ANNALES POLONICI MATHEMATICI 108.2 (2013)

On some subspaces of Morrey–Sobolev spaces and boundedness of Riesz integrals

by Mouhamadou Dosso (Abidjan), Ibrahim Fofana (Abidjan) and Moumine Sanogo (Bamako)

Abstract. For $1 \le q \le \alpha \le p \le \infty$, $(L^q, l^p)^{\alpha}$ is a complex Banach space which is continuously included in the Wiener amalgam space (L^q, l^p) and contains the Lebesgue space L^{α} .

We study the closure $(L^q, l^p)_{c,0}^{\alpha}$ in $(L^q, l^p)^{\alpha}$ of the space \mathcal{D} of test functions (infinitely differentiable and with compact support in \mathbb{R}^d) and obtain norm inequalities for Riesz potential operators and Riesz transforms in these spaces. We also introduce the Sobolev type space $W^1((L^q, l^p)^{\alpha})$ (a subspace of a Morrey–Sobolev space, but a superspace of the classical Sobolev space $W^{1,\alpha}$) and obtain in it Sobolev inequalities and a Kondrashov–Rellich compactness theorem.

1. Introduction. Let d be a fixed positive integer. The space \mathbb{R}^d is endowed with its usual scalar product $(x,\xi) \mapsto x \cdot \xi$, Euclidean norm $|\cdot|$ and Lebesgue measure.

For $1 \leq p \leq \infty$ we denote by $\| \|_p$ the usual norm on the classical Lebesgue space $L^p = L^p(\mathbb{R}^d)$ and by p' the conjugate of p (1/p + 1/p' = 1).

Let I_{γ} (0 < γ < 1) be the *Riesz potential* operator defined by

$$I_{\gamma}f(x) = \int_{\mathbb{R}^d} |x - y|^{d(\gamma - 1)} f(y) \, dy.$$

N. C. Phuc and M. Torres [P-T] have obtained a result which contains the following assertion:

PROPOSITION 1.1. Let $d/(d-1) < \alpha^* < \infty$ and f be a non-negative locally integrable function on \mathbb{R}^d . The following assertions are equivalent:

- (i) The equation div F = f has a solution F in $(L^{\alpha^*})^d$.
- (ii) $I_{1/d}f \in L^{\alpha^*}$.

DOI: 10.4064/ap108-2-2

Key words and phrases: amalgam space, Sobolev space, Riesz potential operator, Riesz transforms, divergence equation.

 $^{2010\} Mathematics\ Subject\ Classification:$ Primary 42B20, 46B50, 46E35; Secondary 35C15, 35F05.

In the proposition below we recall the classical Hardy–Littlewood–Sobolev inequality (see [St]) and a result contained in [D-F-K] [see Section 2 for definition of $(L^q, l^p)^{\alpha}$].

Proposition 1.2. Let $0<\gamma<1,\ 1/(1-\gamma)<\alpha^*<\infty$ and $1/\alpha=1/\alpha^*+\gamma$. Then

$$L^{\alpha} \subset \{f \in L^1_{\text{loc}} \mid I_{\gamma}f \in L^{\alpha^*}\} \subset closure \ of \ L^{\alpha} \ in \ (L^1, l^{\alpha^*})^{\alpha}.$$

The classical Sobolev spaces $W^{m,\alpha} = W^{m,\alpha}(\mathbb{R}^d)$ $(m \in \mathbb{N}^*, \alpha \in [1,\infty])$ have offered a fruitful framework for the study of partial differential equations (see [Br]). The density of smooth functions in L^{α} (for $\alpha < \infty$), Sobolev–Poincaré inequalities and the Kondrashov–Rellich compactness theorem are among the most important tools in this field.

In view of Propositions 1.1 and 1.2 it is worth:

- introducing Sobolev type spaces $W^1((L^q, l^p)^{\alpha})$ for which the spaces $(L^q, l^p)^{\alpha}$ will take the place of the Lebesgue spaces L^{α} in the definition of $W^{1,\alpha}$;
- examining the existence in these new spaces of analogues for classical tools useful in the study of partial differential equations.

The paper deals with these questions. Section 2 contains notations, definitions and some known results. In Section 3 we introduce the space $W^1((L^q, l^p)^{\alpha})$ and study the closure in $(L^q, l^p)^{\alpha}$ of the space $\mathcal{C}^{\infty} = \mathcal{C}^{\infty}(\mathbb{R}^d)$ of infinitely differentiable real functions on \mathbb{R}^d . Section 4 is devoted to the boundedness of Riesz potential operators and Riesz transforms on $(L^q, l^p)^{\alpha}$, and analogues of the Sobolev inequality and of the Kondrashov–Rellich compactness theorem in the set up of $W^1((L^q, l^p)^{\alpha})$. In Section 5 we prove an existence theorem for the equation div F = f with data $f \in (L^q, l^p)^{\alpha}$.

2. Preliminaries

NOTATIONS 2.1. For any subset E of \mathbb{R}^d , χ_E denotes its characteristic function and |E| its Lebesgue measure.

Let r be a positive real number. We set

$$I_k^r = \prod_{j=1}^d [k_j r, (k_j + 1)r), \qquad k = (k_1, \dots, k_d) \in \mathbb{Z}^d,$$

$$J_x^r = \prod_{j=1}^d (x_j - r/2, x_j + r/2), \quad x = (x_1, \dots, x_d) \in \mathbb{R}^d.$$

Definition 2.1. Let $1 \leq q, p \leq \infty$. For any f in $L^1_{\text{loc}} = L^1_{\text{loc}}(\mathbb{R}^d)$ we set

$$r||f||_{q,p} = \begin{cases} \left[\sum_{k \in \mathbb{Z}^d} (||f\chi_{I_k^r}||_q)^p \right]^{1/p} & \text{if } p < \infty, \\ \sup_{x \in \mathbb{R}^d} ||f\chi_{J_x^r}||_q & \text{if } p = \infty, \end{cases}$$

and we define

$$(L^q, l^p) = \{ f \in L^1_{loc} \mid {}_1 || f ||_{q,p} < \infty \}.$$

The Wiener amalgam spaces (L^q, l^p) $(1 \le q, p \le \infty)$ were introduced in 1926 by Norbert Wiener who considered the special cases (L^1, l^2) , (L^2, l^∞) , (L^∞, l^1) and (L^1, l^∞) (see [Wi1] and [Wi2]). In 1975 Finbar Holland undertook the first systematic study of these spaces (see [Ho]). Since then, much work has been dedicated to them (see the survey paper [F-S] and the references therein) and to their generalizations introduced by Hans Feichtinger in 1980 (see [Fe1], [Fe2]).

Let us recall the following results (see [Ho] and [Fo3]).

Proposition 2.1. Let $1 \le q, p \le \infty$.

- (a) $((L^q, l^p), 1|| \|q, p)$ is a Banach space and $(L^q, l^q) = L^q$.
- (b) If $q, p < \infty$ then there exist real numbers A and B such that

$$A_r \|f\|_{q,p} \le r^{-d/p} \Big\{ \int_{\mathbb{R}^d} \Big[\int_{J_x^r} |f(y)|^q dy \Big]^{p/q} dx \Big\}^{1/p} \le B_r \|f\|_{q,p}$$

for all $f \in L^1_{loc}$, r > 0.

Definition 2.2. Let $1 \leq q \leq \alpha \leq p \leq \infty$. For any f in L^1_{loc} we set

$$||f||_{q,p,\alpha} = \sup_{r>0} r^{d(1/\alpha - 1/q)} {}_r ||f||_{q,p},$$

$$|||f|||_{q,p,\alpha} = \sup_{r>0} r^{d(1/\alpha - 1/q - 1/p)} \Big\{ \int_{\mathbb{R}^d} \Big[\int_{J_r^r} |f(y)|^q \, dy \Big]^{p/q} \, dx \Big\}^{1/p} \quad \text{if } p < \infty,$$

and we define

$$(L^q, l^p)^{\alpha} = \{ f \in L^1_{\text{loc}} \mid ||f||_{q, p, \alpha} < \infty \}.$$

The spaces $(L^q, l^p)^{\alpha}$ were introduced in 1988 by Ibrahim Fofana (see [Fo1]–[Fo3]). Results about multipliers and Fourier multipliers between Lebesgue spaces and continuity properties of fractional maximal operators and Riesz potential operators were obtained in this framework (see [Fo3], [Fo4], [F-F-K], [D-F]). We recall some of their properties below (see [Fo3]).

Proposition 2.2. Let $1 \le q \le \alpha \le p \le \infty$.

- (a) $((L^q, l^p)^{\alpha}, || ||_{q,p,\alpha})$ is a Banach space.
- (b) $\|\| \|_{q,p,\alpha}$ is a norm equivalent to $\| \|_{q,p,\alpha}$ on $(L^q,l^p)^{\alpha}$ if $p<\infty$.
- (c) $||f||_{q,p,\alpha} \le ||f||_{\alpha}$ for $f \in L^1_{loc}$, and therefore $L^{\alpha} \subset (L^q, l^p)^{\alpha}$.

- (d) $(L^q, l^p)^{\alpha} = L^{\alpha}$ when $\alpha \in \{q, p\}$.
- (e) If $q < \alpha < p$ then there exists a real number C such that

$$||f||_{q,p,\alpha} \le C||f||_{\alpha,+\infty}^*, \quad f \in L^1_{loc},$$

where

$$||f||_{\alpha,+\infty}^* = \sup_{\lambda > 0} \lambda |\{x \in \mathbb{R}^d \mid |f(x)| > \lambda\}|^{1/\alpha}$$

and therefore the weak-Lebesgue space $L^{\alpha,+\infty} = \{f \in L^1_{loc} \mid ||f||^*_{\alpha,\infty} < \infty\}$ is contained in $(L^q, l^p)^{\alpha}$.

(f) $(L^q, l^p)^{\alpha} \subset (L^{q_1}, l^p)^{\alpha}$ if $1 \leq q_1 < q$, and $(L^q, l^p)^{\alpha} \subset (L^q, l^{p_1})^{\alpha}$ if $p < p_1 \leq \infty$.

Let us recall that the convolution product f * g of f, g in L^1_{loc} is given by the formula

$$f * g(x) = \int_{\mathbb{R}^d} f(x - y)g(y) \, dy$$

at all points $x \in \mathbb{R}^d$ where this integral is defined. It satisfies the following Young inequality (see [Fo3]).

Proposition 2.3.

(a) Let $1 \le q_1 \le \alpha_1 \le p_1 \le \infty$, $1 \le q_2 \le \alpha_2 \le p_2 \le \infty$, $1/p_1 + 1/p_2 - 1 = 1/p \ge 0$, $1/\alpha_1 + 1/\alpha_2 - 1 = 1/\alpha$ and $1/q_1 + 1/q_2 - 1 = 1/q$. Then for any f_1 in $(L^{q_1}, l^{p_1})^{\alpha_1}$ and f_2 in $(L^{q_2}, l^{p_2})^{\alpha_2}$,

$$||f_1 * f_2||_{q,p,\alpha} \le C||f_1||_{q_1,p_1,\alpha_1}||f_2||_{q_2,p_2,\alpha_2}$$

where C is a real number not depending on f_1 and f_2 .

(b) In particular if $1 \le q \le \alpha \le p \le \infty$ then for any (φ, f) in $L^1 \times (L^q, l^p)^{\alpha}$,

$$\|\varphi * f\|_{q,p,\alpha} \le C \|\varphi\|_1 \|f\|_{q,p,\alpha}$$

where C is a real number not depending on f and φ .

We recall that in the theory of Sobolev spaces, approximation of an element of a Lebesgue space by elements of \mathcal{C}^{∞} is an important device based on the continuity of the convolution product (Young inequality) and of the translation operator τ_u with translation vector $u \in \mathbb{R}^d$, defined by

$$(\tau_u f)(x) = f(x - u), \quad x \in \mathbb{R}^d, f \in L^1_{loc}.$$

It is easy to verify the following assertion.

PROPOSITION 2.4. Let $1 \le q \le \alpha \le p \le \infty$. Then $(L^q, l^p)^{\alpha}$ is translation invariant and there is a real number C such that

$$\|\tau_u f\|_{q,p,\alpha} \le C\|f\|_{q,p,\alpha}, \quad u \in \mathbb{R}^d, f \in L^1_{loc}.$$

However an analogue of the following property of Lebesgue spaces:

$$\lim_{u \to 0} \|\tau_u f - f\|_{\alpha} = 0, \quad f \in L^{\alpha}, \ 1 \le \alpha < \infty,$$

is not true in $(L^q, l^p)^{\alpha}$ when $1 \leq q < \alpha < p \leq \infty$. So, I. Fofana [Fo3] has considered some special subspaces of $(L^q, l^p)^{\alpha}$ defined below.

Definition 2.3. For $1 \le q \le \alpha \le p \le \infty$ we set

$$(L^{q}, l^{p})_{c}^{\alpha} = \left\{ f \in (L^{q}, l^{p})^{\alpha} \mid \lim_{u \to 0} \| \tau_{u} f - f \|_{q, p, \alpha} = 0 \right\},$$

$$(L^{q}, l^{p})_{0}^{\alpha} = \left\{ f \in (L^{q}, l^{p})^{\alpha} \mid \lim_{R \to \infty} \| f \chi_{\mathbb{R}^{d} \setminus J_{0}^{R}} \|_{q, p, \alpha} = 0 \right\},$$

$$(L^{q}, l^{p})_{c, 0}^{\alpha} = (L^{q}, l^{p})_{c}^{\alpha} \cap (L^{q}, l^{p})_{0}^{\alpha}.$$

Let us fix some notations.

NOTATIONS 2.2.

- ρ is a fixed element of C^{∞} , non-negative, with support included in the unit ball $\overline{B}(0;1) = \{x \in \mathbb{R}^d \mid |x| \leq 1\}$ and satisfying $\int_{\mathbb{R}^d} \rho(x) dx = 1$.
- $\rho_m(x) = m^d \rho(mx), x \in \mathbb{R}^d, m \in \mathbb{N}^*.$
- ω is a fixed element of \mathcal{C}^{∞} satisfying $\chi_{J_0^1} \leq \omega \leq \chi_{J_0^2}$.
- $\omega_m(x) = \omega(x/m), x \in \mathbb{R}^d, m \in \mathbb{N}^*.$

The following results are contained in [Fo3].

Proposition 2.5. Let $1 \le q \le \alpha \le p \le \infty$.

- (a) $(L^q, l^p)_c^{\alpha}$ is a closed subspace of $(L^q, l^p)^{\alpha}$.
- (b) If $\alpha < \infty$ then $L^{\alpha} \subset (L^q, l^p)_c^{\alpha}$.
- (c) $(L^q, l^p)_c^{\alpha} = L^1 * (L^q, l^p)_c^{\alpha} = L^1 * (L^q, l^p)^{\alpha}$.
- (d) $\lim_{m\to\infty} \|\rho_m * f f\|_{q,p,\alpha} = 0$ for f in $(L^q, l^p)_c^{\alpha}$, where ρ_m is defined as in Notations 2.2.

We list below some useful properties of $(L^q, l^p)_0^{\alpha}$ and $(L^q, l^p)_{c,0}^{\alpha}$.

Proposition 2.6. Let $1 \le q \le \alpha \le p \le \infty$.

- (a) $(L^q, l^p)_0^{\alpha}$ and $(L^q, l^p)_{c,0}^{\alpha}$ are closed subspaces of $(L^q, l^p)^{\alpha}$.
- (b) $\lim_{m\to\infty} \|(f\omega_m)*\rho_m f\|_{q,p,\alpha} = 0$ for $f \in (L^q, l^p)_{c,0}^{\alpha}$, where ω_m and ρ_m are defined as in Notations 2.2.

Proof. (a) It is clear that $(L^q, l^p)_0^{\alpha}$ and $(L^q, l^p)_{c,0}^{\alpha}$ are subspaces of $(L^q, l^p)^{\alpha}$. Suppose that $(f_n)_{n\geq 1}$ is a sequence of elements of $(L^q, l^p)_0^{\alpha}$ converging in $(L^q, l^p)^{\alpha}$ to some f. Let $\varepsilon > 0$. For any real R > 0 we have

$$|f - f\chi_{J_0^R}| \le |f - f_n| + |f_n - f_n\chi_{J_0^R}| + |(f - f_n)\chi_{J_0^R}|$$

$$\le 2|f - f_n| + |f_n - f_n\chi_{J_0^R}|, \quad n \ge 1.$$

There are $n_{\varepsilon} \geq 1$ and $R_{\varepsilon} > 0$ such that

$$||f - f_{n_{\varepsilon}}||_{q,p,\alpha} \le \varepsilon/3$$
 and $||f_{n_{\varepsilon}} - f_{n_{\varepsilon}} \chi_{J_0^R}||_{q,p,\alpha} \le \varepsilon/3$, $R \ge R_{\varepsilon}$,

and therefore

$$||f - f\chi_{J_0^R}||_{q,p,\alpha} < \varepsilon, \quad R \ge R_{\varepsilon}.$$

Thus $f \in (L^q, l^p)_0^{\alpha}$. This means that $(L^q, l^p)_0^{\alpha}$ is closed in $(L^q, l^p)^{\alpha}$. Furthermore, by Proposition 2.5(a), $(L^q, l^p)_c^{\alpha}$ is also closed in $(L^q, l^p)^{\alpha}$. Thus $(L^q, l^p)_{c,0}$ is also closed.

(b) Let f be in $(L^q, l^p)_{c,0}^{\alpha}$. We have

 $||f - (f\omega_m) * \rho_m||_{q,p,\alpha} \le ||f - f * \rho_m||_{q,p,\alpha} + ||(f - f\omega_m) * \rho_m||_{q,p,\alpha}, \quad m \ge 1,$ and therefore, by Proposition 2.3(b),

$$||f - (f\omega_m) * \rho_m||_{q,p,\alpha} \le ||f - f * \rho_m||_{q,p,\alpha} + ||f - f\omega_m||_{q,p,\alpha}, \quad m \ge 1.$$

It is clear that

$$|f - f\omega_m| \le |f - f\chi_{J_0^m}|, \quad m \ge 1,$$

and so

$$||f - (f\omega_m) * \rho_m||_{q,p,\alpha} \le ||f - f * \rho_m||_{q,p,\alpha} + ||f - f\chi_{J_0^m}||_{q,p,\alpha}, \quad m \ge 1,$$

which implies that $\lim_{m\to\infty} ||f - (f\omega_m) * \rho_m||_{q,p,\alpha} = 0.$

Notice that Propositions 2.5(d) and 2.6(b) together with Proposition 2.2(c) imply that in $(L^q, l^p)^{\alpha}$:

- $(L^q, l^p)_c^{\alpha}$ is the closure of $(L^q, l^p)_c^{\alpha} \cap \mathcal{C}^{\infty}$,
- $(L^q, l^p)_{c,0}^{\alpha}$ is the closure of \mathcal{D} (and also of L^{α} if $\alpha < \infty$).

It is worth recalling the following extension of the well known Kolmogorov–Riesz–Tamarkin compactness theorem (see [S-F]):

PROPOSITION 2.7. Let $1 \le q \le \alpha \le p \le \infty$ with $\alpha < \infty$. Any closed subset H of $(L^q, l^p)^{\alpha}$ satisfying the following conditions:

- (i) $\sup_{f \in H} ||f||_{q,p,\alpha} < \infty$,
- (ii) $\lim_{u\to 0} \sup_{f\in H} ||f \tau_u f||_{q,p,\alpha} = 0$,
- (iii) $\lim_{R\to\infty} \sup_{f\in H} \|f f\chi_{J_0^R}\|_{q,p,\alpha} = 0$,

is compact in $(L^q, l^p)^{\alpha}$.

3. Sobolev spaces. We fix $q, \alpha, p \in [1, \infty]$ such that $q \leq \alpha \leq p$ and $q < \infty$.

DEFINITION 3.1. Let E be one of the spaces $(L^q, l^p)^{\alpha}$, $(L^q, l^p)^{\alpha}_c$ or $(L^q, l^p)^{\alpha}_{c,0}$. We define

$$W^{1}(E) = \{ f \in E \mid \partial f / \partial x_{j} \in E \text{ for } j \in \{1, \dots, d\} \}$$

where $\partial f/\partial x_i = D_i f$ stands for the distributional partial derivative.

For any f in $W^1((L^q, l^p)^{\alpha})$ we set

$$||f||_{W^1((L^q,l^p)^{\alpha})} = ||f||_{q,p,\alpha} + \sum_{j=1}^d \left\| \frac{\partial f}{\partial x_j} \right\|_{q,p,\alpha}.$$

We point out that:

- $W^1((L^q, l^p)^{\alpha})$ is a subspace of a more general Sobolev type space introduced by Domion Douyon in his thesis ([Do]).
- $W^1((L^q, l^{\infty})^{\alpha})$ is the Morrey–Sobolev space $W^{1,(q,d(1-q/\alpha))}(\mathbb{R}^d)$ considered by G. Cupini and R. Petti and used in the study of the regularity of minimizers for functionals ([C-P]) and solutions of elliptic equations ([F-L-Y]).

It is easy to verify

Proposition 3.1.

- (a) $W^1((L^q, l^p)^{\alpha})$ is a subspace of $W^{1,q}_{loc} = \{ f \in L^q_{loc} \mid f \in W^{1,q}(\Omega) \text{ for any bounded open subset } \Omega \text{ of } \mathbb{R}^d \}.$
- (b) $(W^1(E), \| \|_{W^1((L^q, l^p)^{\alpha})})$ is a Banach space if E is any of the spaces $(L^q, l^p)^{\alpha}$, $(L^q, l^p)^{\alpha}_c$ and $(L^q, l^p)^{\alpha}_{c,0}$.

Let us recall the following well known result (see [K-J-F]).

LEMMA 3.2. Suppose that $f \in L^q_{loc}$ and $D_j f \in L^q_{loc}$ for some $j \in \{1, \ldots, d\}$. Then

$$\rho_{m} * f \in \mathcal{C}^{\infty}, \ D_{j}(\rho_{m} * f) = (D_{j}\rho_{m}) * f = \rho_{m} * (D_{j}f), \quad m \in \mathbb{N},
D^{\beta}(\rho_{m} * f) = (D^{\beta}\rho_{m}) * f, \quad (\beta, m) \in \mathbb{N}^{d} \times \mathbb{N}^{*},
\lim_{m \to \infty} \|(\rho_{m} * f - f)\chi_{J_{x}^{r}}\|_{q} = 0 = \lim_{m \to \infty} \|[D_{j}(\rho_{m} * f) - D_{j}f]\chi_{J_{x}^{r}}\|_{q},
(x, r) \in \mathbb{R}^{d} \times (0, \infty),$$

where ρ_m is as in Notations 2.2.

From the lemma above and the proof of Proposition IX in [Br] we readily obtain the following result.

Lemma 3.3. Suppose that $f \in W^{1,q}_{loc}$. Then

$$\int_{J_x^r} |\tau_u f(y) - f(y)|^q dy$$

$$\leq |u|^q \int_{0}^1 \int_{J_x^r} |\nabla f(y - tu)|^q dy dt, \quad (u, x, r) \in \mathbb{R}^d \times \mathbb{R}^d \times (0, \infty).$$

The lemma above leads to the following property of our Sobolev type space.

Proposition 3.2. There exists a real number C such that

$$\|\tau_u f - f\|_{q,p,\alpha} \le C|u| \||\nabla f|\|_{q,p,\alpha}, \quad u \in \mathbb{R}^d, f \in W^1((L^q, l^p)^\alpha),$$

and therefore $W^1((L^q, l^p)^\alpha) \subset (L^q, l^p)^\alpha_c$.

Proof. Suppose that $p < \infty$, $f \in W^1((L^q, l^p)^{\alpha})$, $u \in \mathbb{R}^d$ and $r \in (0, \infty)$. From Lemma 3.3 we get

$$I := \left\{ \int_{\mathbb{R}^d} \left[\int_{J_x^r} |\tau_u f(y) - f(y)|^q dy \right]^{p/q} dx \right\}^{1/p}$$

$$\leq |u| \left\{ \int_{\mathbb{R}^d} \left[\int_{0, J_x^r}^1 |\nabla f(y - tu)|^q dy dt \right]^{p/q} dx \right\}^{1/p}.$$

Therefore, by the Minkowski inequality for integrals (see [St, p. 271])

$$I \le |u| \left\{ \int_{0}^{1} \left[\int_{\mathbb{R}^d} \left(\int_{I^r} |\nabla f(y - tu)|^q dy \right)^{p/q} dx \right]^{q/p} dt \right\}^{1/q}.$$

From the inequality above and Proposition 2.4, we obtain

$$I \leq C_1 |u| \left\{ \int_0^1 [|||| |\nabla f||||_{q,p,\alpha} r^{d(1/q+1/p-1/\alpha)}]^q dt \right\}^{1/q}$$
$$= C_1 |u| |||| |\nabla f||||_{q,p,\alpha} r^{d(1/q+1/p-1/\alpha)}$$

where C_1 is a real number not depending on f, u and r. Therefore, by Proposition 2.2(b) we have

$$\|\tau_u f - f\|_{q,p,\alpha} \le C|u| \| |\nabla f| \|_{q,p,\alpha}$$

where C is a real number not depending on f and u.

In the case $p = \infty$ a similar proof works. \blacksquare

From Propositions 2.5 and 3.2 we deduce the following result.

Proposition 3.3. Suppose that $q < \infty$. Then the following assertions are equivalent:

- (i) $f \in (L^q, l^p)^{\alpha}_c$.
- (ii) $f = \lim_{m \to \infty} \rho_m * f$ in $(L^q, l^p)^{\alpha}$ where ρ_m is as in Notations 2.2.
- (iii) f belongs to the closure in $(L^q, l^p)^{\alpha}$ of

$$\mathcal{C}^{\infty}_{(L^q, l^p)^{\alpha}} = \{ g \in \mathcal{C}^{\infty} \mid D^{\beta}g \in (L^q, l^p)^{\alpha} \text{ for all } \beta \in \mathbb{N}^d \}.$$

Proof. (i) \Rightarrow (ii) by Proposition 2.5(d).

Suppose that (ii) is true. Fix a positive integer m and $\beta \in \mathbb{N}^d$. By Lemma 3.2, $\rho_m * f \in \mathcal{C}^{\infty}$ and $D^{\beta}(\rho_m * f) = (D^{\beta}\rho_m) * f$. As $D^{\beta}\rho_m \in L^1$, Proposition 2.3(b) shows that $D^{\beta}(\rho_m * f) \in (L^q, l^p)^{\alpha}$. Therefore $\rho_m * f \in \mathcal{C}^{\infty}_{(L^q, l^p)^{\alpha}}$. Furthermore $\lim_{m \to \infty} \|\rho_m * f - f\|_{q, p, \alpha} = 0$ (Proposition 2.5(d)). Thus (ii) \Rightarrow (iii).

Suppose that (iii) is true: there exists a sequence $(g_m)_{m\geq 1} \subset \mathcal{C}^{\infty}_{(L^q,l^p)^{\alpha}}$ converging to f in $(L^q,l^p)^{\alpha}$. It is clear that any g_m $(m\in\mathbb{N}^*)$ belongs to $W^1((L^q,l^p)^{\alpha})$. Therefore, from Proposition 3.2 we have

$$g_m \in (L^q, l^p)_c^{\alpha}, \quad m \in \mathbb{N}^*.$$

 $(L^q, l^p)_c^{\alpha}$ being closed in $(L^q, l^p)^{\alpha}$ (Proposition 2.5(a)), f clearly belongs to $(L^q, l^p)_c^{\alpha}$. Thus (iii) \Rightarrow (i).

Proposition 3.2 leads to the following characterization of $W^1((L^q, l^p)^{\alpha})$.

PROPOSITION 3.4. Suppose that $f \in (L^q, l^p)^{\alpha}$. Then the following assertions are equivalent:

- (i) $f \in W^1((L^q, l^p)^{\alpha}).$
- (ii) There exists a real number C such that

$$\|\tau_u f - f\|_{q,p,\alpha} \le C|u|, \quad u \in \mathbb{R}^d.$$

Proof. The implication (i) \Rightarrow (ii) follows readily from Proposition 3.2.

Conversely, suppose that (ii) is true. Denote by $\{e_j \mid 1 \leq j \leq d\}$ the canonical basis of \mathbb{R}^d .

(a) Let Ω be any bounded open subset of \mathbb{R}^d and Q a closed and bounded cube in \mathbb{R}^d such that $\Omega \subset Q$. We have

$$\|(\tau_u f - f)\chi_{\Omega}\|_q \le \|(\tau_u f - f)\chi_Q\|_q \le 2^{d/p'}|Q|^{1/q - 1/\alpha}\|\tau_u f - f\|_{q, p, \alpha}$$

$$\le 2^{d/p'}C|Q|^{1/q - 1/\alpha}|u|, \quad u \in \mathbb{R}^d,$$

and

$$||s^{-1}(\tau_{se_j}f - f)\chi_{\Omega}||_q \le 2^{d/p'}|Q|^{1/q - 1/\alpha}C, \quad j \in \{1, \dots, d\}, \ s \in (0, \infty).$$

Hence $\{s^{-1}(\tau_{se_j}f - f)\chi_{\Omega} \mid s \in (0, \infty), j \in \{1, \dots, d\}\}$ is a bounded subset of L^q . Therefore there exists a sequence $(s_m)_{m\geq 1}$ in $(0, \infty)$ such that

$$\begin{cases} \lim_{m \to \infty} s_m = 0, \\ \text{for any } j \in \{1, \dots, d\}, \ (s_m^{-1}(\tau_{s_m e_j} f - f)\chi_{\Omega})_{m \ge 1} \text{ weakly converges} \\ \text{in } L^q \text{ to some } g_j. \end{cases}$$

Notice that, for any $j \in \{1, ..., d\}$ and any $\varphi \in \mathcal{C}^{\infty}$ with support in Ω ,

$$\int_{\mathbb{R}^d} \varphi(x)g_j(x) dx = \lim_{m \to \infty} \int_{\mathbb{R}^d} \varphi(x)s_m^{-1}[f(x - s_m e_j) - f(x)] dx$$

$$= -\lim_{m \to \infty} \int_{\mathbb{R}^d} s_m^{-1}[\varphi(x + s_m e_j) - \varphi(x)]f(x) dx$$

$$= -\int_{\mathbb{R}^d} \frac{\partial \varphi}{\partial x_j} f(x) dx.$$

That is, $g_j = \partial f / \partial x_j$ in Ω for $j \in \{1, ..., d\}$. Therefore $f \in W^{1,q}_{loc}$.

(b) Suppose that $p = \infty$. Let R be a bounded and closed cube, $0 < \epsilon < 1$, $Q = (1 + \epsilon)R$ the cube with side length $(1 + \epsilon)|R|^{1/d}$ and the same center as R, and $\Omega = \dot{Q}$ the interior of Q.

Using the notations in (a) we have, for any $j \in \{1, ..., d\}$ and any $\varphi \in \mathcal{C}^{\infty}$ with support in Ω ,

$$\left| \int_{\mathbb{R}^d} \frac{\partial f}{\partial x_j}(x) \varphi(x) \, dx \right| = \lim_{m \to \infty} \left| \int_{\mathbb{R}^d} s_m^{-1} [f(x - s_m e_j) - f(x)] \varphi(x) \, dx \right|$$

$$\leq \limsup_{m \to \infty} \| (\tau_{s_m e_j} f - f) \chi_Q \|_q \| \varphi \|_{q'} s_m^{-1}$$

$$\leq \limsup_{m \to \infty} \| \tau_{s_m e_j} f - f \|_{q,\infty,\alpha} |Q|^{1/q - 1/\alpha} \| \varphi \|_{q'} s_m^{-1}$$

$$\leq C |Q|^{1/q - 1/\alpha} \| \varphi \|_{q'},$$

and so

$$\left\| \frac{\partial f}{\partial x_j} \chi_R \right\|_q \le \left\| \frac{\partial f}{\partial x_j} \chi_\Omega \right\|_q \le C|Q|^{1/q - 1/\alpha} = (1 + \epsilon)^{d(1/q - 1/\alpha)} C|R|^{1/q - 1/\alpha}.$$

Letting ϵ go to zero, we get, for any $j \in \{1, \ldots, d\}$,

$$\left\| \frac{\partial f}{\partial x_j} \chi_R \right\|_q \le C|R|^{1/q - 1/\alpha}.$$

Thus $\|\partial f/\partial x_j\|_{q,\infty,\alpha} \leq C$ for $j \in \{1,\ldots,d\}$.

(c) Suppose that $p < \infty$. Let (r, m) be any element of $(0, \infty) \times \mathbb{N}^*$. Set $K_n = \{k \in \mathbb{Z}^d \mid |k| \leq n\},$

$$Q = \{x = (x_j)_{1 \le j \le d} \mid -(n+1)r \le x_j \le (n+2)r \text{ for } 1 \le j \le d\},\$$

and $\Omega = \dot{Q}$. For any $k \in K_n$, let $\varphi_k \in \mathcal{C}_0^{\infty}$ with support in I_k^r and $\|\varphi_k\|_{q'} \leq 1$. Using the notations in (a) we have, for $|s_n| < \min_{k \in K_n} d(\operatorname{supp} \varphi_k, \partial I_k^r)$ and $j \in \{1, \ldots, d\}$,

$$\left[\sum_{k \in K_n} \left| \int_{\mathbb{R}^d} s_m^{-1} (\tau_{s_m e_j} f - f)(x) \varphi_k(x) \, dx \right|^p \right]^{1/p} \\
\leq \left[\sum_{k \in K_n} (s_m^{-1} \| (\tau_{s_m e_j} f - f) \chi_{I_k^r} \|_q \| \varphi_k \|_{q'})^p \right]^{1/p} \\
\leq s_m^{-1} \left[\sum_{k \in K_n} \| (\tau_{s_m e_j} f - f) \chi_{I_k^r} \|_q^p \right]^{1/p} \\
\leq s_m^{-1} \| \tau_{s_m e_j} f - f \|_{q, p, \alpha} r^{d(1/q - 1/\alpha)} \leq C r^{d(1/q - 1/\alpha)},$$

and therefore

$$\left[\sum_{k \in K_n} \left| \int_{\mathbb{R}^n} \frac{\partial f}{\partial x_j} \varphi_k(x) \, dx \right|^p \right]^{1/p} \le C r^{d(1/q - 1/\alpha)}.$$

Thus

$$\left[\sum_{k \in K_n} \left\| \frac{\partial f}{\partial x_j} \chi_{I_k^r} \right\|_q^p \right]^{1/p} \le C r^{d(1/q - 1/\alpha)}.$$

Letting n go to infinity, we obtain

$$_{r}\left\| \frac{\partial f}{\partial x_{j}} \right\|_{q,n} \leq C r^{d(1/q-1/\alpha)}.$$

Finally,

$$\left\| \frac{\partial f}{\partial x_j} \right\|_{q,p,\alpha} \le C, \quad j = \{1,\dots,d\}.$$

 $W^1((L^q, l^p)_{c,0}^{\alpha})$ has the following approximation property.

Proposition 3.5. We have

$$\lim_{m \to \infty} \|f - (f\omega_m) * \rho_m\|_{W^1((L^q, l^p)^\alpha)} = 0, \quad f \in W^1((L^q, l^p)_{c, 0}^\alpha)$$

where ρ_m and ω_m are as in Notations 2.2.

Proof. Let $f \in W^1((L^q, l^p)_{c,0}^{\alpha})$. By Proposition 2.6(b), $((f\omega_m) * \rho_m)_{m \geq 1}$ converges to f in $(L^q, l^p)^{\alpha}$. For any $(j, m) \in \{1, \ldots, d\} \times \mathbb{N}^*$ we have

$$\frac{\partial}{\partial x_j}((f\omega_m)*\rho_m) = \left(\frac{\partial f}{\partial x_j}\omega_m\right)*\rho_m + \left(f\frac{\partial \omega_m}{\partial x_j}\right)*\rho_m,$$

so

$$\left\| \frac{\partial f}{\partial x_{j}} - \frac{\partial}{\partial x_{j}} ((f\omega_{m}) * \rho_{m}) \right\|_{q,p,\alpha}$$

$$\leq \left\| \frac{\partial f}{\partial x_{j}} - \frac{\partial f}{\partial x_{j}} * \rho_{m} \right\|_{q,p,\alpha} + \left\| \left(\frac{\partial f}{\partial x_{j}} - \frac{\partial f}{\partial x_{j}} \omega_{m} \right) * \rho_{m} \right\|_{q,p,\alpha}$$

$$+ \left\| \left(f \frac{\partial \omega_{m}}{\partial x_{j}} \right) * \rho_{m} \right\|_{q,p,\alpha}$$

and therefore, by Proposition 2.3(b),

$$\begin{split} & \left\| \frac{\partial f}{\partial x_{j}} - \frac{\partial}{\partial x_{j}} ((f\omega_{m}) * \rho_{m}) \right\|_{q,p,\alpha} \\ & \leq \left\| \frac{\partial f}{\partial x_{j}} - \frac{\partial f}{\partial x_{j}} * \rho_{m} \right\|_{q,p,\alpha} + \left\| \frac{\partial f}{\partial x_{j}} \chi_{\mathbb{R}^{d} \setminus J_{0}^{m}} \right\|_{q,p,\alpha} + \frac{1}{m} \left\| \frac{\partial \omega}{\partial x_{j}} \right\|_{\infty} \|f \chi_{J_{0}^{2m} \setminus J_{0}^{m}} \|_{q,p,\alpha}. \end{split}$$

Thus

$$\lim_{m \to \infty} \left\| \frac{\partial f}{\partial x_j} - \frac{\partial}{\partial x_j} ((f\omega_m) * \rho_m) \right\|_{q,p,\alpha} = 0. \blacksquare$$

Notice that, by the result above, $W^1((L^q, l^p)_{c,0}^{\alpha})$ is the closure in $W^1((L^q, l^p)^{\alpha})$ of \mathcal{D} and therefore of $W^{1,\alpha}$ if $\alpha < \infty$.

4. Boundedness of singular integrals. In [F-L-Y] several results on the boundedness of singular integrals in Morrey spaces were given. In this section we shall establish an analoguous result in $(L^q, l^p)^{\alpha}$ for Riesz potential operators and deduce from it Sobolev type inequalities.

PROPOSITION 4.1. Suppose that $1 < q \le \alpha < p \le \infty$, $0 < \gamma < 1/\alpha - 1/p$, $1/q^* = 1/q - \gamma$ and $1/\alpha^* = 1/\alpha - \gamma$. Then, for any f in $(L^q, l^p)^{\alpha}$, $I_{\gamma}f$ belongs to $(L^{q^*}, l^p)^{\alpha^*}$ and $||I_{\gamma}f||_{q^*, p, \alpha^*} \le C||f||_{q, p, \alpha}$ where C is a real number not depending on f.

Proof. (a) Let $f \in (L^q, l^p)^{\alpha}$ be non-negative and $(x, r) \in \mathbb{R}^d \times (0, \infty)$. We have

$$f = \sum_{n \ge 0} f_{x,r,n}$$

where

 $f_{x,r,0} = f\chi_{J_x^{2r}}, \quad f_{x,r,n} = f\chi_{T_{x,r,n}} \quad \text{with} \quad T_{x,r,n} = J_x^{2^{n+1}r} \setminus J_x^{2^n r} \quad \text{for } n \ge 1.$ f being non-negative, the monotone convergence theorem gives

$$I_{\gamma}f = \sum_{n>0} I_{\gamma}f_{x,r,n}.$$

By the Hardy–Littlewood–Sobolev theorem for fractional integration there is a real number A not depending on f or r such that

$$||I_{\gamma}f_{x,r,0}||_{q^*} \le A||f_{x,r,0}||_q = A||f\chi_{J_x^{2r}}||_q.$$

Therefore

$$\begin{aligned} \|(I_{\gamma}f)\chi_{J_{x}^{r}}\|_{q^{*}} &\leq \sum_{n\geq 0} \|(I_{\gamma}f_{x,r,n})\chi_{J_{x}^{r}}\|_{q^{*}} \\ &\leq A\|f\chi_{J_{x}^{2r}}\|_{q} + \sum_{n>1} \left[\int_{J_{x}^{r}} \left(\int_{T_{x,r,n}} \frac{f(y)}{|z-y|^{d(1-\gamma)}} \, dy \right)^{q^{*}} dz \right]^{1/q^{*}} \end{aligned}$$

Notice that for $n \geq 1$, $z \in J^r_x$ and $y \in J^{2^{n+1}r}_x \setminus J^{2^nr}_x$, we have

$$|z-y| \ge \frac{2^n r}{2} - \frac{r}{2} = \frac{(2^n - 1)r}{2} \ge \frac{2^{n-1} r}{2}.$$

Thus we get

$$\begin{aligned} \|(I_{\gamma}f)\chi_{J_{x}^{r}}\|_{q^{*}} &\leq A\|f\chi_{J_{x}^{2r}}\|_{q} + \sum_{n\geq 1} \frac{2^{d(1-\gamma)}r^{d/q^{*}}}{(2^{n-1}r)^{d(1-\gamma)}} \int_{T_{x,r,n}} f(y) \, dy \\ &\leq A\|f\chi_{J_{x}^{2r}}\|_{q} + 2^{2d(1-\gamma)} \sum_{n\geq 1} \frac{(2^{d}-1)^{1-1/q}}{2^{nd(1/q-\gamma)}} \|f\chi_{J_{x}^{2^{n+1}r}}\|_{q} \\ &\leq B_{q,\infty,\alpha} \|f\|_{q,\infty,\alpha} r^{d(1/q-1/\alpha)} \end{aligned}$$

with

$$B_{q,\infty,\alpha} = \left[A + 2^{2d(1-\gamma)} \sum_{n>1} \frac{(2^d - 1)}{2^{nd(1/\alpha - \gamma)}} \right] 2^{d(1/q - 1/\alpha)} < \infty$$

because $1/\alpha - \gamma \ge 1/\alpha - \gamma - 1/p > 0$.

(b) Let $f \in (L^q, l^p)^{\alpha}$. By Proposition 2.2(f), $f \in (L^q, l^{\infty})^{\alpha}$, that is, $||f||_{q,\infty,\alpha} < \infty$.

Since |f| is a non-negative element of $(L^q, l^p)^{\alpha}$, by the results in (a) we have

$$\|(I_{\gamma}(|f|)\chi_{J_x^r}\|_q \le B_{q,\infty,\alpha}\|f\|_{q,\infty,\alpha}r^{d(1/q-1/\alpha)} < \infty, \quad (x,r) \in \mathbb{R}^d \times (0,\infty).$$

This implies that for almost every $z \in \mathbb{R}^d$, $I_{\gamma}(|f|)(z) < \infty$ and therefore $I_{\gamma}f(z) = \int_{\mathbb{R}^d} \frac{f(y)}{|z-y|^{d(1-\gamma)}} dy$ converges and satisfies $|I_{\gamma}f(z)| \leq I_{\gamma}(|f|)(z)$.

Consequently, for any $(x,r) \in \mathbb{R}^d \times (0,\infty)$ we have

$$(\star) \quad \|(I_{\gamma}f)\chi_{J_{x}^{r}}\|_{q^{*}} \leq A\|f\chi_{J_{x}^{2r}}\|_{q} + 2^{2d(1-\gamma)} \sum_{n>1} \frac{(2^{d}-1)^{1-1/q}}{2^{nd(1/q-\gamma)}} \|f\chi_{J_{x}^{2^{n+1}r}}\|_{q},$$

$$(\star\star)\quad \|(I_{\gamma}f)\chi_{J^r_x}\|_{q^*}\leq B_{q,\infty,\alpha}\|f\|_{q,\infty,\alpha}r^{d(1/q-1/\alpha)}.$$

Now, $(\star\star)$ ends the proof for $p=\infty$. In the case $p<\infty$, (\star) implies

$$\left(\int_{\mathbb{R}^d} [\|(I_{\gamma}f)\chi_{J_x^r}\|_{q^*}]^p dx \right)^{1/p} \le A \left(\int_{\mathbb{R}^d} [\|f\chi_{J_x^{2r}}\|_q]^p dx \right)^{1/p} \\
+ 2^{2d(1-\gamma)} \sum_{n\ge 1} \frac{(2^d-1)^{1-1/q}}{2^{nd(1/q-\gamma)}} \left(\int_{\mathbb{R}^d} [\|f\chi_{J_x^{2n+1_r}}\|_q]^p dx \right)^{1/p} \\
\le B_{q,p,\alpha} \||f||_{q,p,\alpha} r^{d(1/q+1/p-1/\alpha)}$$

with

$$B_{q,p,\alpha} = \left[A + 2^{2d(1-\gamma)} \sum_{n \ge 1} \frac{(2^d - 1)^{1-1/q}}{2^{nd(1/\alpha - 1/p - \gamma)}} \right] 2^{d(1/q + 1/p - 1/\alpha)} < \infty$$

because $1/\alpha - 1/p - \gamma > 0$.

Thus, by Proposition 2.2(b),

$$||I_{\gamma}f||_{q^*,p,\alpha^*} \le C||f||_{q,p,\alpha}$$

where C is a real number not depending on f.

The proposition above has the following consequence.

COROLLARY 4.1. Suppose that $1 < q \le \alpha < p \le \infty$, $0 < \gamma < 1/\alpha - 1/p$, $1/q^* = 1/q - \gamma$ and $1/\alpha^* = 1/\alpha - \gamma$. Then for any f in $(L^q, l^p)_{c,0}^{\alpha}$, $I_{\gamma}f$ belongs to $(L^{q^*}, l^p)_{c,0}^{\alpha^*}$.

Proof. Let $f \in (L^q, l^p)_{c,0}^{\alpha}$. There is a sequence $(g_n)_{n\geq 1} \subset L^{\alpha}$ converging to f in $(L^q, l^p)^{\alpha}$. By the Hardy–Littlewood–Sobolev inequality and Proposition 4.1, we have

$$I_{\gamma}g_n \in L^{\alpha^*}, \quad n \ge 1,$$

and

$$0 = \lim_{n \to \infty} ||I_{\gamma}(g_n - f)||_{q^*, p, \alpha^*} = \lim_{n \to \infty} ||I_{\gamma}g_n - I_{\gamma}f||_{q^*, p, \alpha^*}.$$

Therefore $I_{\gamma}f \in (L^{q^*}, l^p)_{c,0}^{\alpha^*}$.

The results above give the following Sobolev inequality.

PROPOSITION 4.2. Suppose that $1 < q \le \alpha < p \le \infty$, $1/d < 1/\alpha - 1/p$, $1/q^* = 1/q - 1/d$ and $1/\alpha^* = 1/\alpha - 1/d$. Then $W^1((L^q, l^p)_{c,0}^\alpha) \subset (L^{q^*}, l^p)_{c,0}^{\alpha^*}$ and there is a real number C such that

$$||f||_{q^*,p,\alpha^*} \le C|||\nabla f|||_{q,p,\alpha}, \quad f \in W^1((L^q,l^p)_{c,0}^\alpha).$$

Proof. (a) Let $\varphi \in \mathcal{D}$. It is known (see [St]) that

$$|\varphi| \le A \sum_{j=1}^{d} I_{1/d} \left(\left| \frac{\partial \varphi}{\partial x_j} \right| \right)$$

where A is a real number not depending on φ . Therefore, by Proposition 4.1,

$$\|\varphi\|_{q^*,p,\alpha^*} \le C \sum_{j=1}^d \left\| \frac{\partial \varphi}{\partial x_j} \right\|_{q,p,\alpha}$$

where C is a real number not depending on φ .

(b) Let $f \in W^1((L^q, l^p)_{c,0}^{\alpha})$. For any integer $m \geq 1$, we set $\varphi_m = (f\omega_m) * \rho_m$ where ρ_m and ω_m are defined as in Notations 2.2. Then $(\varphi_m)_{m\geq 1}$ is a sequence of elements of \mathcal{D} which converges to f in $W^1((L^q, l^p)^{\alpha})$ (see Proposition 3.5) and therefore is a Cauchy sequence. Furthermore, by the result in (a) we have

$$\|\varphi_m - \varphi_n\|_{q^*, p, \alpha^*} \le C \sum_{j=1}^d \left\| \frac{\partial \varphi_m}{\partial x_j} - \frac{\partial \varphi_n}{\partial x_j} \right\|_{q, p, \alpha}, \quad m, n \in \mathbb{N}^*.$$

Thus $(\varphi_m)_{m\geq 1}$ is a Cauchy sequence and therefore converges in $(L^{q^*}, l^p)^{\alpha^*}$ to an element which is nothing other than f. So $f \in (L^{q^*}, l^p)^{\alpha^*}$ and

$$||f||_{q^*,p,\alpha^*} = \lim_{m \to \infty} ||\varphi_m||_{q^*,p,\alpha^*} \le C \lim_{m \to \infty} \sum_{j=1}^d \left\| \frac{\partial \varphi_m}{\partial x_j} \right\|_{q,p,\alpha}$$
$$= C \sum_{j=1}^d \left\| \frac{\partial f}{\partial x_j} \right\|_{q,p,\alpha}. \blacksquare$$

As in the classical case, from the above Sobolev inequality we may deduce a Kondrashov–Rellich compactness theorem in $W^1((L^q, l^p)^{\alpha})$. For its proof we shall need the following results.

Lemma 4.2.

(a) Suppose that
$$1 \le q \le \alpha \le p \le \infty$$
, $1 \le q^* \le \alpha^* \le p^* \le \infty$, $0 < t < 1$, $\frac{1}{\widetilde{q}} = \frac{1-t}{q} + \frac{t}{q^*}$, $\frac{1}{\widetilde{\alpha}} = \frac{1-t}{\alpha} + \frac{t}{\alpha^*}$, $\frac{1}{\widetilde{p}} = \frac{1-t}{p} + \frac{t}{p^*}$.

Then there exists a real C such that

$$||f||_{\widetilde{q},\widetilde{p},\widetilde{\alpha}} \le C||f||_{q,p,\alpha}^{1-t}||f||_{q^*,p^*,\alpha^*}^t, \quad f \in L^0.$$

(b) Suppose that $1 < q \le \alpha < p \le \infty, \ 1/q^* = 1/q - 1/d > 0, \ 1/\alpha^* = 1/\alpha - 1/d, \ 0 < t < 1,$

$$\frac{1}{\widetilde{q}} = \frac{1-t}{q} + \frac{t}{q^*}$$
 and $\frac{1}{\widetilde{\alpha}} = \frac{1-t}{\alpha} + \frac{t}{\alpha^*}$.

Then there exists a real number C such that

$$||f||_{\widetilde{q},p,\widetilde{\alpha}} \le C||f||_{q,p,\alpha}^{1-t}||\nabla f|||_{q,p,\alpha}^t, \quad f \in W^1((L^q,l^p)_{c,0}^{\alpha}).$$

Proof. (a) Let $f \in L^1_{loc}$.

(i) From the Hölder inequality we obtain, for any $(x,r) \in \mathbb{R}^d \times (0,\infty)$,

$$||f\chi_{J_x^r}||_{\widetilde{q}} \le ||f\chi_{J_x^r}||_q^{1-t} ||f\chi_{J_x^r}||_{q^*}^t$$

and therefore

$$r^{d(1/\tilde{\alpha}-1/\tilde{q}-1/\tilde{p})} \|f\chi_{J_x^r}\|_{\tilde{q}} \\ \leq [r^{d(1/\alpha-1/q-1/p)} \|f\chi_{J_x^r}\|_q]^{1-t} [r^{d(1/\alpha^*-1/q^*-1/p^*)} \|f\chi_{J_x^r}\|_{q^*}]^t.$$

(ii) First case: $p = p^* = \infty$. The result in (i) immediately yields $||f||_{\widetilde{q},\infty,\widetilde{\alpha}} \leq ||f||_{q,\infty,\alpha}^{1-t}||f||_{q^*,\infty,\alpha^*}^t$,

that is,

$$||f||_{\widetilde{q},\widetilde{p},\widetilde{\alpha}} \leq ||f||_{q,p,\alpha}^{1-t} ||f||_{q^*,p^*,\alpha^*}^t.$$

(iii) Second case: $p^* < \infty = p$. Using the result obtained in (i) we get

$$r^{d(1/\tilde{\alpha}-1/\tilde{q}-1/\tilde{p})} \|f\chi_{J_x^r}\|_{\tilde{q}}$$

$$\leq \|f\|_{q,\infty,\alpha}^{1-t} [r^{d(1/\alpha^*-1/q^*-1/p^*)} \|f\chi_{J_x^r}\|_{q^*}]^t, \quad x \in \mathbb{R}^d, r > 0,$$

and therefore, as $\widetilde{p} = p^*t^{-1} < \infty$,

$$\begin{split} r^{d(1/\widetilde{\alpha}-1/\widetilde{q}-1/\widetilde{p})} & \Big\{ \int\limits_{\mathbb{R}^d} \|f\chi_{J_x^r}\|_{\widetilde{q}}^{\widetilde{p}} \, dx \Big\}^{1/\widetilde{p}} \\ & \leq \|f\|_{q,\infty,\alpha}^{1-t} r^{d(1/\alpha^*-1/q^*-1/p^*)t} \Big\{ \int\limits_{\mathbb{T}^d} \|f\chi_{J_x^r}\|_{q^*}^{t\widetilde{p}} \, dx \Big\}^{1/\widetilde{p}}, \qquad r > 0, \end{split}$$

that is,

$$r^{d(1/\widetilde{\alpha}-1/\widetilde{q}-1/\widetilde{p})} \left\{ \int_{\mathbb{R}^d} \|f\chi_{J_x^r}\|_{\widetilde{q}}^{\widetilde{p}} dx \right\}^{1/\widetilde{p}}$$

$$\leq \|f\|_{q,\infty,\alpha}^{1-t} r^{d(1/\alpha^*-1/q^*-1/p^*)t} \left\{ \int_{\mathbb{R}^d} \|f\chi_{J_x^r}\|_{q^*}^{p^*} dx \right\}^{t/p^*}, \quad r > 0.$$

Taking the supremum with respect to r > 0, we obtain

$$|||f|||_{\widetilde{q},\widetilde{p},\widetilde{\alpha}} \le ||f||_{q,p,\alpha}^{1-t}|||f|||_{q^*,p^*,\alpha^*}^t.$$

In the case $p < \infty = p^*$, the inequality above is obtained by a similar argument.

(iv) Third case: $p < \infty$ and $p^* < \infty$. By the result in (i) and the Hölder inequality we get

$$r^{d(1/\tilde{\alpha}-1/\tilde{q}-1/\tilde{p})} \left\{ \int_{\mathbb{R}^d} \|f\chi_{J_x^r}\|_{\tilde{q}}^{\tilde{p}} dx \right\}^{1/\tilde{p}}$$

$$\leq \left\{ r^{d(1/\alpha-1/q-1/p)p} \int_{\mathbb{R}^d} \|f\chi_{J_x^r}\|_q^p dx \right\}^{(1-t)/p}$$

$$\times r^{d(1/\alpha^*-1/q^*-1/p^*)t} \left\{ \int_{\mathbb{R}^d} \|f\chi_{J_x^r}\|_{q^*}^{p^*} dx \right\}^{t/p^*}, \quad r > 0,$$

and therefore

$$|||f|||_{\widetilde{q},\widetilde{p},\widetilde{\alpha}} \leq |||f|||_{q,p,\alpha}^{1-t}|||f|||_{q^*,p^*,\alpha^*}^t$$

An application of Proposition 2.2(b) ends the proof.

(b) is an immediate consequence of (a) and Proposition 4.2.

PROPOSITION 4.3. Suppose that $1 < q \le \alpha < p \le \infty, \ 1/d < 1/\alpha - 1/p, \ 1/q^* = 1/q - 1/d, \ 1/\alpha^* = 1/\alpha - 1/d, \ 0 < t < 1,$

$$\frac{1}{\widetilde{q}} = \frac{1-t}{q} + \frac{t}{q^*}, \quad \ \frac{1}{\widetilde{\alpha}} = \frac{1-t}{\alpha} + \frac{t}{\alpha^*}$$

and H is a bounded subset of $W^1((L^q, l^p)_{c,0}^{\alpha})$ satisfying

$$\lim_{\rho \to \infty} \sup_{f \in H} \|f - f\chi_{J_0^{\rho}}\|_{q,p,\alpha} = 0.$$

Then H is a relatively compact subset of $(L^{\widetilde{q}}, l^p)^{\widetilde{\alpha}}$.

Proof. (a) By Lemma 4.2(b) there is a real number C such that for any $f \in H$,

$$||f||_{\widetilde{q},p,\widetilde{\alpha}} \leq C||f||_{q,p,\alpha}^{1-t}||\nabla f|||_{q,p,\alpha}^t.$$

Therefore

$$\sup_{f \in H} \|f\|_{\widetilde{q}, p, \widetilde{\alpha}} \le C \sup_{f \in H} \left[\|f\|_{q, p, \alpha} + \sum_{j=1}^{d} \left\| \frac{\partial f}{\partial x_{j}} \right\|_{q, p, \alpha} \right] < \infty.$$

Thus H is a bounded subset of $(L^{\widetilde{q}}, l^p)^{\widetilde{\alpha}}$.

(b) It is clear that $\tau_u f - f \in W^1((L^q, l^p)_{c,0}^{\alpha})$ for any (u, f) in $\mathbb{R}^d \times H$. Therefore, by Lemma 4.2(a), Proposition 3.2, Proposition 4.2 and Proposition 2.4, there are $C_1, C_2, C_3, C_4 > 0$ such that, for any $(u, f) \in \mathbb{R}^d \times H$,

$$\|\tau_{u}f - f\|_{\widetilde{q},p,\widetilde{\alpha}} \leq C_{1}\|\tau_{u}f - f\|_{q,p,\alpha}^{1-t}\|\tau_{u}f - f\|_{q^{*},p,\alpha^{*}}^{t}$$

$$\leq C_{2}|u|^{1-t}\||\nabla f|\|_{q,p,\alpha}^{1-t}\||\nabla (\tau_{u}f - f)|\|_{q,p,\alpha}^{t}$$

$$\leq C_{3}|u|^{1-t}\||\nabla f|\|_{q,p,\alpha}$$

$$\leq C_{4}|u|^{1-t}\left[\|f\|_{q,p,\alpha} + \sum_{i=1}^{d} \left\|\frac{\partial f}{\partial x_{i}}\right\|_{q,p,\alpha}\right].$$

Thus

$$\sup_{f \in H} \|\tau_u f - f\|_{\widetilde{q}, p, \widetilde{\alpha}} \le C_4 |u|^{1-t} \sup_{f \in H} \left[\|f\|_{q, p, \alpha} + \sum_{j=1}^d \left\| \frac{\partial f}{\partial x_j} \right\|_{q, p, \alpha} \right]$$

and

$$\lim_{u \to 0} \sup_{f \in H} \|\tau_u f - f\|_{\widetilde{q}, p, \widetilde{\alpha}} = 0.$$

(c) Let
$$\theta \in \mathcal{C}^{\infty}$$
 satisfy $\chi_{\mathbb{R}^d \setminus J_0^1} \leq \theta \leq \chi_{\mathbb{R}^d \setminus J_0^{1/2}}$ and

$$\theta_R(x) = \theta(x/R), \quad x \in \mathbb{R}^d, R > 0.$$

It is clear that, for any $(f, R) \in H \times (0, \infty)$,

$$|f\chi_{\mathbb{R}^d\setminus J_0^R}| \le |f\theta_R| \le |f\chi_{\mathbb{R}^d\setminus J_0^{R/2}}|$$

and therefore, by Lemma 4.2(a) and Proposition 4.2, there are $C_1, C_2, C_3 > 0$ not depending on (f, R) such that

$$\begin{split} \|f\chi_{\mathbb{R}^{d}\setminus J_{0}^{R}}\|_{\widetilde{q},p,\widetilde{\alpha}} &\leq C_{1} \|f\chi_{\mathbb{R}^{d}\setminus J_{0}^{R/2}}\|_{q,p,\alpha}^{1-t} \|f\theta_{R}\|_{q^{*},p,\alpha^{*}}^{t} \\ &\leq C_{1} \|f\chi_{\mathbb{R}^{d}\setminus J_{0}^{R/2}}\|_{q,p,\alpha}^{1-t} \|f\|_{q^{*},p,\alpha^{*}}^{t} \\ &\leq C_{2} \|f\chi_{\mathbb{R}^{d}\setminus J_{0}^{R/2}}\|_{q,p,\alpha}^{1-t} \|\nabla f\|_{q,p,\alpha}^{t}. \\ &\leq C_{3} \|f\chi_{\mathbb{R}^{d}\setminus J_{0}^{R/2}}\|_{q,p,\alpha}^{1-t} \Big[\|f\|_{q,p,\alpha} + \sum_{i=1}^{d} \left\|\frac{\partial f}{\partial x_{i}}\right\|_{q,p,\alpha} \Big]^{t}. \end{split}$$

Thus,

$$\sup_{f \in H} \|f\chi_{\mathbb{R}^d \setminus J_0^R}\|_{\widetilde{q}, p, \widetilde{\alpha}}$$

$$\leq C_3 \sup_{f \in H} \|f\chi_{\mathbb{R}^d \setminus J_0^{R/2}}\|_{q, p, \alpha}^{1-t} \sup_{f \in H} \left[\|f\|_{q, p, \alpha} + \sum_{i=1}^d \left\| \frac{\partial f}{\partial x_i} \right\|_{q, p, \alpha} \right]^t$$

and

$$\lim_{R\to\infty}\sup_{f\in H}\|f\chi_{\mathbb{R}^d\backslash J_0^R}\|_{\widetilde{q},p,\widetilde{\alpha}}=0.$$

An application of Proposition 2.7 ends the proof. ■

In the case where $q = \alpha$, the proposition above is read as follows.

PROPOSITION 4.4. Suppose that $1 < \alpha < \infty$, $1/\alpha^* = 1/\alpha - 1/d$, 0 < t < 1, $1/\widetilde{\alpha} = (1-t)/\alpha + t/\alpha^*$ and H is a bounded subset of $W^{1,\alpha}$ satisfying

$$\lim_{\rho \to \infty} \sup_{f \in H} \|f - f \chi_{J_0^{\rho}}\|_{\alpha} = 0.$$

Then H is a relatively compact subset of $L^{\tilde{\alpha}}$.

This result improves on Theorem 10 of [H-H] because it does not use the hypothesis $\lim_{R\to\infty}\sup_{f\in H}\||\nabla f|\chi_{\mathbb{R}^d\setminus J_0^R}\|_{\alpha}=0.$

Proposition 4.1 has the following generalization.

Proposition 4.5. Suppose that

- $1 \le q \le \alpha , <math>0 \le \gamma < 1/\alpha 1/p$, $1/q^* = 1/q \gamma$, $1/\alpha^* = 1/\alpha \gamma$.
- T is a bounded linear map of L^q into L^{q^*} such that, for any f in L^q with compact support K and any x in $\mathbb{R}^d \setminus K$,

$$|Tf(x)| \le A \int_{\mathbb{R}^d} \frac{|f(y)|}{|x-y|^{d(1-\gamma)}} dy$$

where A is a real number not depending on f and x.

Then T admits a unique bounded linear extension defined on $(L^q, l^p)_{c,0}^{\alpha}$.

Proof. (a) Let $f \in L^q \cap L^\alpha$. Using the notations in the proof of Proposition 4.1, for any (x,r) in $\mathbb{R}^d \times (0,\infty)$ we have

$$f = \sum_{n \ge 0} f_{x,r,n} \quad \text{in } L^q,$$

$$Tf = \sum_{n \ge 0} Tf_{x,r,n} \quad \text{in } L^{q^*};$$

furthermore,

$$||Tf_{x,r,n}||_{q^*} \le A \left\{ \int_{J_x^r} \left[\int_{T_{x,r,n}} \frac{|f(y)|}{|z - y|^{d(1 - \gamma)}} \, dy \right]^{q^*} dz \right\}, \quad n \ge 1,$$

$$||(Tf_{x,r,0})\chi_{J_x^r}||_{q^*} \le B ||f\chi_{J_x^{2r}}||_q$$

where B is a real number not depending on (f, x, r). An argument similar to the proof of Proposition 4.1 leads easily to

$$||Tf||_{q^*,p;\alpha^*} \le C||f||_{q,p;\alpha}$$

where C is a real number not depending on f.

(b) Notice that $(L^q, l^p)_{c,0}^{\alpha}$ is the closure of $L^q \cap L^{\alpha}$ in $(L^q, l^p)^{\alpha}$. Therefore the result follows from (a).

REMARK 4.3. Let S denote the Schwartz space of test functions on \mathbb{R}^d and let $j \in \{1, \ldots, d\}$. It is well known (see [Gr]) that the Riesz transform R_j defined by

$$R_j f(x) = \lim_{\varepsilon \to 0^+} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{(d+1)/2}} \int_{|x-y| \ge \varepsilon} f(y) \frac{x_j - y_j}{|x-y|^{d+1}} \, dy,$$
$$x = (x_1, \dots, x_d) \in \mathbb{R}^d, f \in \mathcal{S}.$$

extends to a bounded linear operator on L^q for $1 < q < \infty$. Furthermore, for any f in L^q with compact support K and any x in $\mathbb{R}^d \setminus K$ we have

$$|R_j f(x)| \le \frac{\Gamma(\frac{d+1}{2})}{\pi^{(d+1)/2}} \int_{\mathbb{R}^d} \frac{|f(y)|}{|x-y|^d} dy.$$

Therefore, as a particular case of Proposition 4.5, we have the following result.

COROLLARY 4.4. Suppose $1 < q \le \alpha < p \le \infty$. Then the Riesz transforms R_j $(j \in \{1, ..., d\})$ extend to bounded linear operators on $(L^q, l^p)_{c,0}^{\alpha}$.

5. Application. We suppose $d \geq 3$.

(a) Let $\varphi \in \mathcal{D}$. The boundedness properties of the operators $I_{1/d}$ and R_j $(j \in \{1, \ldots, d\})$ yield

$$\phi_j = R_j[I_{1/d}(\varphi)] \in \bigcap_{s > d/(d-1)} L^s, \quad j \in \{1, \dots, d\}.$$

As 2 > d/(d-1), we can use the Fourier transform to obtain $c_d \sum_{j=1}^d \partial \phi_j / \partial x_j = \varphi$ where c_d is a real number depending only on d (for a similar formula see [St, p. 125].

(b) Let $1 < q \le \alpha < p \le \infty$ with $1/p < 1/\alpha - 1/d$ and let $f \in (L^q, l^p)_{c,0}^{\alpha}$. We are interested in the equation

Fix an integer $n \geq 1$ and put $f_n = \rho_n * (\omega_n f)$ where ρ_n and ω_n are as in Notations 2.2. As $f_n \in \mathcal{D}$, the result in (a) implies that the equation

admits a solution $F_n = (F_{n_i})_{1 \le i \le d}$ with

$$F_{n_j} = c_d R_j [I_{1/d} f_n] \in \bigcap_{s > d/(d-1)} L^s, \quad j \in \{1, \dots, d\}.$$

Using Proposition 2.3, Proposition 4.1, Corollary 4.1 and Corollary 4.4, we find that

- $(f_n)_{n\geq 1}$ converges to f in $(L^q, l^p)_{c,0}^{\alpha}$, for any $j\in\{1,\ldots,d\}$, $(F_{nj})_{n\geq 1}$ converges to $F_j=c_dR_j[I_{1/d}f]$ in $(L^{q^*}, l^p)_{a,0}^{\alpha^*},$

with $1/q^* = 1/q - 1/d$ and $1/\alpha^* = 1/\alpha - 1/d$.

Therefore, for any φ in \mathcal{D} ,

$$\int_{\mathbb{R}^d} \operatorname{div} F(x)\varphi(x) \, dx = -\sum_{j=1}^d \int_{\mathbb{R}^d} F_j(x) \frac{\partial \varphi}{\partial x_j}(x) \, dx$$

$$= \lim_{n \to \infty} \left[-\sum_{j=1}^d \int_{\mathbb{R}^d} F_{nj}(x) \frac{\partial \varphi}{\partial x_j}(x) \, dx \right] = \lim_{n \to \infty} \int_{\mathbb{R}^d} \left(\sum_{j=1}^d \frac{\partial F_{nj}}{\partial x_j}(x) \right) \varphi(x) \, dx$$

$$= \lim_{n \to \infty} \int_{\mathbb{R}^d} f_n(x)\varphi(x) \, dx = \int_{\mathbb{R}^d} f(x)\varphi(x) \, dx,$$

that is, equation (E_f) admits the solution $F = (F_j)_{1 \leq j \leq d}$ in $[(L^{q^*}, l^p)_{c,0}^{\alpha^*}]^d$.

It is worth noting the link between the above result and Proposition 1.1 in the light of Proposition 1.2.

References

- [Br] H. Brezis, Analyse fonctionnelle; théorie et applications, Masson, Paris, 1987.
- [C-P] G. Cupini and R. Petti, Morrey space and local regularity of minimizers of variational integrals, Rend. Mat. 21 (2001), 121–141.
- D. Douyon, Intégrale fractionnaire sur $M^{p,\alpha}(\mathbb{R}^d)$ et applications, Thèse, Univer-[Do] sité de Bamako, 2010.
- [D-F] D. Douyon and I. Fofana, A Sobolev inequality for functions with locally bounded varation in \mathbb{R}^d , Math. Ann. Afr. 1 (2010), 49–67.
- D. Douyon, I. Fofana and B. A. Kpata, Some properties of Radon measures having their Riesz potential in a Lebesgue space, preprint.

- [F-L-Y] D. Fan, S. Lu and D. Yang, Regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with VMO coefficients, Georgian Math. J. 5 (1998), 425–440.
- [Fe1] H. G. Feichtinger, Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens, C. R. Acad. Sci. Paris 290 (1980), 791–794.
- [Fe2] H. G. Feichtinger, Banach spaces of distributions of Wiener's type and interpolation, in: Functional Analysis and Approximation (Oberwolfach, 1980), Birkhäuser, 1981, 153–165.
- [F-F-K] J. Feuto, I. Fofana and K. Koua, Weighted norm inequalities for a maximal operator in some subspace of amalgams, Canad. Math. Bull. 53 (2010), 263–277.
- [Fo1] I. Fofana, Étude d'une classe d'espaces de fonctions contenant les espaces de Lorentz, Afrika Mat. 1 (1988), 29–50.
- [Fo2] I. Fofana, Continuité de l'intégrale fractionnaire et espace $(L^q, l^p)^{\alpha}$, C. R. Acad. Sci. Paris 308 (1989), 525–527.
- [Fo3] I. Fofana, Espace $(L^q, l^p)^{\alpha}(\mathbb{R}^d, n)$: espace de fonctions à moyenne fractionnaire intégrales, Thèse, Univ. de Cocody, 1995.
- [Fo4] I. Fofana, Espace $(L^q, l^p)^{\alpha}$ et continuité de l'opérateur maximal fractionnaire de Hardy-Littlewood, Afrika Mat. 12 (2001), 23–37.
- [F-S] J. J. F. Fournier and J. Stewart, Amalgams of L^p and l^q , Bull. Amer. Math. Soc. 13 (1985), 1–22.
- [Gr] L. Grafakos, Classical Fourier Analysis, Springer, 2008.
- [H-H] H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem, Expo. Math. 28 (2010), 385–394.
- [Ho] F. Holland, Harmonic analysis on amalgams of L^p and l^q , J. London Math. Soc. (2) 10 (1975), 295–305.
- [K-F-K] B. A. Kpata, I. Fofana and K. Koua, Necessary condition for measures which are (L^q, L^p) multipliers, Ann. Math. Blaise Pascal 16 (2009), 339–353.
- [K-J-F] A. Kufner, O. John and S. Fučik, Function Spaces, Noordhoff, Leiden, and Academia, Praha, 1977.
- [P-T] N. C. Phuc and M. Torres, Characterizations of the existence and removable singularities of divergence-measure vector fields, Indiana Univ. Math. J. 57 (2008), 1573–1597.
- [S-F] M. Sanogo and I. Fofana, Fourier transform and compactness in $(L^1, l^p)^{\alpha}$ and $M^{p,\alpha}$ spaces, Comm. Math. Anal. 11 (2011), 139–153.
- [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
- [Wi1] N. Wiener, On the representation of functions by trigonometrical integrals, Math. Z. 24 (1926), 575–616.
- [Wi2] N. Wiener, Tauberian theorems, Ann. of Math. 33 (1932), 1–100.

Mouhamadou Dosso, Ibrahim Fofana UFR de Mathématiques et Informatique Université de Cocody 22 BP 582 Abidjan, Côte d'Ivoire

E-mail: mouhamadoudoss@yahoo.fr fofana_ib_math_ab@yahoo.fr

Moumine Sanogo D.E.R. de Mathématiques et Informatique Université de Bamako Bamako, Mali E-mail: sanogomoumine@yahoo.fr

od 20 11 2011