where

α1 = R−β min{ min
x∈[0,T ]

F (x,R), min
x∈[0,T ]

F (x,−R)} > 0.
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On the other hand, by the continuity of F (x, u), F (x, u) is bounded on
[0, T ]× [−R,R], there exists K > 0 such that

F (x, u) ≥ −K ≥ α1|u|β − α1 −K, |u| ≤ R,(3.11)

Combining (3.10) and (3.11), we have

F (t, u) ≥ α1|u|β − α2, ∀(t, u) ∈ [0, T ]× R,(3.12)

where α2 = α1 +K.

For an arbitrary finite-dimensional subspace E1 ⊂ H1
0 (0, T ), there exists

C4 = C4(E1) > 0 such that for any u ∈ E1,

‖u‖β ≥ C4‖u‖.(3.13)

By (ii), (3.12), (3.13) and Lemma 2.2, we have

ϕ(u) ≤ 1
2
‖u‖2 +

p∑
j=1

eG(tj)

u(tj)�

0

(aj + bj |t|γj ) dt−
T�

0

eG(t)(α1|u|β − α2) dt

≤ 1
2
‖u‖2 + pLM1‖u‖∞ + LM2

p∑
j=1

‖u‖γj+1
∞ −mα1‖u‖ββ +Mα2T

≤ 1
2
‖u‖2 + pLM1C1‖u‖+ LM2

p∑
j=1

C
γj+1
1 ‖u‖γj+1

−mα1C
β
4 ‖u‖

β +Mα2T

for every u ∈ E1. This implies that ϕ(u) → −∞ as u ∈ E1 and ‖u‖ → ∞.
So there exists R(E1) > 0 such that ϕ ≤ 0 on E1 \BR(E1).

Finally, we verify the condition (I1) of Theorem 2.6.
Let V = X1 ⊕ X2,W =

⊕∞
i=3Xi, then H1

0 (0, T ) = V + W and V is
finite-dimensional. Using (f4), we have

p∑
j=1

u(tj)�

0

Ij(t) dt ≥ 0.(3.14)

By (f3), we find

lim
u→0

F (t, u)
u2

= 0.

Hence, for ε = 1/(4MC2
2 ), there exists δ > 0 such that for every u with

|u| ≤ δ,

|F (t, u)| ≤ 1
4MC2

2

u2.(3.15)

Hence, for any u ∈W with ‖u‖ ≤ δ/C1 and ‖u‖∞ ≤ δ, by (3.1), (3.14) and
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(3.15), we have

ϕ(u) ≥ 1
2
‖u‖2 −

T�

0

eG(t)F (t, u(t)) dt ≥ 1
2
‖u‖2 − 1

4MC2
2

M‖u‖22

≥ 1
2
‖u‖2 − 1

4MC2
2

MC2
2‖u‖2 =

1
4
‖u‖2.

Taking α = 1
4
δ2

C2
1

and ρ = δ
C1

, we obtain

ϕ(u) ≥ α, ∀u ∈W ∩ ∂Bρ.

By Theorem 2.6, ϕ possesses infinitely many critical points, that is, problem
(1.1) has infinitely many nontrivial weak solutions.

Example 3.6. Let T = 1 and t1 = 1/3. Consider the Dirichlet impulsive
problem 

u′′(t) + (sin t+ t2)u′(t) + (u(t))5 = 0, a.e. t ∈ [0, 1],
u(0) = u(1) = 0,
∆u′(t1) = u′(t+1 )− u′(t−1 ) = 5

√
u(t1).

(3.16)

Then, according to Theorem 3.5, problem (3.16) has infinitely many non-
trivial weak solutions.
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