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Abstract. We investigate parallel hypersurfaces in the context of relative hypersur-
face geometry, in particular including the cases of Euclidean and Blaschke hypersurfaces.
We describe the geometric relations between parallel hypersurfaces in terms of deforma-
tion operators, and we apply the results to the parallel deformation of special classes of
hypersurfaces, e.g. quadrics and Weingarten hypersurfaces.

1. Introduction. Our paper deals with two classical topics: parallel
hypersurfaces and Weingarten hypersurfaces. Our aim is twofold:

• We investigate parallel hypersurfaces in Rn+1 in the context of rela-
tive hypersurface geometry; in particular this includes Euclidean and uni-
modular-affine Blaschke theory. We start with the following situation: We
consider an immersion x :M → Rn+1 of a differentiable manifold and equip
this hypersurface with a relative normal y and a conormal Y ; then we define
the notion of a parallel map x̃ :M → Rn+1. Later, in more special cases, we
consider a one-parameter family of hypersurfaces

xt := x+ ty, t ∈ R,
that are parallel to the given hypersurface immersion x. We show that par-
allelity in both cases can be described in terms of respective deformation
operators L and Lt. In Section 3 we establish a list of invariants and show
how the parallel deformation depends on L and Lt. This part is more or less
algebraic and is the same for all relative normalizations of a given hypersur-
face.

It is of particular importance to realize that the concept of extrinsic
relative curvature theory, defined via the relative shape operator, not only
includes affine extrinsic curvature theories, but also the Euclidean case; see
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e.g. [9, Section 6.4.2]. Thus our relative results hold true in different special
hypersurface geometries.

Considering so called minimal (hyper)surfaces, we point out that our
results hold in the Euclidean and Blaschke cases, as the Euler–Lagrange
equations in both theories are equivalent to the vanishing of the trace of
the corresponding shape operator. Recall that the notion of minimal in uni-
modular theory is due to Blaschke, but it is not really appropriate, as, fol-
lowing Calabi, locally strongly convex surfaces satisfying the unimodular
Euler–Lagrange equations are maximal ; see e.g. [5].

• There appear different types of Weingarten hypersurfaces in the litera-
ture depending on the choice of curvature relations that are studied. We list
four types of such relations:

H: Relations between the normalized elementary symmetric functionsHk

of the principal curvatures.
P: Relations between the normalized elementary symmetric functions Pk

of the principal radii of curvature.
k: Relations between the principal curvatures ki.
R: Relations between the principal radii of curvature Ri.

Corresponding subclasses of the foregoing types can be defined by linear
relations between curvature invariants of the same type; different types might
lead to different classes, e.g. the two classes of linear Weingarten surfaces in
Euclidean R3 given by ∑

i=0,1,2

aiHi = 0, ai ∈ R,

and by ∑
i=0,1,2

aiki = 0, ai ∈ R,

are different.
We list some papers devoted to Weingarten hypersurfaces in the refer-

ences: [2], [3], [4], [6], [12].

To describe the notion of parallelity in more detail, let us give the fol-
lowing definition:

Definition 1.1. Let

(1) x :M → Rn+1

be a hypersurface. A mapping x̃ : M → Rn+1 is called parallel to x if their
differentials satisfy

dx̃(TpM) ⊂ dx(TpM)
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for every p ∈M . In that case there is a (1, 1)-tensor field L on M for which

dx̃ = dx ◦ L.
The tensor field L is called the deformation tensor from x to x̃. The mapping
x̃ is an immersion if and only if L is non-singular at each point of M .

Consider a hypersurface immersion (1) of a connected, oriented C∞-
manifold of dimension n ≥ 2. If a hypersurface is non-degenerate then it
has infinitely many non-trivial (non-Euclidean and non-centroaffine) relative
normalizations.

As above denote by (Y, y) a relative normalization where Y denotes a
conormal field and y a transversal field along the hypersurface. The family
of mappings

xt := x+ ty

is called a one-parameter family of parallel mappings with respect to the fixed
normalization chosen. We will make this more precise in Section 3 below.

The parallel deformation of a hypersurface with relative normalization
leads to hypersurfaces within the same large class of relative hypersurfaces.
In Section 3 we make a general study of relative invariants that do not depend
on the type of relative normalization. Studying special relative subclasses we
learn that the type of relative normalization might be of importance, and
the deformation of a special relative class of hypersurfaces might depend on
the normalization. The following examples and the theorem illustrate this.

(i) The parallel deformation of a hypersurface with Euclidean normal-
ization leads to hypersurfaces with the same Euclidean normal.

(ii) The parallel deformation of a hypersurface with unimodular affine (so
called Blaschke) normalization leads to hypersurfaces with relative
normalization, and only for special classes of Blaschke hypersurfaces
is the normalization of this class of parallel hypersurfaces again of
Blaschke type (see Corollary 6.7).

Theorem 1.2. Consider a parallel family xt as above and assume that
x = x0 is a centered hyperquadric (that is, a quadric with a center).

• Normalize x by the Euclidean unit normal field. Assume that x has no
umbilics on M . Then x = x0 is the only hyperquadric in the family xt.

• Normalize x by the affine (Blaschke) normal field; then any xt is a
centered hyperquadric.

We give a proof in Section 4 below. There we study the parallel deforma-
tion of relative spheres and quadrics, while we treat relative hypersurfaces
with parallel shape operator in Section 5. Section 6 is devoted to the study
of parallel deformations of Weingarten hypersurfaces in relative geometry.
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A typical result concerns linear Weingarten hypersurfaces. To formulate it,
we define:

Definition 1.3. We say that a hypersurface x with relative normaliza-
tion (Y, y) is H-linear Weingarten if there are real numbers a0, . . . , an such
that

∑n
i=1 a

2
i 6= 0 and

(2) Hnan + · · ·+H1a1 +H0a0 = 0

at each point of M , where H0 := 1 by definition. We call the polynomial

(3) W (t) := a0t
n + · · ·+ an−1t+ an

the associated polynomial for the H-linear Weingarten hypersurface x.

Theorem 1.4. Let x :M → Rn+1 be a hypersurface immersion with rel-
ative normalization (Y, y) and diagonizable shape operator S. Assume that
the parallel hypersurface xt is an immersion. If (x, Y, y) is an H-linear Wein-
garten hypersurface satisfying (2) then (xt, Y, y) is also H-linear Weingarten.
It satisfies the condition

(4) Hn(t)W (t) +
1

1!
Hn−1(t)W

′(t) + · · ·+ 1

n!
H0(t)W

(n)(t) = 0.

Finally, in Section 6 we show that H-linear Weingarten hypersurfaces
(and also some other special surfaces) admit parallel (hyper)surfaces with
special extrinsic curvature properties. An example of such a result is the
following proposition that we will prove in Section 6.3.

Proposition 1.5. Let x : M → R3 be an H-linear Weingarten surface
satisfying a2H2 + a1H1 = 0 with a1, a2 ∈ R and H2 ≤ 0 on M . If a1 6= 0
then there exists t ∈ R such that xt is an immersion and H1(t) = 0 on M .

2. Basic properties. In this section we summarize basic properties of
relative hypersurfaces; we refer to the monographs [5] and [9].

2.1. Relative hypersurfaces. Consider the real vector space Rn+1 and
its dual vector space R(n+1)∗, where the duality is described in terms of a
non-degenerate scalar product

〈 , 〉 : R(n+1)∗ × Rn+1 → R;
both spaces can also be considered as real affine spaces. By det and det∗ we
denote an arbitrary fixed pair of dual determinant forms on the vector spaces
Rn+1 and R(n+1)∗, resp., and by ∇ we denote the canonical flat connections
on both Rn+1 and R(n+1)∗.

LetM be a connected, oriented, C∞-differentiable manifold of dimension
n ≥ 2, and x :M → Rn+1 a hypersurface immersion. A normalization of x is
a pair (Y, z) with 〈Y, z〉 = 1, where z :M → Rn+1 is an arbitrary transversal
field, and Y : M → R(n+1)∗, satisfying 〈Y, dx(v)〉 = 0 at any p ∈ M and for
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all tangent vectors v ∈ TpM , is a conormal field of x. While a transversal
field z extends a tangential basis to the ambient space, a conormal field fixes
the tangent plane. A normalized hypersurface is a triple (x, Y, z).

The transversal field z induces a volume form ω on M by

ω(v1, . . . , vn) := det(dx(v1), . . . , dx(vn), z),

where (v1, . . . , vn) is an arbitrary frame; obviously this induced volume form
depends on the choice of z (if det is fixed).

2.1.1. Structure equations. The geometry of the triple (x, Y, z) can be
described in terms of the induced volume form ω and further geometric
invariants, defined via the structure equations of Gauß and Weingarten:

∇vdx(w) = dx(∇vw) + h(v, w)z,(5)
dz(v) = dx(−S(v)) + τ(v)z.(6)

Here and in the following u, v, w, . . . denote tangent vectors and fields. The
induced connection ∇ is torsion free, h is bilinear and symmetric, S is the
shape or Weingarten operator and τ is a 1-form, the connection form; the
sign in front of S in the Weingarten equation is a convention corresponding to
an appropriate choice of the orientation of z. The coefficients in the structure
equations depend on the normalization, they are invariant under the affine
group of transformations in Rn+1.

2.1.2. Non-degenerate hypersurfaces. In the following, in general, we re-
strict to non-degenerate hypersurfaces defined as follows: A hypersurface x is
non-degenerate if the bilinear form h in the Gauß structure equation is non-
degenerate; it is well known that this property is independent of the choice
of the normalization as all such symmetric bilinear forms are conformally
related, defining a conformal class C. Thus, on a non-degenerate hypersur-
face, any transversal field z induces a semi-Riemannian metric h ∈ C with
Levi-Civita connection ∇(h) and Riemannian volume form ω(h).

The non-degeneracy of x is equivalent to the fact that any conormal
field Y itself is an immersion Y : M → R(n+1)∗ with transversal position
vector Y . The associated Gauß structure equation reads

(7) ∇vdY (w) = dY (∇∗vw) +
1

n− 1
Ric∗(v, w)(−Y ),

where the conormal connection ∇∗ is torsion free and Ricci-symmetric, i.e.
its Ricci tensor Ric∗ is symmetric. The Ricci symmetry is equivalent to the
existence of a local∇∗-parallel volume form ω∗ onM which is unique modulo
a non-zero constant factor. We have

(8) ω∗(v1, . . . , vn) := det∗(dY (v1), . . . , dY (vn),−Y )

for an arbitrary local frame. It is well known (see e.g. [10]) that all conor-
mal connections are projectively related; we denote the class of all conormal
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connections by P∗. Moreover, for a non-degenerate hypersurface there is a
bijective correspondence between the class of conormal fields and the confor-
mal class C of semi-Riemannian metrics; that allows one to define a metric
via a conormal. This can be seen from the relation

(9) h(v, w) = −〈dY (v), dx(w)〉.

2.1.3. Relative normalizations. A normalization (Y, y) of x is called rel-
ative if τ ≡ 0 in the structure equation of Weingarten. One can easily prove
that any non-degenerate hypersurface admits infinitely many different rela-
tive normalizations. A triple (x, Y, y) is called a relative hypersurface if x is
non-degenerate and its normalization (Y, y) is relative. Note that for such
hypersurfaces the shape operator S is h-self adjoint and the induced connec-
tion ∇ is also Ricci-symmetric (see [9]). From now on we consider relative
hypersurfaces only.

2.1.4. The cubic form. An important invariant in relative hypersurface
geometry is the cubic form. It is defined as follows:

Denote by K the symmetric difference tensor with

K(u, v) := 1
2(∇uv −∇

∗
uv).

Then the cubic form C, defined by C(u, v, w) := h(K(u, v), w), is totally
symmetric in its three arguments (see [9, Section 4.4.3]).

2.1.5. Extrinsic curvature functions. If S is diagonizable with eigenval-
ues ki for i = 1, . . . , n, we denote by

(10) Hl :=

(
n

l

)−1 ∑
1≤i1<···<il≤n

ki1 · · · kil

the normalized elementary symmetric functions for l = 1, . . . , n, and set
H0 := 1. We call ki a (relative) principal curvature and the functions Hl

extrinsic higher mean curvature functions. In case rkS = n we also con-
sider the principal radii of curvature Ri and the corresponding normalized
elementary symmetric functions

Pl :=

(
n

l

)−1 ∑
1≤i1<···<il≤n

Ri1 · · ·Ril ,

where again P0 := 1.
Except for Section 6, we assume the existence of an eigenbasis of the

relative shape operator S at each point of M . In particular this is guaran-
teed for locally strongly convex relative hypersurfaces, while in the case of
a Euclidean normalization we can omit the convexity assumption as then
the shape operator S always has an eigenbasis. Below we will consider both
types of extrinsic curvature functions: Hl and Pl.
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2.2. Euclidean hypersurfaces. The Euclidean space Rn+1 and its dual
vector space are identified, and now the scalar product denotes the inner
product. For a hypersurface the Euclidean unit normal µ and the associated
conormal coincide, i.e. (Y, y) = (µ, µ). We denote the first fundamental form
by I(u, v) := 〈dx(u), dx(v)〉, and by II and III the second and the third
fundamental form; II is an element of the conformal class C of relative met-
rics, namely, in case of a Euclidean normalization, h = II in the structure
equations (5). A Euclidean hypersurface x is non-degenerate if and only if
rk II = n; this is equivalent to the fact that the Euclidean shape (Weingarten)
operator S has maximal rank; unless otherwise stated, we will assume that
rkS = n below.

If rkS = n then I and III are Riemannian metrics, II is semi-Riemannian
(and Riemannian exactly if x is locally strongly convex). Recall that S is
self adjoint with respect to all three fundamental forms, and that

II (u, v) = I(Su, v) and III (u, v) = I(Su, Sv).

The Levi-Civita connections ∇(I) and ∇(III ) of I and III, resp., satisfy
∇(III )uv = S−1∇(I)uSv (see e.g. [11]).

From [9] we recall the following characterization; note that the covariant
derivative ∇(III ) II is totally symmetric.

Proposition 2.1. Let x be a non-degenerate hypersurface in Euclidean
space with absolute Gauß–Kronecker curvature G := |Hn|. Then x is a
quadric if and only if, in local components,

(11) ∇(III )kIIij +
1

n+ 2
(IIij∂k lnG+ IIjk∂i lnG+ IIki∂j lnG) ≡ 0.

2.3. Blaschke hypersurfaces. Considering Rn+1 and Rn+1∗ as vector
spaces, for each we have a one-dimensional vector space of determinant forms,
and the duality of determinant forms is given by a pairing (det,det∗).

Consider a non-degenerate hypersurface in affine space Rn+1 with a given
relative normalization (Y, y). Then any pair (det,det∗) induces a pair of
volume forms on M by

ω(v1, . . . , vn) := det(dx(v1), . . . , dx(vn), y),

ω∗(v1, . . . , vn) := det(dY (v1), . . . , dY (vn), Y ),

where (v1, . . . , vn) is a frame. Any other dual pair (det],det] ∗) with

det] = cdet and det] ∗ = c−1 det∗

analogously induces volume forms ω] and ω] ∗. On any frame, we have

ω(v1, . . . , vn) · ω∗(v1, . . . , vn) = ω](v1, . . . , vn) · ω] ∗(v1, . . . . , vn).
Recall that the volume forms det and det∗ are parallel with respect to the
canonical flat connections in Rn+1 and R(n+1)∗, resp. Modulo non-zero con-
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stants there is a unique volume form that is parallel to the canonical flat
connection in the vector space considered.

Analogously the induced volume forms ω and ω∗ are parallel with respect
to the connections ∇ and ∇∗, resp., and their parallelity determines them
uniquely modulo non-zero constants.

To characterize so called Blaschke hypersurfaces within the class of rel-
ative hypersurfaces in affine space Rn+1 without fixing a determinant form
in the ambient space, we use the foregoing facts and proceed as follows:

Definition 2.2. A relative hypersurface (x, Y, y) in affine space Rn+1 is
called a Blaschke hypersurface if ω = cω∗ for some non-zero constant c ∈ R.

Fixing an orientation on the ambient space, the induced volume forms
will have the same orientation and thus c will be positive. Moreover, we
can compare the induced oriented volume forms ω and ω∗ with the oriented
Riemannian volume form ω(h) of the relative metric h and characterize a
Blaschke hypersurface in affine space Rn+1 as follows (compare [9, Sections
4.4.7–4.4.9 and 6.2]):

Lemma 2.3. A relative hypersurface (x, Y, y) in affine space Rn+1 is a
Blaschke hypersurface if one of the following conditions is satisfied:

• any two of the three oriented volume forms ω, ω∗, ω(h) coincide mod-
ulo constant positive factors;
• the Tchebychev form T vanishes identically (apolarity condition),
where with the above notations

2nT := d ln
ω(v1, . . . , vn)

ω∗(v1, . . . , vn)
.

Lemma 2.4. A non-degenerate Blaschke hypersurface is a hyperquadric
if and only if C = 0.

3. Parallel hypersurfaces

3.1. The deformation operator. For a relative hypersurface (x, Y, y)
on M consider the one-parameter family of mappings

xt := x+ ty.

If xt is an immersion we say that t is admissible. Consider the differential

dxt = dx+ tdy = dx(id − tS),
which shows that the mapping xt is parallel to x. Moreover, if t is admissible
then (Yt, yt) := (Y, y) is a relative normalization for xt. This can be seen as
follows:

As 〈Y, dxt(v)〉 = 0 for all tangent vectors v, and as y is transversal
to the tangent plane of xt, we immediately see that (Yt, yt) := (Y, y) is a
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normalization of xt, and the following lemma shows that this normalization
is again relative if Lt has maximal rank.

Lemma 3.1.

(i) xt is an immersion if and only if rkLt = n, as

dxt(v) = dx ◦ Lt(v)

for any tangent vector v. The set of points of M where xt is an
immersion is open in M .

(ii) If rkLt = n then the pair (Yt, yt) := (Y, y) defines a relative normal-
ization of each (admissible) hypersurface immersion xt with relative
shape operator St = L−1t S.

Proof. For the proof of (ii) we use the definition of xt and the Weingarten
structure equation to calculate

−dxt(Stv) = dyt(v) = dy(v) = −dx(Sv) = −dxt(L−1t Sv).

We call
Lt := id − tS

the deformation operator of the deformation x 7→ xt; this operator com-
pletely describes the deformation; in particular this means that we will be
able to describe the deformation of all intrinsic and extrinsic invariants in
terms of Lt.

Remark 3.2. (i) For the following, we emphasize that, when we consider
a one-parameter parallel family {xt}, we assume, in general, that t is admis-
sible, meaning that rkLt is maximal for all p ∈M ; moreover, in general, the
mark “t” is used only for admissible parameters t. We drop the assumption
that t is admissible in Section 6; there, under appropriate assumptions, we
will prove the existence of admissible parameter values t.

(ii) If (x, Y, y) is a Blaschke hypersurface then the parallel deformation
x 7→ xt in general does not lead to a Blaschke hypersurface (xt, Yt, yt) =
(xt, Y, y) again; see below.

(iii) Note that Lt = id − tS is positive definite for sufficiently small t in
a sufficiently small neighborhood of any point, and if xt is considered in case
rkLt = n only, we necessarily have detLt > 0 for such sufficiently small t.
But note that detLt is a polynomial in t with only finitely many zeros (at a
fixed point of M) and that a parallel deformation might be of interest also
when detLt < 0.

3.2. Structure equations for xt. As stated above, the geometry of
a relative hypersurface (xt, Yt, yt) can be described in terms of its induced
volume form and the induced geometric invariants defined via the structure
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equations of Gauß and Weingarten. For the invariants of a relative hyper-
surface (xt, Yt, yt) = (xt, Y, y) we use an obvious notation with appropriate
mark “t”.

∇vdxt(w) = dxt(∇(t)vw) + ht(v, w) yt,

dyt(v) = dxt(−St(v)),

∇vdYt(w) = dYt(∇∗(t)vw) +
1

n− 1
Ric (t)∗(v, w)(−Yt);

here and in the following the ∗-notation marks invariants of the∇∗-geometry.

3.3. Relation between the invariants of x and xt. Straightforward
computations give the following relations between the invariants of x and xt,
and how they depend on the deformation operator Lt; moreover we list
further properties of these invariants.

Considering the relative shape operators S and St, we now restrict to the
case where S is diagonalizable, and thus also Lt and St are diagonalizable.
In this case we have (joint) eigenbases for S and St. In a few cases (which
we explicitly state) we allow that rkS < n. We make frequent use of the fact
that Lt satisfies the Codazzi equations relative to the connection ∇, which
implies the intrinsic properties stated in (i) and (iii) below; for details see
[7], [8], [11].

3.4. Invariants of x and xt. Assume that Lt has maximal rank and S
is diagonalizable. The following is a list of relations between invariants of x
and xt.

(i) Relative metric and its volume form:
(a) (see [9, Section 4.8.3])

ht(u, v) = h(Ltu, v) = h(u, Ltv) = h(u, v)− th(u, Sv)

= h(u, v)− t 1

n− 1
Ric ∗(u, v)

= h(u, v)− t 1

n− 1
Ric ∗(t)(u, v).

(b) ω(ht) = det(Lt)
n/2ω(h),

(c) ∇(h)−∇(ht) = K −K(t).

(ii) Connections and their parallel volume forms:

(d) ∇(t)uv = L−1t ∇uLtv, briefly ∇(t) = L−1t ∇Lt,
(e) ∇∗(t) = ∇∗,
(f) ω(t) = det(Lt)

nω and ω∗(t) = ω∗; recall that parallel volume
forms are unique modulo a non-zero constant factor.
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(iii) Intrinsic curvature:
Denote by R and R(t) the (1,3) curvature operators of the induced
connections ∇ and ∇(t), resp., and denote by R∗ and R(t)∗ the
corresponding operators for ∇∗ and ∇(t)∗; then

(g) LtR(t)(u, v)w = R(u, v)Ltw, and thus
(h) R(t)(u, v)w = R(u, v)w + t[SR(t)(u, v)w −R(u, v)Sw],
(j) if rkS = n then

S−1R(u, v)Sw = R∗(u, v)w = R∗(t)(u, v)w

= S−1t R(t)(u, v)Stw.

(iv) Extrinsic curvature:

(k) St = L−1t S,
(l) the operators S, Lt and St are self adjoint with respect to the

relative metrics h and ht, resp.
(m) if S has an eigenbasis then the operators S, Lt and finally St

have the same eigenbasis (see e.g. [11], [8]); thus S, Lt and St
pairwise commute; the corresponding eigenvalues satisfy:

(n) ki(t) =
ki

1−tki and, for ki(t) 6= 0, 1
ki(t)

= Ri(t) = Ri − t,
(p) ki =

ki(t)
1+tki(t)

and Ri = Ri(t) + t.

(v) Further properties:

(q) if x is locally strongly convex and detLt > 0 then xt is locally
strongly convex; then h and also ht are definite (and positive
definite for an appropriate orientation of the normalization);

(r) the pairs (∇, S) and (∇, Lt) satisfy the Codazzi equations (see
[9, Section 4.8.1]).

(vi) Cubic form:
(s) K(t)(u, v) + t

2L
−1
t (∇uS)v = K(u, v),

(t) C(t)(u, v, w) = C(u, v, Ltw)− 1
2 th((∇uS)v, w).

(vii) Support function:
Define the support function of x with respect to a fixed c0 ∈ R by
ρ(c0) := 〈Y, x− c0〉. Then ρ(t)(c0) = ρ(c0)− t.

Proof. The proof for ω(t) in (f) follows from (b) above and [9, Lemma
3.4.4.1.ii]. The proof of (s) uses the definition of K and (e):

(K(t)−K)(u, v) = 1
2(L

−1
t ∇uLtv −∇uv)

= 1
2L
−1
t (∇uLtv − Lt∇uv)

= 1
2L
−1
t (∇uLt)v = −1

2 tL
−1
t (∇uS)v.
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3.5. Deformation invariants. If, in the following, a condition is sat-
isfied for some t, it is satisfied for any admissible t. In other words, the
foregoing list of invariants implies that the following invariants of a parallel
relative family {xt} are independent of t:

(1) Lt∇(t)L−1t = ∇,
(2) ∇∗(t) = ∇(ht)−K(t) = ∇(h)−K = ∇∗,
(3) 1

n−1Ric (t)
∗(u, v) = ht(Stu, v) = h(Su, v) = 1

n−1Ric
∗(u, v),

(4) det(Lt)
−n/2ω(ht) = ω(h),

(5) LtR(t)(u, v)L−1t w = R(u, v)w,
(6) LtSt = S,
(7) Ri(t) + t = Ri for i = 1, . . . , n,
(8) xt +Ri(t)yt = x+Riy, and thus xt + P1(t)yt = x+ P1y,
(9) ρ(t) + t = ρ.

Remark 3.3. Following [9, Section 4.6], for rkS = n the mappings

y :M → Rn+1, Y :M → R(n+1)∗

are immersions themselves and then are interpreted as relative spherical in-
dicatrices or relative Gauß maps. In this case the symmetric bilinear form
Ŝ(u, v) := h(Su, v) is the joint spherical metric of both indicatrices.

If rkS = n then also rkSt = n, thus the spherical metric Ŝt is defined
for all admissible t; then relation (3) in the foregoing list of deformation
invariants states that all relative hypersurfaces in the family {xt} have the
same spherical metric.

3.6. The deformation xt 7→ xt+s. So far we only considered the de-
formation x 7→ xt. To study the deformations xt 7→ xt+s for admissible
arguments, it is necessary to extend our notation as follows. Set

xt+s := xt + syt, where yt = y,

then
dxt+s(v) = (dxt + sdxt(−St))(v) = dx(id − (t+ s)S)(v).

To describe the deformation xt 7→ xt+s appropriately, we introduce the op-
erator

L(t, s) := id − sSt with L(0, s) := Ls;

then
dxt+s(v) = dxt(L(t, s))(v).

One easily verifies:

Lemma 3.4.

Lt · L(t, s) = L(0, t) · L(t, s) = L(0, t+ s) = Lt+s,

L(0, t) · L(t,−t) = id.
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From the foregoing lemma the set {L(t, s)} forms a local one-parameter
group.

3.7. Curvature relations. As emphasized above, considering extrinsic
curvature in relative hypersurface theory, we assume that S has an eigenbasis.
For simplicity assume now that there exists a maximal non-empty open
interval

I(U) := (−ε1(U), ε2(U)),

where 0 < εi(U) ∈ R for i = 1, 2, such that Lt has maximal rank for t ∈ I(U)
and p ∈ U , where U ⊂M is open.

Lemma 3.5. Consider the one-parameter family {xt} on a chart U ⊂M
and assume that there is a non-empty interval I(U) as stated above. Then

St2+t1 = (Lt2)
−1(Lt1)

−1S = (Lt2)
−1St1 .

We have the following relations between curvature functions of xt and x.

Proposition 3.6.(
n

k

)
Pk(t) =

k∑
j=0

(
n

j

)
Pj(t)t

k−j ,(12)

(
n

k

)
Pk(t) =

k∑
j=0

(
n

j

)
Pj(−t)k−j ,(13)

(
n

k

)
Hk(t) =

n−k∑
j=0

(
n

n− j

)
Hn−j(t) detLt · tk−j .(14)

Proof. The first relation follows directly from Ri = Ri(t)+ t. For the last
relation apply Hk = Pn−k/Pn = HnPn−k for k = 0, 1, . . . , n.

3.8. Parallel relative hypersurfaces in dimension n = 2. As be-
fore, we assume that S is diagonalizable. We consider a chart U for x without
umbilics. Consequently, St is without umbilics for any admissible t. On U
we choose a curvature line parametrization such that S has a diagonal rep-
resentation, and h, ht and St have the following matrix representations:

h :

(
h11 0

0 h22

)
, ht :

(
(1− k1t)h11 0

0 (1− k2t)h22

)
,

St :

(
k1

1−tk1 0

0 k2
1−tk2

)
.

3.9. Parallel deformation in special geometries. We study families
of parallel hypersurfaces in special geometries, namely in the most important
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relative geometries (see [9]). The parallel deformation of a centroaffine hyper-
surface is of no interest as its transversal field is given by its position vector.
Thus here we restrict to the study of parallel hypersurfaces in Euclidean and
in Blaschke geometry.

3.9.1. Parallel hypersurfaces in Euclidean geometry. It is trivial to verify
that the parallel deformation of a hypersurface with Euclidean normalization
gives a family of parallel hypersurfaces with the same parallel Euclidean
normal µ. We refer to [11] and recall that, for xt = x+ tµ, the first and the
second fundamental forms are related by

I(t)(u, v) = I(Ltu, Ltv),(15)
II (t)(u, v) = II (Ltu, v) = II (u, Ltv),(16)

for all t (which here and later again means for all admissible t). As the pair
(∇(I), Lt) satisfies the Codazzi equations, we have (see [11])

∇(I(t))uv = L−1t ∇(I)uLtv for all t.

The Weingarten operator always has an eigenbasis, thus at the same
time it is an eigenbasis of Lt for all t. As the one-parameter family {xt} has
parallel normals, the third fundamental forms coincide: III (t) = III for all t.
In an obvious short notation we have

S−1 · ∇(I) · S = ∇(III ) = ∇(III (t)) = S−1t · ∇(I(t)) · St.
Remark 3.7. The relation (15) and the definition of Lt finally give

I(t) = I + 2t · II+ t2 · III,(17)
II (t) = II− t · III.(18)

In dimension n = 2, the foregoing relations and

K(t)I(t)− 2H(t)II (t) + III (t) = 0

imply

0 = id− 2(t+ P1(t)) · S + (t2 + 2tP1(t) + P2(t)) · S2

= id− 2P1 · S + P2 · S2.

3.9.2. Parallel hypersurfaces in Blaschke’s hypersurface theory. While
the parallel deformation of a Euclidean hypersurface gives a family of Eu-
clidean hypersurfaces with the same Euclidean normal, the situation is differ-
ent in Blaschke’s hypersurface theory. This is seen from the following lemma.

Lemma 3.8. Let (x, Y, y) be a non-degenerate hypersurface with Blaschke
normalization, and let xτ = x+ τy, for τ 6= 0 fixed and admissible, be a hy-
persurface in the parallel relative family {xt}. Then the following statements
are equivalent:

(i) (xτ , Yτ , yτ ) = (xτ , Y, y) is again a Blaschke hypersurface,
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(ii) detLτ = const 6= 0 on M ,
(iii) the relative Gauß–Kronecker curvatures coincide modulo a non-zero

constant on M:
Hn(τ) = const ·Hn 6= 0.

Proof. From Subsection 3.4 we know that

ω(τ)∗ = ω∗ and ω(h(τ)) = (det(Lτ )
n/2) · ω(h).

The characterization of Blaschke’s geometry within relative geometry states
that xτ is a Blaschke hypersurface if and only if ω(τ)∗ = cω(h(τ)) with
0 < c ∈ R (see Lemma 2.3). Both statements imply that xτ is a Blaschke
hypersurface if and only if detLτ = const. Now (iii) follows from 3.4(k).

4. Proper relative spheres and quadrics. We recall the character-
ization of two important classes of hypersurfaces in relative geometry. As
above, the parameter t is used only for admissible t.

Remark 4.1. (i)Quadrics. In relative geometry, a non-degenerate quad-
ric can be characterized by the vanishing of the trace-free part of the dif-
ference tensor K; it is well known that the trace-free part of K is the same
tensor in any relative geometry, independent of the relative normalization
chosen on the hypersurface x. Recall that K itself is trace-free exactly in
Blaschke’s unimodular affine hypersurface theory (apolarity), and recall the
characterization of quadrics in Blaschke’s hypersurface geometry, given in
Section 2.3 (see [9, Sections 5.1 and 7.1]). As above, a quadric with center is
called a centered quadric.

(ii) Relative spheres. A relative hypersurface (x, Y, y) is a proper relative
sphere with center c0 if the position vector x − c0 of the hypersurface and
the relative normal y satisfy y = λ(x − c0). A proper relative sphere can
be characterized by S = H · id with relative mean curvature H := H1 =
const 6= 0 (see [9]).

Remark 4.2. (a) x is a proper relative sphere with center c0 if and only
if ρ(c0) = const 6= 0. This is obvious from [9, Section 4.13.1].

(b) x is a proper relative sphere with center if and only if xt is a proper
relative sphere with center; this follows from 3.4(vii).

(c) The hypersurface x is a relative sphere with S = H id if and only if
the hypersurface xt is a relative sphere with St = H

1−tH id.

4.1. Parallel deformation of quadrics in Blaschke’s geometry.
This and the following subsection compare parallel deformations of hyper-
quadrics in different hypersurface theories. From both subsections we get the
proof of Theorem 1.2.
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Proposition 4.3. Let x be a non-degenerate centered hyperquadric with
Blaschke structure in unimodular Rn+1. Then any xt is a centered hyper-
quadric.

Proof. Every non-degenerate centered hyperquadric is a proper affine
sphere, thus ∇S ≡ 0. Now 3.4(s) states that K(t) ≡ 0 if and only if K ≡ 0.

4.2. Parallel deformation of quadrics in Euclidean geometry. We
list some trivial observations.

Observation.

(i) p ∈M is umbilical for x if and only if p is umbilical for xt.
(ii) If x is spherical then xt is spherical.
(iii) In Euclidean geometry, S is always diagonalizable with eigenbasis

{ei}, thus Lt and St have the same eigenbasis.
(iv) Assume that Sei = kiei and I(ei, ej) = δij for i, j = 1, . . . , n at

p ∈M . Then at p ∈M :

II (ei, ej) = kiδij , III (ei, ej) = kikjδij ,

Lt(ei) = (1− tki)ei, I(t)(ei, ej) = (1− tki)(1− tkj)δij ,
II (t)(ei, ej) = ki(1− tkj)δij , III (t)(ei, ej) = III (ei, ej).

(v) II (t) = II− t · III.
(vi) detLt ·Hn(t) = Hn.
(vii) x is non-degenerate if and only if xt is non-degenerate.
(viii) ∇(III (t))II (t) = ∇(III )II.

Lemma 4.4. Let x be a non-degenerate, non-spherical quadric. Then
Hn 6= const.

Proof. Assume that Hn = const = c. Then c 6= 0 as x is non-degenerate.
From the quadric characterization it follows that ∇(III )II ≡ 0 onM . As III,
considered as a Riemannian metric, has constant curvature 1, this metric
is irreducible, thus II = λ · III with λn · Hn = 1, and so x is spherical;
a contradiction.

Notation. Let Z be a (0, 3)-tensor on M with local components Zijk;
then z(Z) denotes the totally symmetrized (0, 3)-tensor with local compo-
nents

z(Z)ijk := Zijk + Zjki + Zkij .

Proposition 4.5. Let x be part of a Euclidean non-degenerate centered
quadric without umbilics; then there is no quadric in the parallel family xt.

Proof. Both x and xt satisfy the quadric equation (11); we set G := |Hn|
and G(t) := |Hn(t)|, and obey (18) and G(t) · |detLt| = G. Then
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0 = ∇(III (t))II (t) + 1

n+ 2
z(II (t)⊗ d lnG(t))

=

[
∇(III )II+ 1

n+ 2
z(II⊗ d lnG)

]
− 1

n+ 2
z(II⊗ d ln det |Lt|)

− 1

n+ 2
· t · z(III⊗ d lnG(t)).

As x is a quadric, we have [. . .] = 0. We evaluate the last equation at an
arbitrary point p ∈M and choose a local frame {ei} such that, at p,

IIij = kiδij and IIIij = kikjδij .

Then, for fixed indices k and i = j,

IIiiek(ln det |Lt|) + t · IIIiiek(lnG(t)) = ki{ek(ln det |Lt|) + tki · ek(lnG(t))}.
As x is non-degenerate we have ki 6= 0 for any i = 1, . . . , n, thus

ek(ln det |Lt|) + tki · ek(lnG(t)) = 0.

This equation is true for any pair (i, k); recall that G(t) 6= const; thus we
finally get k1 = · · · = kn at p; this is a contradiction, as p cannot be umbilical.
Therefore xt cannot be part of a quadric.

4.3. A characterization of proper relative spheres. One can char-
acterize relative spheres in terms of preservation of intrinsic invariants.

Proposition 4.6. Let x : M → Rn+1 be a relative hypersurface and
rkS > 1. Consider a parallel deformation xt and let xt be an immersion.
Then x is a proper relative sphere if and only if the curvature tensors of the
induced connections coincide: R(t) = R.

Proof. We need only prove that R(t) = R implies that x is a proper
relative sphere. This assumption, the definition of Lt and 3.4(g) imply that

R(u, v)S = SR(u, v) for any u, v.

Using now the assumption rkS > 1 and the Gauß and Ricci equations, one
easily sees that S must be a multiple of the identity.

5. Hypersurfaces with parallel shape operator. Relative hypersur-
faces with parallel shape operator were investigated in [1]. There the author
proved:

Lemma 5.1. Let (x, Y, y) be a relative hypersurface; then we have the
following equivalences:

(i) ∇S ≡ 0,
(ii) ∇∗S ≡ 0,
(iii) ∇(h)S ≡ 0.
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In particular the author gave a complete classification in dimensions n =
2, 3 of such hypersurfaces without any restriction on rkS. If (x, Y, y) is a
Blaschke hypersurface and rkS = n ≥ 3 then ∇S ≡ 0 implies that (x, Y, y)
is an affine sphere (see [7, Corollary 3.11]).

If rkS = n then the list in Subsection 3.4 and [7, Section 3] have the
following consequences:

Corollary 5.2.

(a) If, for a parallel family xt = x + ty, the relation ∇S ≡ 0 holds
for x = x0 then, for any admissible t, the following conditions are
satisfied:
(i) ∇ = ∇(t).
(ii) K = K(t).
(iii) ∇(h) = ∇(h(t)).
(iv) ∇(t)St ≡ 0.

Vice versa, if for some admissible t one of conditions (i)–(iv) is sat-
isfied then all these conditions hold for any admissible t, and addi-
tionally ∇S ≡ 0.

(b) If ∇S≡0 then, for any admissible t, detLt=const. Namely, (iii) im-
plies that the Riemannian volume forms coincide (modulo a non-zero
constant), and then 3.4(b) gives the assertion. This has a remarkable
consequence: As the polynomial P (t) := detLt has only finitely many
roots, we have detLt 6= 0 for almost all t. Thus for hypersurfaces sat-
isfying ∇S ≡ 0 only finitely many t are non-admissible.

(c) We have ∇S ≡ 0⇔ ∇Lt ≡ 0 for any (admissible) t. Then it follows
from [7, Corollary 3.6] that x and xt are affine homothetic if n > 2.

(d) Recall Lemma 3.8. If x is a Blaschke hypersurface with ∇S ≡ 0 then
detLt = const 6= 0, and xt is again a Blaschke hypersurface.

Proof. (i) The relation ∇S ≡ 0 and the definitions of ∇(t) and Lt give
Lt∇(t)uv = ∇uv − t · ∇u(Sv) = ∇uv − t · S∇uv = Lt∇uv.

(ii) follows from 3.4(s).
(iii) follows from ∇(h) = ∇−K (see [9, Section 4.4.3]).
(iv) We have

(∇(t)uSt)v = ∇(t)u(Stv)− St(∇(t)uv) = L−1t (∇uLtL−1t S)v − L−1t S(∇uv)
= L−1t (∇uS)v.

6. Weingarten hypersurfaces. In the literature, a Weingarten hyper-
surface is defined by some differentiable relation between its curvature func-
tions, e.g. there exists a differentiable function Wi, where i ∈ {H,P, k,R},
such that
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• WH(H1, . . . ,Hn) = 0, or
• WP (P1, . . . , Pn) = 0, or
• Wk(k1, . . . , kn) = 0, or
• WR(R1, . . . , Rn) = 0.

The subindices for W mark the type of the relation. In case such a relation is
linear, the term linear Weingarten hypersurface is used. In the Introduction
we pointed out that such linearity relations are not necessarily equivalent.

We will specify below when the assumption rkS = n is needed.

6.1. Linear Weingarten hypersurfaces—part I. For this subsection
we assume that the relative shape operator S, and thus S, St and also Lt
have a (joint) eigenbasis. As already stated, in Euclidean hypersurface theory
S, St and also Lt always have a (joint) eigenbasis.

Definition 6.1.

(i) We say that a hypersurface x is polynomial Weingarten if there exists
a polynomial relation of one of the foregoing four types.

(ii) For the definition of an H-linear Weingarten hypersurface see the
Introduction.

(iii) We say that a hypersurface x is P -linear Weingarten if there are
real numbers b0, . . . , bn such that

∑n
i=1(bi)

2 6= 0 and

Pnbn + · · ·+ P1b1 + b0 = 0

at each point of M .
(iv) We say that a hypersurface x is k-linear Weingarten if there are

real numbers c0, . . . , cn such that
∑n

i=1(ci)
2 6= 0 and

kncn + · · ·+ k1c1 + c0 = 0

at each point of M .
(v) We say that a hypersurface x is R-linear Weingarten if there are

real numbers d0, . . . , dn such that
∑n

i=1(di)
2 6= 0 and

Rndn + · · ·+R1d1 + d0 = 0

at each point of M .

Remark 6.2. In (iii) and (v) of the foregoing definition we have to as-
sume that rkS = n. If rkS = n then the hypersurface x is H-linear Wein-
garten if and only if it is P -linear Weingarten; thus it is sufficient to inves-
tigate one of the two classes in this case.

Indeed, from
(
n
k

)
=
(
n

n−k
)
we have Hn−k = Hn · Pk and Pn−k = Pn ·Hk.

Then 0 =
∑
aiHi =

∑
ai
Pn−i

Pn
gives 0 =

∑
aiPn−i =

∑
bjPj where

bj = an−j . The rest is analogous.
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Remark 6.3. (i) In the Introduction we formulated a theorem on the
deformation of H-linear Weingarten hypersurfaces. The proof is a straight-
forward but long computation.

Note that 1

n!
H0(t)W

(n)(t) = a0.

(ii) In particular, for n = 2 the H-linear relation from the Introduction
reads

0 = a0 + [2a0t+ a1]H1(t) + [a0t
2 + a1t+ a2]H2(t).

(iii) For n = 3 we have
0 = a0 + [3ta0 + a1]H1(t) + [3a0t

2 + 2a1t+ a2]H2(t)

+ [a0t
3 + a1t

2 + a2t+ a3]H3(t).

(iv) If x satisfies a polynomial relation WH = 0 then any xt is again
H-polynomial. Analogously, if rkS = n and x satisfies a polynomial relation
WP = 0 then xt is again P -polynomial.

Theorem 6.4. Consider a linear Weingarten hypersurface x.

(P) Let x be P -linear satisfying the relation
n∑
k=0

bkPk = 0;

then xt satisfies the relation
n∑
j=0

Pj(t)
n∑
l=j

blt
l−j = 0.

(k) Let x be k-linear; then xt is H-polynomial.
(R) Let x be R-linear satisfying the relation

0 =
∑
i

aiRi + a0;

then xt is R-linear satisfying

0 =
∑
i

aiRi(t) + a∗0,

where a∗0 := a0 + t
∑

i ai.

Proof. (P) Use the expression (12) for Pk.

Proposition 6.5. Consider a one-parameter family {xt} parallel to x.
(i) If Hk = const for some k ∈ {1, . . . , n} then the family is H-linear

Weingarten.
(ii) If Pk = const for some k ∈ {1, . . . , n} then the family is P -linear

Weingarten.
(iii) If ω(ht) = ω(h) for some t then {xt} is H(t)-linear Weingarten.
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Proof. The assumption in (iii) implies detLt = 1, thus
∏
(1− tki) = 1.

Remark 6.6. A modified version of (iii) is: If detLt = const 6= 0 then
the family {xt} is H(t)-linear.

Corollary 6.7. Let (x, Y, y) be a Blaschke hypersurface and let xτ =
x + τy, for fixed τ 6= 0, be in the parallel family a Blaschke hypersurface
again. Then (x, Y, y) is H-linear Weingarten.

Proof. Apply Lemma 3.8 and Proposition 6.5.

6.2. Linear Weingarten hypersurfaces—part II

6.2.1. Algebraic results on polynomials

Lemma 6.8. Let a, k1, . . . , kn be real numbers such that k1 6= 0; in this
subsection, as in (10), we denote their normalized elementary symmetric
functions by Hl for l = 1, . . . , n. If we have the equality of polynomials

tn + a1t
n−1 + · · ·+ an =

(
t− 1

k1

)n−1
(t− a)

then

(19) nkn−11 (1 + a1H1 + · · ·+ anHn) = (1− ak1)(k1 − k2) · · · (k1 − kn).
Proof. We have(
t− 1

k1

)n−1
(t− a)

=

n−l∑
l=0

tn−l(−1)l
(

1

k1

)l(n− 1

l

)
−
n−1∑
l=0

tn−1−l(−1)l · a
(

1

k1

)l(n− 1

l

)

= tn +

n−1∑
l=1

tn−l(−1)l
(

1

k1

)l(n− 1

l

)

− a
n−1∑
l=1

tn−l(−1)l−1
(

1

k1

)l−1(n− 1

l − 1

)
+ a(−1)n

(
1

k1

)n−1
= tn

+

n−1∑
l=1

tn−l(−1)l
(

1

k1

)l 1
n

(
n

l

)
[(n− l) + k1la] + a(−1)n

(
1

k1

)n−1
.

Thus

al = (−1)l
(

1

k1

)l 1
n

(
n

l

)
[(n− l) + k1la] for l = 1, . . . , n− 1,

an = a(−1)n
(

1

k1

)n−1
.
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We introduce the following notations:∑
17→n

:=
∑

1≤i1<···<il≤n
ki1 · · · kil and

∑
2 7→n

:=
∑

2≤i1<···<il≤n
ki1 · · · kil .

Now for l = 1, . . . , n− 1 we have

nkn−11 alHl = (−1)lkn−l−11 [(n− l) + k1la]
∑
17→n

= (−1)lkn−l−11 (n− l)
∑
17→n

+(−1)lkn−l1 la
∑
1 7→n

= (−1)lkn−l−11 (n− l)
( ∑
2≤i1<···<il−1≤n

k1ki1 · · · kil−1
+
∑
2 7→n

)
+ (−1)lkn−l1 la

( ∑
2≤i1<···<il−1≤n

k1ki1 · · · kil−1
+
∑
27→n

)
= (−1)lkn−l1 (n− l)

∑
2≤i1<···<il−1≤n

ki1 · · · kil−1

+ (−1)lkn−l−11 (n− l)
∑

2≤i1<···<il≤n
ki1 · · · kil

+ (−1)lkn−l+1
1 la

∑
2≤i1<···<il−1≤n

ki1 · · · kil−1
+ (−1)lkn−l1 la

∑
27→n

.

Using these computations we get

nkn−11 +

n−1∑
l=1

(−1)lkn−l−11 (n− l)
∑

1≤i1<···<il≤n
ki1 · · · kil

= kn−11

+
n−2∑
l=1

[(−1)l(n− l) + (−1)l+1(n− l − 1)]kn−l−11

∑
2≤i1<···<il≤n

ki1 · · · kil

+ (−1)n−1k2 · · · kn

= kn−11 +

n−1∑
l=1

(−1)lkn−l−11

∑
2≤i1<···<il≤n

ki1 · · · kil

and
n−1∑
l=1

(−1)lkn−l−11 (n− l)k1la
∑

1≤i1<···<il≤n
ki1 · · · kil + nkn−11 anHn

= (−1)kn1 a

+

n−2∑
l=1

akn−l1 [(−1)ll + (−1)l+1(l + 1)]
∑

2≤i1<···<il≤n
ki1 · · · kil
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+ (−1)n−1(n− 1)ak1 · · · kn + (−1)nnak1 · · · kn

= (−1)kn1 a+
n−1∑
l=1

(−1)l+1kn−l1 a
∑

2≤i1<···<il≤n
ki1 · · · kil .

Now one can easily deduce the equality (19).

Lemma 6.9. Let k1, . . . , kn, for n ≥ 2, be real numbers such that k1 6= 0.
If we have the equality of polynomials

tn−1 + a2t
n−2 + · · ·+ an =

(
t− 1

k1

)n−1
then

nkn−21 (H1 + a2H2 + · · ·+ anHn) = (k1 − k2) · · · (k1 − kn).
Proof. We have(

t− 1

k1

)n−1
=

n−1∑
l=0

(
n− 1

l

)
(−1)l

(
1

k1

)1

tn−1−l

= tn−1 +
n∑
l=2

(
n− 1

l − 1

)
(−1)l−1

(
1

k1

)
tn−l.

Thus for l = 2, . . . , n we have

al =

(
n− 1

l − 1

)
(−1)l−1

(
1

k1

)l−1
;

it follows that

nkn−21 alHl = (−1)l−1lkn−l−11

∑
1≤ki1<···<kil≤n

ki1 · · · kil

for l = 2, . . . , n. Consequently,

nkn−21 (H1 + a2H2 + · · ·+ anHn)

= kn−11

+
n∑
i=2

kn−21 ki +

n−1∑
l=2

(−1)l−1lkn−l1

∑
2≤i1<···<il−1≤n

ki1 · · · kil−1

+

n−1∑
l=2

(−1)l−1lkn−l−11

∑
2≤i1<···<il≤n

ki1 · · · kil + (−1)n−1nk2 · · · kn

= kn−11 +
n−1∑
l=2

(−1)l−1[l − (l − 1)]kn−l1

∑
2≤i1<···<il−1≤n

ki1 · · · kil−1

+ (−1)n−2(n− 1)k2 · · · kn + (−1)n−1nk2 · · · kn
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= kn−11

+

n−1∑
l=2

(−1)l−1kn−l1

∑
2≤i1<···<il−1≤n

ki1 · · · kil−1
+ (−1)n−1k2 · · · kn

= (k1 − k2) · · · (k1 − kn).

6.2.2. Geometric results on hypersurfaces. From Theorem 1.4 we obtain:

Theorem 6.10. If a relative hypersurface x with mutually distinct prin-
cipal curvatures at each point of M is H-linear Weingarten satisfying the
equation (2) with a0 6= 0, and if the polynomial (3) has a root t0 of multiplic-
ity n− 1, then xt0 is an immersion with constant non-zero mean curvature.

Proof. By (4) it suffices to prove that xt0 is an immersion. Assume that
it is not. Then detLt0 = 0 at some point p ∈M , so

(1− tk1(p)) · · · (1− tkn(p)) = 0.

We can assume that 1−tk1(p) = 0. It follows that k1(p) 6= 0 and t0 = 1/k1(p).
Since a0 6= 0, further we can assume that a0 = 1. The polynomial associated
with x is now of the form (t− 1/k1(p))

n−1(t− a), where ak1(p) 6= 1. Using
now Lemma 6.8 and the fact that the principal curvatures k1(p), . . . , kn(p)
are mutually distinct we get a contradiction.

Using Lemma 6.9, in the same manner as Theorem 6.10, one can prove
the following theorem.

Theorem 6.11. If a relative immersion x : M → Rn+1 has mutually
distinct principal curvatures at each point of M and satisfies the equation (2)
with a0 = 0, a1 6= 0, and if the polynomial (3) has a root t0 of multiplicity
n− 1, then xt0 is an immersion and H1(t0) = 0 on M .

6.3. H-linear Weingarten hypersurfaces in dimension n = 2. In
this subsection we do not assume that S is diagonalizable. In particular, the
results can be applied to surfaces in a pseudo-Euclidean space R3. It is clear
that if a surface x : M → R3 is pseudo-Euclidean and xt is an immersion
then xt is pseudo-Euclidean of the same index as x. As before, H1 = 1

2 trS
and H2 = detS.

Assume that x :M → R3 is a relative linear Weingarten surface satisfying
the condition

(20) a2H2 + a1H1 + a0 = 0,

where not all a0, a1, a2 are zero. If a0 6= 0, we have the trinomial

W (t) = a0t
2 + a1t+ a2

and ∆ := a21−4a0a2. A mapping xt is an immersion if and only if detLt 6= 0.
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Since in the 2-dimensional case

detLt = H2t
2 − 2H1t+ 1,

we see that xt is an immersion if and only if

H2t
2 − 2H1t+ 1 6= 0

at each point of M . By a straightforward computation we obtain

Proposition 6.12. Let x be a relative H-linear Weingarten surface sat-
isfying the equality (20). If xt is an immersion then xt is also H-linear
Weingarten, that is, the following relation holds on M :

(21) 0 = a0 + [2a0t+ a1]H1(t) + [a0t
2 + a1t+ a2]H2(t).

Proposition 6.13. Assume that x : M → R3 is a relative H-linear
Weingarten surface satisfying (20) and such that H2

1 −H2 6= 0 at each point
of M . If in its associated polynomial a0 6= 0, ∆ > 0, and if t1, t2 are the roots
of the polynomial, then xt1 , xt2 are immersions of constant mean curvature
satisfying H1(t1) = 1/(t2 − t1) and H1(t2) = 1/(t1 − t2).

Proof. We have a1 = −a0(t1+ t2) and a2 = a0t1t2. Observe first that xt1
is an immersion. Indeed, assume it is not. Then at some point p of M we
have detLt1 = 0, i.e.

(22) H2t
2
1 − 2H1t1 + 1 = 0.

We also have

0 = H2a2 +H1a1 + a0 = H2t1t2a0 −H1(t1 + t2)a0 + a0.

By subtracting the two equalities we obtain

H2t1(t1 − t2)−H1(t1 − t2) = 0,

hence

(23) H2t1 = H1.

Inserting this into the equality (22), we get H1t1 = 1. It follows that t1 6= 0
and H1 = 1/t1. Using now (23) we obtain H2 = 1/t21, which contradicts the
assumption that H2

1 −H2 6= 0 at each point of M . Now we use (21) to get
H1(t) = 1/(t2 − t1).

Proposition 6.14. Assume that x : M → R3 is a relative H-linear
Weingarten surface satisfying (20) and such that H2 6= 0 at each point of M .
If in the associated polynomial a0 6= 0 and ∆ 6= 0 then there is t ∈ R such
that xt is an immersion with constant curvature H2(t) = 4a20/∆.

Proof. Take t such that 2a0t+ a1 = 0, i.e. t = −a1/(2a0). Then

detLt =

(
− a1
2a0

)2

H2 − 2

(
− a1
2a0

)
H1 + 1 =

1

4a20
[a21H2 + 4a1a0H1 + 4a20].



132 B. Opozda and U. Simon

Since a0 + a1H1 + a2H2 = 0, we have

4a1a0H1 + 4a20 = 4a0(a1H1 + a0) = −4a0a2H2.

Hence
detLt =

1

4a20
[a21H2 − 4a0a2H2] =

1

4a20
H2∆ 6= 0

at each point ofM . Thus xt is an immersion and using formula (21) one sees
that xt has constant curvature H2(t) = 4a20/∆.

Proposition 6.15. Assume that x : M → R3 is a relative H-linear
Weingarten surface satisfying (20) such that H2 6= 0 and H2

1 − H2 6= 0 at
each point of M . If in the associated polynomial a0 = 0 then there is t ∈ R
such that xt is an immersion and H1(t) = 0 on M .

Proof. Now the equation

(24) a1H1 + a2H2 = 0

is satisfied. Since H2 6= 0, we have a1 6= 0. Take t = −a2/a1. By (21) it is
sufficient to prove that xt is an immersion. Suppose it is not. Then detLt = 0
at some point p, i.e.

0 = 1 + 2H1
a2
a1

+H2

(
a2
a1

)2

at p. If we insert a2H2 = −a1H1 into this formula, we get a1 = −H1a2,
which implies that a2 6= 0 and H1 = −a1/a2. Using again (24) we get a
contradiction to the assumption H2

1 −H2 6= 0.

Proof of Proposition 1.5. Take t = −a2/a1 as in the proof of the foregoing
proposition. It suffices to observe that xt is an immersion. We have H1 =
−a2H2/a1. Then H2 ≤ 0 implies that

detLt = 1− 2
a2
a1

a2H2

a1
+

(
a2
a1

)2

H2 > 0.

Proposition 6.16.

(a) If a relative immersion x : M → R3 has positive constant curvature
H2 and H2

1 −H2 6= 0 at each point of M then there is t such that xt
is an immersion of constant mean curvature H1(t).

(b) If for x the curvature H2 is non-zero at each point of M and H1 is
a non-zero constant then there is t such that xt has positive constant
curvature H2(t).

Proof. (a) If x has constant non-zero curvatureH2, we can set a2 = 1/H2,
a0 = −1, a1 = 0. Since H2 > 0, we have ∆ > 0 and we can use Proposition
6.13.
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(b) If H1 is constant then we set a2 = 0, a1 = −1, a0 = H1. Take
t = 1/(2H1). We now have

detLt = 1− 2
1

2H1
H1 +

1

4H2
1

H2 =
1

4

H2

H2
1

6= 0.

From (21) we obtain

0 = H1 +

[
H1

1

4H2
1

− 1

2H1

]
H2(t) = H1 −

1

4H1
H2(t).

Thus H2(t) = 4H2
1 .

6.4. The case of Blaschke hypersurfaces. In this subsection we do
not assume, in general, that S is diagonalizable. We assume that the ambient
space Rn+1 is equipped with a fixed determinant. Hence the affine normal
vector field is unique up to sign. Assume that x : M → Rn+1 is a Blaschke
hypersurface with affine normal field y and affine normal bundle N = Ry.
Let xt = x+ ty be a one-parameter deformation.

Denote

c(t) = detLt = det(id − tS)

= 1 + (−t)
(
n

1

)
H1 + · · ·+ (−t)i

(
n

i

)
Hi + · · ·+ (−t)nHn.

We already know that N is the affine normal for an immersion xt if and
only if c(t) is a non-zero constant. Assume that c(t) is a non-zero constant.
The bundle N is the affine normal bundle for xt but y is not necessarily the
affine normal for xt. The affine normal ỹt to xt is equal to Φ(t)y where

Φ(t) = ε|c(t)|−1/(n+2)

and ε is the sign of c(t) (see [7, (32)]). Denote by S̃t the affine shape operator
for xt. Then

S̃t = Φ(t)St = Φ(t)L−1t S.

Assume that S is diagonalizable. Then S̃t is diagonalizable as well. It is worth
emphasizing that if x is locally strongly convex then xt need not be, but the
shape operator for xt is diagonalizable (of course if xt is an immersion).

As before we shall denote by ki, Hi the curvature quantities determined
by y. The eigenvalues of S̃t, i.e. the affine principal curvature functions k̃i(t)
for xt, are equal to Φ(t)ki(t). Hence the affine H̃-curvatures for xt are given
by

H̃k(t) = Φ(t)kHk(t).

The same formula can be proved if S is not diagonalizable. In that case
Hi, H̃i are normalized coefficients of the characteristic polynomials of the
corresponding shape operators. By the above considerations we have
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Proposition 6.17.

(a) If there is t0 such that xt0 is an immersion and N is the affine nor-
mal bundle for xt0 then x is H-linear Weingarten. The H-curvatures
satisfy the equality

(25) 0 = (1−c(t0))+(−t0)
(
n

1

)
H1 + · · ·+ (−t0)i

(
n

i

)
Hi + · · ·+ (−t0)nHn.

(b) If moreover S is diagonalizable then xt0 is also H-linear Weingarten
and H̃-linear Weingarten.

(c) If n = 2 (and S is not necessarily diagonalizable) then

t20H2(t0) + 2t0H1(t0) +
c(t0)− 1

c(t0)
= 0,

t20H2 − 2t0H1 + (1− c(t0)) = 0,

t20c(t0)
3/2H̃2(t0) + 2εc(t0)

5/4H̃1(t0) + c(t0)− 1 = 0.

In particular, if c(t0) = 1 then

H̃2(t0)H1 = −H̃1(t0)H2.

If S is diagonalizable and non-singular at every point of M then

P1 = −P̃1(t0).

Proof. To prove the last sentence it suffices to observe that H2(t0) =
1

c(t0)
H2. Now we see that the inequality H2 6= 0 implies H̃2(t0) 6= 0.

Observe that, in general, the H-curvatures satisfying (25) are not con-
stant. In such a case, if n = 2 then t0 is the only parameter (except for t = 0)
for which N is its affine normal bundle. Namely, if xt is an immersion and N
is its affine normal bundle then t2H2−2tH1 and t20H2−2t0H1 are constants.
Hence 2dH1 = tdH2 and 2dH1 = t0dH2. This is not possible unless H1 and
H2 are constant.

Assume now that all the curvature functions H1, . . . ,Hn are constant.
Then c(t) is constant for all t. Hence if c(t) is not zero then the bundle N is
the affine normal bundle for xt. If S is diagonalizable then using induction
from n to 1 and the formula(

n

k

)
Hk(t) =

1

c(t)

n−k∑
j=0

(
n

n− j

)
(−t)k−jHn−j

we see that all curvatures H1(t), . . . ,Hn(t) are constant. It follows that
H̃1(t), . . . , H̃n(t) are constant as well.

We can also use the considerations of Subsection 6.4. For instance, we
have
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Proposition 6.18. Let x :M → R3 be a Blaschke surface with constant
curvatures H1, H2 6= 0 and H2

1−H2 6= 0. There is t such that xt is a minimal
Blaschke immersion.

Proof. We set a0 = 0, a1 = 1, a2 = −H1/H2. If we take t0 = H1/H2

then we have c(t0) = −H2
1/H2 + 1 6= 0. Now we can use (21).
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