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On some subspaces of Morrey—Sobolev spaces
and boundedness of Riesz integrals
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Abstract. For 1 < g < a <p < oo, (L%17)* is a complex Banach space which is
continuously included in the Wiener amalgam space (L?,[P) and contains the Lebesgue
space L.

We study the closure (L?,17)g in (L?,17)* of the space D of test functions (infinitely
differentiable and with compact support in ]Rd) and obtain norm inequalities for Riesz
potential operators and Riesz transforms in these spaces. We also introduce the Sobolev
type space W' ((L?,1P)®) (a subspace of a Morrey-Sobolev space, but a superspace of the
classical Sobolev space Wl”") and obtain in it Sobolev inequalities and a Kondrashov—
Rellich compactness theorem.

1. Introduction. Let d be a fixed positive integer. The space R? is
endowed with its usual scalar product (z,§) — x -, Euclidean norm |- | and
Lebesgue measure.

For 1 < p < oo we denote by || ||, the usual norm on the classical
Lebesgue space LP = LP(R?) and by p’ the conjugate of p (1/p+1/p' = 1).

Let I, (0 < v < 1) be the Riesz potential operator defined by

Lif(z) =\ |z —y/"0"V f(y) dy.
Rd
N. C. Phuc and M. Torres [P-T] have obtained a result which contains the
following assertion:

PROPOSITION 1.1. Let d/(d—1) < a* < oo and f be a non-negative
locally integrable function on R®. The following assertions are equivalent:

(i) The equation div F = f has a solution F in (L)<,

(i) Iqf € L.
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In the proposition below we recall the classical Hardy-Littlewood—Sobo-
lev inequality (see [St]) and a result contained in [D-F-K] [see Section 2 for
definition of (L,1P)%].

PROPOSITION 1.2. Let 0 < v < 1, 1/(1 —7) < &* < o0 and 1/a =
1/a* +~. Then

L c{feLi.|I,feL}C closure of L* in (L',1°7).

The classical Sobolev spaces W™ = W™*(R%) (m € N*, a € [1,0])
have offered a fruitful framework for the study of partial differential equa-
tions (see [Br]). The density of smooth functions in L* (for a < 00), Sobolev—
Poincaré inequalities and the Kondrashov—Rellich compactness theorem are
among the most important tools in this field.

In view of Propositions and it is worth:

e introducing Sobolev type spaces W!((L4,1P)®) for which the spaces
(L4,1P)™ will take the place of the Lebesgue spaces L® in the definition
of Whe,

e cxamining the existence in these new spaces of analogues for classical
tools useful in the study of partial differential equations.

The paper deals with these questions. Section 2 contains notations,
definitions and some known results. In Section 3 we introduce the space
W((L4,1P)) and study the closure in (L9, 1P)® of the space C* = C>(RY)
of infinitely differentiable real functions on R?. Section 4 is devoted to the
boundedness of Riesz potential operators and Riesz transforms on (L9, [P),
and analogues of the Sobolev inequality and of the Kondrashov—Rellich com-
pactness theorem in the set up of W1 ((L4,1P)®). In Section 5 we prove an
existence theorem for the equation div F' = f with data f € (L4,[P)“.

2. Preliminaries

NOTATIONS 2.1. For any subset E of R?, yg denotes its characteristic
function and |E| its Lebesgue measure.

Let r be a positive real number. We set

d
IgZH[ij,(k?j‘}'l)T‘), k:(klﬂ“"kd) GZd’
j=1
d
Jh = H(x] —r/2,xj+71/2), = (x1,...,2q9) € R,
j=1
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DEFINITION 2.1. Let 1 < ¢,p < oo. For any f in L = L} _(RY) we set
» 1/p |
[ Uil e < oo,
el fllgp = q  rezd _
sup [ fxurllq if p = oo,
z€R4

and we define
(L9, 1) = {f € Lige | 1 fllgp < 00}

The Wiener amalgam spaces (L%,17) (1 < ¢q,p < o0) were introduced in
1926 by Norbert Wiener who considered the special cases (L', 1?), (L?,1%),
(L, 1Y) and (LY, 1) (see [Wil] and [Wi2]). In 1975 Finbar Holland under-
took the first systematic study of these spaces (see [Hol). Since then, much
work has been dedicated to them (see the survey paper [F-S| and the refer-
ences therein) and to their generalizations introduced by Hans Feichtinger
in 1980 (see [Fel], [Fe2]).

Let us recall the following results (see [Ho| and [Fo3]).

ProrosiTiON 2.1. Let 1 < q,p < o0.

(a) ((L9,1P),1]| |lq,p) s a Banach space and (L9,17) = L9.
(b) If q,p < oo then there exist real numbers A and B such that

/ /
Al flap <L § [ § 1@y a2} < B0 £l

Rd J7

forall f € LL ,r>0.

loc”

DEFINITION 2.2. Let 1 < ¢ < a <p < oco. For any f in LllOC we set

Hf”q,p,a = Slilg pd1/e=1/4) r||f||q7p’
'S

p/q 1/p
£l = supr? @t/ [ p)lrdy| ™ e} it p < oo,
r>0
Rd Jg
and we define
(L%, )" = {f € Lie | | fllgpa < o0}

The spaces (L%,[P)* were introduced in 1988 by Ibrahim Fofana (see
[FoI]-[Eo3]). Results about multipliers and Fourier multipliers between Le-
besgue spaces and continuity properties of fractional maximal operators and

Riesz potential operators were obtained in this framework (see [Fo3|, [Fo4],
[F-F-K], [D-F]). We recall some of their properties below (see [Fo3]).

PROPOSITION 2.2. Let1 < g<a <p < oo.

(a) (L9, )%, |lg.p.c) is @ Banach space.
() | llg.p.a @8 a norm equivalent to || ||gp.a on (L9,1P)* if p < oo.
(©) Iflgpa < Iflla for f € Li,,, and therefore L™ C (L%, 1P)™.

loc”
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(d) (L9,1P)* = L™ when « € {q,p}.
(e) If ¢ < a < p then there exists a real number C' such that

Ifllpa < Clflaroos  f € Line,

where
1£15 2 0o = sup Al{z € R [ |f(2)] > A}/
A>0

and therefore the weak-Lebesgue space L+ = {f € Li | | fll4.c
< oo} is contained in (L9, 1P)%.

(f) (L9, P)* c (L9, 7)™ if 1 < q1 < q, and (L9,IP)* C (L9,1P)> if
P <p1 < oo.

Let us recall that the convolution product f*g of f, g in Lll0 . is given by

the formula

Frgx)=\ fla—ygy)dy

R4
at all points z € R? where this integral is defined. It satisfies the following
Young inequality (see [Fo3]).
PROPOSITION 2.3.

(a) Let 1 < g1 <og <p1 <00, 1< g <ag<py<oo, 1/p+1/pa—1=
1/p>0,1/a1+1/ag—1=1/a and 1/q1 + 1/q2 — 1 = 1/q. Then
for any fi in (L9, 1P1)* and fo in (L92,[P2)%2,

| f1 % fa

where C' is a real number not depending on f1 and fs.
(b) In particular if 1 < ¢ < a < p < oo then for any (¢, f) in L' x
(L9,17)%,

q,p,c < CHfIHtILPLOq Hf2Hq27p27042

e * fllgp.a < Cllelll fllgp.a

where C' is a real number not depending on f and p.

We recall that in the theory of Sobolev spaces, approximation of an
element of a Lebesgue space by elements of C*° is an important device based
on the continuity of the convolution product (Young inequality) and of the
translation operator 7, with translation vector u € R%, defined by

(Tuf)(x) = f($ - U), T e Rda e Llloc'
It is easy to verify the following assertion.

PROPOSITION 2.4. Let1l < q < a <p<oo. Then (L%, IP)* is translation
invariant and there is a real number C such that

ITufllgpe < Cllfllgpa u€E Rda fe Llloc-
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However an analogue of the following property of Lebesgue spaces:

lim || 7,f — flla =0, fe€L*1<a< o0,
u—0

is not true in (L%,1P)* when 1 < ¢ < a < p < o0. So, I. Fofana [Fo3| has
considered some special subspaces of (L4,[P)* defined below.

DEFINITION 2.3. For 1 < g < a <p < oo we set

q P\ — q [P\« i _ —
(L9072 = {f € (L40) | lim 7 f = fllgpa = 0.

(Lo,w)g = {1 & (L,m) | tim | plloa =0,
(L9,1P)2 = (L9, 1P)> N (L9, 1P)g.

Let us fix some notations.
NOTATIONS 2.2.

e pis a fixed element of C*°, non-negative, with support included in the
unit ball B(0;1) = {z € R?| |z| < 1} and satisfying {3, p(z) dz = 1.
pm(z) = mép(mz), r € RY, m € N*.

w is a fixed element of C*° satisfying X <w< X2

wm () = w(x/m), r € RY, m € N*.

The following results are contained in [Fo3].

PROPOSITION 2.5. Let 1 <g<a<p< 0.
(a) (L9,1P)2 is a closed subspace of (L4,1P)%.

(b) If &« < 0o then L™ C (L%,1P)2.

(c) (L9,IP)¢ = L' % (L9,1P)% = L' * (L4,1P)°.

(d) imyy—soo [|[pm * f = fllgpa = 0 for f in (L9,IP)S, where py, is defined
as in Notations

We list below some useful properties of (L?,1P)§ and (L, 17)2.

PROPOSITION 2.6. Letl <g<a<p<oo.
(a) (L,IP)§ and (L%,1P)¢q are closed subspaces of (L4, 1P)%.
(b) limp o [[(fwm) * pm — fllgpa = 0 for f € (L94,1P)2, where wy, and
pm are defined as in Notations 2.2}
Proof. (a) It is clear that (L7, 1P)g and (LY, IP), are subspaces of (L4, IP).
Suppose that (fy)n>1 is a sequence of elements of (L7,[P)§ converging
in (L9,1P)* to some f. Let € > 0. For any real R > 0 we have

|f - fXJ§| < |f - fn| + |fn - anJ§| + |(f - fn)XJé*‘
Szlf_fn’"i_’fn_fnx(]é?’v n > 1.
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There are n, > 1 and R, > 0 such that

1f = frcllgpa < €/3 and | fn. — fnaXJé*qu,p,a <e/3, RZ=R,
and therefore
Hf*fXJé*Hq,p,a <& R>R..
Thus f € (L9,1P)§. This means that (L?,1P)f is closed in (L9,IP)*. Fur-
thermore, by Proposition [2.5(a), (L%,IP)¢ is also closed in (L%,[P)*. Thus
(L9,17) is also closed.
(b) Let f be in (L9, IP)g,. We have
1f = (fom) * pmllgpa < |f = F*pmllgpa+ 1(f = fwm) * pmllgpa, m =1,
and therefore, by Proposition (b),

I = (fom) * pmllgpa < If = F* pmllgpa +1F = fomllgpa,  m =1,
It is clear that
|f = fwml <|f = fxgpl, m>1,
and so
If = (fom) * pmllgpa < If = F* pmllopa +1F = Fxspllopa,  m=1,
which implies that limy, o || f — (fwm) * pmllgpa =0. =
Notice that Propositions [2.5(d) and [2.6(b) together with Proposi-
tion 2.2{(c) imply that in (L7, 1P)*:
o (L9,IP)% is the closure of (L9,IP)3 NC>,
o (L%,1P)2 is the closure of D (and also of L* if a@ < o0).

It is worth recalling the following extension of the well known Kolmogo-
rov—Riesz—Tamarkin compactness theorem (see [S-FJ):

PROPOSITION 2.7. Let 1 < g < a < p < 0o with a < co. Any closed
subset H of (L1,IP)* satisfying the following conditions:

(1) supsep [[fllgp,a < o0,
(1) T 050D gert 1 — Tufllgga = 0
(iii) impg—yoo SUPfepy [|f — fXJ(f’/Hq,p,a =0,

is compact in (L2,1P)“.
3. Sobolev spaces. We fix ¢,a,p € [1,00] such that ¢ < a < p and

q < Q.

DEFINITION 3.1. Let E be one of the spaces (L9,IP)*, (L9,IP)S or
(L9,1P)¢. We define

WHE)={f€E|df/0x; € Efor j € {1,...,d}}
where 0f/0x; = D; f stands for the distributional partial derivative.
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For any f in W((L,1P)%) we set

o
I lw (o) = I Fllapa+ > Fr
= 19T

a.p
We point out that:

o W1((L4,IP)¥) is a subspace of a more general Sobolev type space in-
troduced by Domion Douyon in his thesis ([Do]).

o WI((L%,1%)%) is the Morrey-Sobolev space W 1(¢:d(1-4/2))(R%) consi-
dered by G. Cupini and R. Petti and used in the study of the regularity
of minimizers for functionals ([C-P]) and solutions of elliptic equations
(E=L-Y]).

It is easy to verify

ProrosiTiON 3.1.

(a) WL((L9,1P)*) is a subspace of VVli)Cq ={feLl | fewWhi(Q) for
any bounded open subset 2 of R},

(b) (WYE), | lw((Lawyey) is a Banach space if E is any of the spaces
(L2, 1P)*, (L9,1P)e and (L9,1P)2,.

Let us recall the following well known result (see [K-J-FJ).

LEMMA 3.2. Suppose that f € LL. and D;jf € L. for some j €
{1,...,d}. Then

pm * f €C, Dj(pm * f) = (Djpm) * [ = pm * (Djf), meN,
DP(pm # f) = (D’pm) % f,  (8,m) € N* x N,
(om * f = Fxogllq = 0= lim [{[Dj(pm * f) = DjfIx e,

(x,r) € R? x (0, 00),

lim ||
m—r0o0

where p,, is as in Notations[2.2

From the lemma above and the proof of Proposition IX in [Br] we readily
obtain the following result.

LEMMA 3.3. Suppose that f € Wﬁ)’g. Then

| It (w) = F)|" dy

Jr )

<[u?\ \ [Vf(y—tuw)?dydt, (u,z,7) € R x R x (0,00).
0Jr
The lemma above leads to the following property of our Sobolev type
space.
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PROPOSITION 3.2. There exists a real number C such that
17uf = fllapa < Clulll [V flllgpas — uw€RY f e WH(LLP)®),
and therefore W((L9,1P)*) C (L4,1P)2.
Proof. Suppose that p < oo, f € W((L9,1P)?), u € R? and r € (0,00).
From Lemma [3.3] we get

1= L[ imt )~ s ay] ae) "

Rd JE

: p/q 1/p
< \u|{§ H S ]Vf(y—tu)\qdydt} da;} .
Rd 0JL

Therefore, by the Minkowski inequality for integrals (see [St, p. 271])

1< |u|{§[§ (§ 19y - tayray) " aa] " ar} .
0R

d];

From the inequality above and Proposition we obtain
1

1/
1< Colul{J U191 @/ /o=1o0a g
0
= Calul [ 4] lgpar ™o/ 1/2)

where (' is a real number not depending on f, u and r. Therefore, by
Proposition [2.2b) we have

I7uf = Fllgpe < Clul [V

where C is a real number not depending on f and u.
In the case p = oo a similar proof works. m

From Propositions [2.5 and [3.2] we deduce the following result.

q’p7a

PROPOSITION 3.3. Suppose that ¢ < co. Then the following assertions

are equivalent:
(i) f e (L9P)e.
(il) f = limy—00 pm * f in (L9, 1P)* where py, is as in Notations .

(iii) f belongs to the closure in (L9,IP)* of

Clawye = {9 €C™ | Dg € (L9,1P) for all B € N},

Proof. (i)=(ii) by Proposition [2.5(d).

Suppose that (ii) is true. Fix a positive integer m and 8 € N¢. By
Lemma pm * f € C® and DP(py, x f) = (DPpm) * f. As DPp,, € L*,
Proposition (b) shows that D?(p,, * f) € (L9,IP)®. Therefore p,, * f €
ClLa p)e- Furthermore limy, o0 lom * f — fllgpa = 0 (Proposition (d))
Thus (ii)=-(iii).
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o0
(La,ip)e
converging to f in (L%,IP)*. Tt is clear that any g, (m € N*) belongs to
WY((L4,1P)). Therefore, from Proposition [3.2] we have
gm € (LYY, m e N™.

(L9,1P)% being closed in (LY, [P)* (Proposition [2.5(a)), f clearly belongs to
(L9,1P)%. Thus (iii)=(i). =

Proposition leads to the following characterization of W((L9,1P)®).

PROPOSITION 3.4. Suppose that f € (L4,1P)*. Then the following asser-
tions are equivalent:

(i) f € WH(L9,P)").

(ii) There exists a real number C such that
17uf = fllgpa < Clul,  uweR?

Proof. The implication (i)=-(ii) follows readily from Proposition

Conversely, suppose that (ii) is true. Denote by {e; | 1 < j < d} the
canonical basis of R?.

(a) Let 2 be any bounded open subset of R? and @ a closed and bounded
cube in R? such that 2 C Q. We have

(ruf = Fxelle < 1(7uf = Pxells < 2Y71Q1Y Ym0 f = fllapa
<2V QM Vo), weR?,

Suppose that (iii) is true: there exists a sequence (gm)m>1 C C

and
|57 (7ue, f = Pxells < 27|QIVYeC, G e{l,....d}, s € (0,00).
Hence {s™!(7se,f — f)xo | s € (0,00), j € {1,...,d}} is a bounded subset
of L4. Therefore there exists a sequence (sp,)m>1 in (0,00) such that
lim s, =0,
m—0o0
for any j € {1,...,d}, (s, (Tope, f — f)X2)m>1 weakly converges
in L? to some g;.
Notice that, for any j € {1,...,d} and any ¢ € C* with support in (2,
S o(x)gj(z) dr = lgn S o(x)s f(x — smej) — f(z)] da
R4 " Ra
= Jim | s lo(o 4 smey) — @@ f () do

m—00
R4

dp
=—\ —f(x)dx.
de 8:5j

That is, gj = 0f/0x; in 2 for j € {1,...,d}. Therefore f € VVli)’g.
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(b) Suppose that p = co. Let R be a bounded and closed cube, 0 < € < 1,
Q = (14 €)R the cube with side length (1 + €)|R|"/¢ and the same center
as R, and 2 = Q the interior of Q.
Using the notations in (a) we have, for any j € {1,...,d} and any p € C*®
with support in {2,
of
—(x)p(x)dx
1§ e @ete)

= i | {5117 = sme) — F@)pa) da

m—00
Rd

<limsup [|(Ts,ne, f — F)X@lqllellgsm

m—r o0

< limsup HTsmejf - qu,oo,a|Q‘l/qil/aH‘P”q’S;nl
m—0o0

< QM lelly,

and so

' a% H
Letting € go to zero, we get, for any j € {1,...,d},

‘ S C‘Q|l/q_1/a — (1 + E)d(l/q_l/a)C|R’1/q_1/a.
q

< C|R|MaV/e,

of
Thus [|0f /02| g00e < C for j € {1,...,d}.

(c) Suppose that p < co. Let (r,m) be any element of (0,00) x N*. Set
K, ={keZ| |kl <n},
Q={r=(zj)icj<d | —(n+1)r <z; < (n+2)rfor 1 <j<d},

and 2 = Q. For any k € K,,, let @i, € Cg° with support in I} and ||px |y < 1.
Using the notations in (a) we have, for |s,| < mingeg, d(supp px,0I}) and

je{l,...,d},

[0 1§ 57 ey~ Dl@)ou(@) da

keK, Rd

m 1/p

_ 1/p
<[ e f = Dxgllalionlle ]
keKn
-1 p 1/p
< st | 0 1 unen S = Pxag ]
keKy,

< ngHTsmejf —f d(1/a=1/e) < cpd(1/a=1/a)

g,p,al
and therefore
S gxfpk (z)dx

p11/p
} < CriQ/a=1/a),
Rn J

>

keKn,
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Thus
/p

{ HXV } < CriQ/a=1/a),

ke K, 0
Letting n go to infinity, we obtain

| < opaa/a-1/a),
r al‘] q,p

Finally,

’af <C, j=A{1,...,d}. =

8.Tj 4.0,

W((L9, [P)eo) has the following approximation property.
PROPOSITION 3.5. We have
Hm || f = (fwm) * pmllwrragmey =0, f € WH(L9P)20)
m—0oQ
where pp, and wy, are as in Notations[2.2]

Proof. Let f € Wl((Lq,lp)gO). By Proposition ( )y ((fwm) * pm)m>1

converges to f in (L?,IP)*. For any (j,m) € {1,. x N* we have
0 [ of Wi
aixj((fwm) * ,Om) = <6.’ijm> * P + <f 8.%'j > * Py
SO
af 0
‘ oz, T%((fwm) * Prm) .
of  of

0 0
28] )
xj Oxj apo ;

Owm

and therefore, by Proposition (b),

+

q7p7a

af 0
' (973:] - T%((fwm) * Prm) o
ﬁ _ ﬁ + ﬁ e ”f
Oz;  Ox; q,p, d; RN a,p, 0xj || o XagrmJg lla.e:
Thus of 5
n}gnoo‘ 8733] B T%((fwm) * pm) e =0.m

Notice that, by the result above, W'((L9,17)2,) is the closure in
W((L9,1P)*) of D and therefore of W if o < oo.
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4. Boundedness of singular integrals. In [F-L-Y] several results on
the boundedness of singular integrals in Morrey spaces were given. In this
section we shall establish an analoguous result in (L%, [P)* for Riesz potential
operators and deduce from it Sobolev type inequalities.

PROPOSITION 4.1. Suppose thatl < g<a<p<oo,0<vy<1/a—1/p,
1/¢* = 1/q —v and 1/a* = 1/a — . Then, for any f in (L1,IP)*, I, f
belongs to (LY, 1) and || I, f|lg* p.a* < Clfllgp.a where C is a real number
not depending on f.

Proof. (a) Let f € (L9,IP)* be non-negative and (z,7) € R% x (0, c0).

We have
f = Z fz,r,n

n>0

where

. n+1 n
f:v,?",O = fXJ%”‘a f:r,r,n = fXT,x,r,n with Tx,r,n = JmQ " \ J;g " forn > 1.
f being non-negative, the monotone convergence theorem gives
I’yf = Z I'yfx,r,n-
n>0

By the Hardy—Littlewood—Sobolev theorem for fractional integration there
is a real number A not depending on f or r such that

||I’yfz,r,0 g < Afo,r,O q= AHfXJ%”Hq-
Therefore
I )Xl <Ny ferm)xagller
n>0
fy) R R
<At S5 (] ) o
n>1hr N,

Notice that for n > 1, z € JZ and y € J2"'7\ J2'", we have

2% (2" —1)r _ 2" lp
oy z BT T > 20
2 2 2 2

Thus we get
9d(1=v) .d/q*

W S f(y)dy

Ta:,r,n

Izl < Allfxszlle + )

n>1

2d(1—) (24 —1)1-1/a
< Allfxzrllq +2 ;lelijgnﬂrllq
n=z

< Byooall fllgooar®/11/)
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with

nd(1l/a—
n212 (1/a—7)

2d(1—7) 21 = 1) 1oa/g-1/a)
qu,a:[A+2 72}2 q < 00

because 1/a —v > 1/a—~v—1/p > 0.

(b) Let f € (L%,I?)~. By Proposition 2.2(f), f € (L%,1°°)%, that is,
g,00,00 < 00

Since |f| is a non-negative element of (L%, [P)%, by the results in (a) we
have

I (1 Dxszlly < Boooallflgocar®™ @) < oo, (z,7) € R x (0, 00).

I/

This implies that for almost every z € R%, L,(|f])(2) < oo and therefore
L f(2) = \ga wﬁ% dy converges and satisfies |I, f(2)| < I,(|f])(2).
Consequently, for any (z,7) € R% x (0, 00) we have

(2d _ 1)1—1/q
WHfXJgnHqu,

) Iy f)xg

o < Al fxgzllg +22070

n>1

(%) Ny )Xy | fllgoo.ar@/a=1/2)

Now, (#*) ends the proof for p = co. In the case p < oo, (%) implies

q* < Bq,oo,a

1/]7 1/p
(S Deslel de) ™ < A(§ il do)
R4 Rd
2d(1— (27— 1)!-1/a 1/p
+2207 Y W( VILEX gmsr gl dm)
n> R4
< Bq,p,oc Hf| q,p7a7'd(1/q+1/p71/a)
with

2d(1 24— 1)V
Bypa = [A+2 ( ’Y)ZW(]-/OL_]-/I)_’Y)]2 (1/g+1/p=1/a) ~ o
n>1

because 1/a —1/p —~v > 0.
Thus, by Proposition [2.2|b),

||Ivf||q*,p,oc* < CHqu,p»Oé
where C' is a real number not depending on f. m
The proposition above has the following consequence.

COROLLARY 4.1. Suppose that 1 <¢g<a<p<oo,0<~vy<1l/a—1/p,
1/¢* = 1/qg— v and 1/a* = 1/a —~. Then for any f in (L9,I1P)2q, I, f
belongs to (Lq*,lp)g‘;).
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Proof. Let f € (L9,17)2. There is a sequence (gn)n>1 C L converging
to f in (L9,1P)“. By the Hardy—Littlewood—Sobolev inequality and Propo-
sition we have

Lg, €L, n>1,

and

0= lim [[1;(9n = f)llg*pa = lim |[Iygn — I

Therefore I, f € (LQ*,lp)gB. .
The results above give the following Sobolev inequality.

PROPOSITION 4.2. Suppose that 1 < g < a<p<oo,1/d<1/a—1/p,
1/q* =1/q—1/d and 1/o* = 1/ac—1/d. Then W*((L,1P)%,) C (Lq*,lp)g‘;)

and there is a real number C such that

1l par < CUIV S llgpar — f€WHLLIP)E).
Proof. (a) Let ¢ € D. It is known (see [St]) that

d
Iy
o] < A;h/d( 67:@ >

where A is a real number not depending on . Therefore, by Proposition

lellg par <

8%

q’p7a

where C is a real number not dependlng on .

(b) Let f e W'((L%1P)%,). For any integer m > 1, we set @, =
(fwm) * pm where pp, and wy, are defined as in Notations Then (¢m)m>1
is a sequence of elements of D which converges to f in W!((L%,1P)%) (see
Proposition and therefore is a Cauchy sequence. Furthermore, by the
result in (a) we have

d

cpar SC Y
j=1

Thus (¢m)m>1 is a Cauchy sequence and therefore converges in (L9, (P)*"
to an element which is nothing other than f. So f € (L9",IP)*" and

0Ym  Opn

m,n € N*,
al'j a:Ej ’ ’

q7p7a

lom — ©n

OPm

. < li
C lim oz,

m— 00

£l p,

7j=1 9P,

-3 3

Zjllgp,a
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As in the classical case, from the above Sobolev inequality we may deduce
a Kondrashov—Rellich compactness theorem in W*((L4,IP)). For its proof
we shall need the following results.

LEMMA 4.2.

(a) Suppose that 1 <g<a<p<oo, 1 <g*<a*<p*<o0,0<t<1,

1 1—1t t 1 1—-1t t 1 1-—t t
= +

q ¢ ¢ a o o p p pt
Then there exists a real C such that

£ 5.8 < Clf lgpal Flg prars— F € L.
(b) Suppose that 1 < ¢ < a<p < oo, 1/¢* =1/qg—1/d >0, 1/a* =
1a—1/d,0<t<1,

1 1-t t 1 1-t¢ t
S="—4— and ==—+—.

q q q* « Q a*

Then there exists a real number C' such that

Hf”q,pa = CHqu,p oz” |Vf’ Ht,p a f € Wl((anlp)g,O)'
Proof. (a) Let f € L] .
(i) From the Hélder inequality we obtain, for any (z,7) € R? x (0, 00),
I fxarllg < I fxar ||;_t’|fXJ; ”Z*
and therefore

R P
< AT I gy ) T T g

(ii) First case: p = p* = oo. The result in (i) immediately yields
1 lgooa < I1flgoe.all Fllge coass

that is,
£ lg5a < Iflgpall Fllgr pr ar

(iii) Second case: p* < co = p. Using the result obtained in (i) we get

rdUEVTUD| fxe g

< Hf”qooa[ d(l/a*_l/q*_l/p*)HfXJ;Hq*]ta T Rda r> Oa

and therefore, as p = p*t !

Td(l/a_l/fi—l/ﬁ){ S | fxr HZde}l/p
Rd

* * D 1/5
g P N P S
R4

< o0,
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that is,

~ ~ ~ 1/p
rd(l/a—l/q—l/m{s ||fXJ£||§dx} &
R4

p* t/p*
< S ot ar ™ T Y g da w0,

Rd

Taking the supremum with respect to r > 0, we obtain

1 lllz7a < 1 fllas.

In the case p < co = p*, the inequality above is obtained by a similar
argument.

(iv) Third case: p < oo and p* < co. By the result in (i) and the Holder
inequality we get

~ ~ ~ 1/p
PZ DL P}
R4

* ke
7p Pe

(1-t)/p
< {pamt e e [ fxug do |
R4

x pd(/a”=1/¢"=1/p*) { S e
R?

P* t/p*
p d:p} , >0,

and therefore

I llgza < I llgpalll FllGe e an-
a,p; q*,p*,

An application of Proposition 2.2(b) ends the proof.
(b) is an immediate consequence of (a) and Proposition .

PROPOSITION 4.3. Suppose that 1 < g <a <p<oo, 1/d<1/a—1/p,
1/¢* =1/q—1/d, 1/a* =1/a—1/d, 0 <t <1,
11—t 6 11—t ¢

- + %) - + *
q q q a Q@ !
and H is a bounded subset of W' ((L4, IP)eo) satisfying

plglgo ;lelg \f— fXJqu,p,a =0.

Then H is a relatively compact subset of (L9, 1P)%.

Proof. (a) By Lemma [4.2|b) there is a real number C such that for any
feH,

170 < Clflgpiall V£ pa-
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Therefore

af

sup | lin < Csup g + 3|
feH fed Lj

| <.
q,p,x

Thus H is a bounded subset of (L, P)%.

(b) It is clear that 7, f — f € Wl((Lq,lp)gO) for any (u, f) in R? x H.
Therefore, by Lemma (a), Proposition 3.2, Proposition 4.2 and Proposi-
tion there are Cy,Co, C3,Cy > 0 such that, for any (u, f) € R? x H,

1T f — qu,pa < Crllmuf — f”q,p,aHTUf f”t * p.a
< Colul [ [V f | I gprall IV (7uf = f)l I.p.c
< Cslul 'V f] lgp.a
D5 04:|

< '™ [Iflape + Y- 52

Thus

sup lrf = fllpa < Caful'~ sup [nfnq,p,

q7p7a]

al’j

and
=0.

lim su — fllzgna

(c) Let 6 € C* satisfy xga\ 1 <0 < Xpa g1/2 and
Or(z) = 0(z/R), xecR% R>0.
It is clear that, for any (f, R) € H x (0, 00),
[ xre\ gzl < FORDS | Xgan gmr2]

and therefore, by Lemma ( ) and Proposfmonu 4.2] there are C1,Co,C3 > 0
not depending on (f, R) such that

HfXRd\JRHq,p,a = CleXRd\JR/Qqu a”faRHq D, a*
< Cl”fXRd\Jé:‘f/QHl,p, ||f||t D,
< CallFrtgu gl 191

t
|| 7p7

t
< C3HfXRd\JR/2Hq,pa|:Hf”q717» :|
q,p,x

W
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Thus,

sup ||/ g, 77l
feH

of
8a;j

:| t
q?p7a

d
< Czsup || fxgay w2 llgp, Sup[f pat
52 1 el 30 |l + 3
and

A sup || o sl = 0
An application of Proposition ends the proof. m

In the case where ¢ = «, the proposition above is read as follows.

PROPOSITION 4.4. Suppose that 1 <a<oo, 1/a*=1/a—1/d, 0<t<1,
1/a=(1—-t)/a+t/a* and H is a bounded subset of WhHe satisfying

lim sup [[f = Frszlla = 0.
pHOOfeH

Then H is a relatively compact subset of LY.

This result improves on Theorem 10 of [H-H| because it does not use the
hypothesis limpg oo SUp e || |Vf‘XRd\J(§%Ha =0.
Proposition has the following generalization.

PROPOSITION 4.5. Suppose that

el<¢g<a<p<oo,0<y<l/a-1/p, 1/¢* =1/q—7, 1/a* =

1/a—7.
e T is a bounded linear map of LY into LY such that, for any f in L9
with compact support K and any z in R?\ K,

L.

Tf(x)] <A o gdt

R4
where A is a real number not depending on f and x.
Then T admits a unique bounded linear extension defined on (LY, lp)go.

Proof. (a) Let f € LN L*. Using the notations in the proof of Propo-
sition for any (z,7) in R? x (0, 00) we have

f = Z fz,r,n in an
n>0

Tf = Zfo,r,n in Lq*;

n>0
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furthermore,

1T f,rm

fwl 1"
JE T rm

||(Tfm,r,0)XJ;||q* < BHfXJ%qu

where B is a real number not depending on (f,x,r). An argument similar
to the proof of Proposition leads easily to

1Tf o < CHqu,p;a
where C' is a real number not depending on f.

(b) Notice that (L?,1P) is the closure of LN L in (L4, [P)“. Therefore
the result follows from (a). =

REMARK 4.3. Let S denote the Schwartz space of test functions on R¢
and let j € {1,...,d}. It is well known (see [Gz]) that the Riesz transform
R; defined by

() Tj — Y
R;f(x) = El_lgﬁr (d+1)/2 | S|> f(y)m dy,
T—y|>€E

= (z1,...,1q) €RL feS.

extends to a bounded linear operator on L? for 1 < ¢ < oo. Furthermore,
for any f in LY with compact support K and any z in R?\ K we have

R

= ()2 ) g —gyld 7

Therefore, as a particular case of Proposition we have the following
result.

COROLLARY 4.4. Suppose 1 < q < a < p < oo. Then the Riesz trans-
forms R; (j € {1,...,d}) extend to bounded linear operators on (L%,1P)2.

5. Application. We suppose d > 3.
(a) Let ¢ € D. The boundedness properties of the operators I 4 and R;

G efl,...,d) yild
¢; =RilLyjale)l e () L° je{l....d}
s>d/(d—1)

As2>d/(d—1), we can use the Fourier transform to obtain ¢y Z‘j:l 0¢;/0x;
= ¢ where ¢4 is a real number depending only on d (for a similar formula
see [Stl, p. 125].
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(b)Let 1 <g<a<p<oowithl/p<1l/a—1/dandlet f € (L%,IF)Z,.
We are interested in the equation
(Ey) divF = f.

Fix an integer n > 1 and put f, = pp * (W, f) where p, and w,, are as in
Notations As f, € D, the result in (a) implies that the equation
admits a solution F;, = (F},;)1<j<a With

Fp, =caRjlhyafl e () L% jefl,....d}
s>d/(d 1)

Using Proposition [2.3] Proposition 4.1 Corollary [4.1] and Corollary [4.4] we
find that

® (fn)n>1 converges to f in (L9,1P),,
e for any j € {1,...,d}, (Fnj)n>1 converges to F; = cqRR;[l,/qf] in
(LT, P)2%,
with 1/¢* =1/qg—1/d and 1/a* =1/a — 1/d.
Therefore, for any ¢ in D,

d

S div F(x)p(z) dz = —Z S FJ(IE)%(LE) dx
R j=1Rd J
d d
. dp
= lim |- Foj(z)=——(z)d lim (x) dx
i =32 | Pl e = i § (S50
= tim | ful@)p@)da = | f@)p(a) da.
Rd Rd

that is, equation (Ey) admits the solution F' = (Fj)i<j<q in [(Lq*,lp)g‘;)]d.
It is worth noting the link between the above result and Proposition
in the light of Proposition
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