Parallel hypersurfaces

by Barbara Opozda (Kraków) and Udo Simon (Berlin)

Dedicated to the memory of Franki Dillen

Abstract

We investigate parallel hypersurfaces in the context of relative hypersurface geometry, in particular including the cases of Euclidean and Blaschke hypersurfaces. We describe the geometric relations between parallel hypersurfaces in terms of deformation operators, and we apply the results to the parallel deformation of special classes of hypersurfaces, e.g. quadrics and Weingarten hypersurfaces.

1. Introduction. Our paper deals with two classical topics: parallel hypersurfaces and Weingarten hypersurfaces. Our aim is twofold:

- We investigate parallel hypersurfaces in \mathbb{R}^{n+1} in the context of relative hypersurface geometry; in particular this includes Euclidean and uni-modular-affine Blaschke theory. We start with the following situation: We consider an immersion $x: M \rightarrow \mathbb{R}^{n+1}$ of a differentiable manifold and equip this hypersurface with a relative normal y and a conormal Y; then we define the notion of a parallel map $\tilde{x}: M \rightarrow \mathbb{R}^{n+1}$. Later, in more special cases, we consider a one-parameter family of hypersurfaces

$$
x_{t}:=x+t y, \quad t \in \mathbb{R},
$$

that are parallel to the given hypersurface immersion x. We show that parallelity in both cases can be described in terms of respective deformation operators L and L_{t}. In Section 3 we establish a list of invariants and show how the parallel deformation depends on L and L_{t}. This part is more or less algebraic and is the same for all relative normalizations of a given hypersurface.

It is of particular importance to realize that the concept of extrinsic relative curvature theory, defined via the relative shape operator, not only includes affine extrinsic curvature theories, but also the Euclidean case; see

[^0]e.g. [9, Section 6.4.2]. Thus our relative results hold true in different special hypersurface geometries.

Considering so called minimal (hyper)surfaces, we point out that our results hold in the Euclidean and Blaschke cases, as the Euler-Lagrange equations in both theories are equivalent to the vanishing of the trace of the corresponding shape operator. Recall that the notion of minimal in unimodular theory is due to Blaschke, but it is not really appropriate, as, following Calabi, locally strongly convex surfaces satisfying the unimodular Euler-Lagrange equations are maximal; see e.g. [5].

- There appear different types of Weingarten hypersurfaces in the literature depending on the choice of curvature relations that are studied. We list four types of such relations:

H: Relations between the normalized elementary symmetric functions H_{k} of the principal curvatures.
P: Relations between the normalized elementary symmetric functions P_{k} of the principal radii of curvature.
k: Relations between the principal curvatures k_{i}.
R: Relations between the principal radii of curvature R_{i}.
Corresponding subclasses of the foregoing types can be defined by linear relations between curvature invariants of the same type; different types might lead to different classes, e.g. the two classes of linear Weingarten surfaces in Euclidean \mathbb{R}^{3} given by

$$
\sum_{i=0,1,2} a_{i} H_{i}=0, \quad a_{i} \in \mathbb{R},
$$

and by

$$
\sum_{i=0,1,2} a_{i} k_{i}=0, \quad a_{i} \in \mathbb{R}
$$

are different.
We list some papers devoted to Weingarten hypersurfaces in the references: [2], 3], 4], [6], [12].

To describe the notion of parallelity in more detail, let us give the following definition:

Definition 1.1. Let

$$
\begin{equation*}
x: M \rightarrow \mathbb{R}^{n+1} \tag{1}
\end{equation*}
$$

be a hypersurface. A mapping $\tilde{x}: M \rightarrow \mathbb{R}^{n+1}$ is called parallel to x if their differentials satisfy

$$
d \tilde{x}\left(T_{p} M\right) \subset d x\left(T_{p} M\right)
$$

for every $p \in M$. In that case there is a $(1,1)$-tensor field L on M for which

$$
d \tilde{x}=d x \circ L
$$

The tensor field L is called the deformation tensor from x to \tilde{x}. The mapping \tilde{x} is an immersion if and only if L is non-singular at each point of M.

Consider a hypersurface immersion (1) of a connected, oriented $C^{\infty_{-}}$ manifold of dimension $n \geq 2$. If a hypersurface is non-degenerate then it has infinitely many non-trivial (non-Euclidean and non-centroaffine) relative normalizations.

As above denote by (Y, y) a relative normalization where Y denotes a conormal field and y a transversal field along the hypersurface. The family of mappings

$$
x_{t}:=x+t y
$$

is called a one-parameter family of parallel mappings with respect to the fixed normalization chosen. We will make this more precise in Section 3 below.

The parallel deformation of a hypersurface with relative normalization leads to hypersurfaces within the same large class of relative hypersurfaces. In Section 3 we make a general study of relative invariants that do not depend on the type of relative normalization. Studying special relative subclasses we learn that the type of relative normalization might be of importance, and the deformation of a special relative class of hypersurfaces might depend on the normalization. The following examples and the theorem illustrate this.
(i) The parallel deformation of a hypersurface with Euclidean normalization leads to hypersurfaces with the same Euclidean normal.
(ii) The parallel deformation of a hypersurface with unimodular affine (so called Blaschke) normalization leads to hypersurfaces with relative normalization, and only for special classes of Blaschke hypersurfaces is the normalization of this class of parallel hypersurfaces again of Blaschke type (see Corollary 6.7).

Theorem 1.2. Consider a parallel family x_{t} as above and assume that $x=x_{0}$ is a centered hyperquadric (that is, a quadric with a center).

- Normalize x by the Euclidean unit normal field. Assume that x has no umbilics on M. Then $x=x_{0}$ is the only hyperquadric in the family x_{t}.
- Normalize x by the affine (Blaschke) normal field; then any x_{t} is a centered hyperquadric.

We give a proof in Section 4 below. There we study the parallel deformation of relative spheres and quadrics, while we treat relative hypersurfaces with parallel shape operator in Section 5 . Section 6 is devoted to the study of parallel deformations of Weingarten hypersurfaces in relative geometry.

A typical result concerns linear Weingarten hypersurfaces. To formulate it, we define:

Definition 1.3. We say that a hypersurface x with relative normalization (Y, y) is H-linear Weingarten if there are real numbers a_{0}, \ldots, a_{n} such that $\sum_{i=1}^{n} a_{i}^{2} \neq 0$ and

$$
\begin{equation*}
H_{n} a_{n}+\cdots+H_{1} a_{1}+H_{0} a_{0}=0 \tag{2}
\end{equation*}
$$

at each point of M, where $H_{0}:=1$ by definition. We call the polynomial

$$
\begin{equation*}
W(t):=a_{0} t^{n}+\cdots+a_{n-1} t+a_{n} \tag{3}
\end{equation*}
$$

the associated polynomial for the H-linear Weingarten hypersurface x.
Theorem 1.4. Let $x: M \rightarrow \mathbb{R}^{n+1}$ be a hypersurface immersion with relative normalization (Y, y) and diagonizable shape operator S. Assume that the parallel hypersurface x_{t} is an immersion. If (x, Y, y) is an H-linear Weingarten hypersurface satisfying (2) then $\left(x_{t}, Y, y\right)$ is also H-linear Weingarten. It satisfies the condition

$$
\begin{equation*}
H_{n}(t) W(t)+\frac{1}{1!} H_{n-1}(t) W^{\prime}(t)+\cdots+\frac{1}{n!} H_{0}(t) W^{(n)}(t)=0 \tag{4}
\end{equation*}
$$

Finally, in Section 6 we show that H-linear Weingarten hypersurfaces (and also some other special surfaces) admit parallel (hyper)surfaces with special extrinsic curvature properties. An example of such a result is the following proposition that we will prove in Section 6.3.

Proposition 1.5. Let $x: M \rightarrow \mathbb{R}^{3}$ be an H-linear Weingarten surface satisfying $a_{2} H_{2}+a_{1} H_{1}=0$ with $a_{1}, a_{2} \in \mathbb{R}$ and $H_{2} \leq 0$ on M. If $a_{1} \neq 0$ then there exists $t \in \mathbb{R}$ such that x_{t} is an immersion and $H_{1}(t)=0$ on M.
2. Basic properties. In this section we summarize basic properties of relative hypersurfaces; we refer to the monographs [5] and 9].
2.1. Relative hypersurfaces. Consider the real vector space \mathbb{R}^{n+1} and its dual vector space $\mathbb{R}^{(n+1) *}$, where the duality is described in terms of a non-degenerate scalar product

$$
\langle,\rangle: \mathbb{R}^{(n+1) *} \times \mathbb{R}^{n+1} \rightarrow \mathbb{R} ;
$$

both spaces can also be considered as real affine spaces. By det and det* we denote an arbitrary fixed pair of dual determinant forms on the vector spaces \mathbb{R}^{n+1} and $\mathbb{R}^{(n+1) *}$, resp., and by $\bar{\nabla}$ we denote the canonical flat connections on both \mathbb{R}^{n+1} and $\mathbb{R}^{(n+1) *}$.

Let M be a connected, oriented, C^{∞}-differentiable manifold of dimension $n \geq 2$, and $x: M \rightarrow \mathbb{R}^{n+1}$ a hypersurface immersion. A normalization of x is a pair (Y, z) with $\langle Y, z\rangle=1$, where $z: M \rightarrow \mathbb{R}^{n+1}$ is an arbitrary transversal field, and $Y: M \rightarrow \mathbb{R}^{(n+1) *}$, satisfying $\langle Y, d x(v)\rangle=0$ at any $p \in M$ and for
all tangent vectors $v \in T_{p} M$, is a conormal field of x. While a transversal field z extends a tangential basis to the ambient space, a conormal field fixes the tangent plane. A normalized hypersurface is a triple (x, Y, z).

The transversal field z induces a volume form ω on M by

$$
\omega\left(v_{1}, \ldots, v_{n}\right):=\operatorname{det}\left(d x\left(v_{1}\right), \ldots, d x\left(v_{n}\right), z\right)
$$

where $\left(v_{1}, \ldots, v_{n}\right)$ is an arbitrary frame; obviously this induced volume form depends on the choice of z (if det is fixed).
2.1.1. Structure equations. The geometry of the triple (x, Y, z) can be described in terms of the induced volume form ω and further geometric invariants, defined via the structure equations of Gauß and Weingarten:

$$
\begin{align*}
\bar{\nabla}_{v} d x(w) & =d x\left(\nabla_{v} w\right)+h(v, w) z \tag{5}\\
d z(v) & =d x(-S(v))+\tau(v) z \tag{6}
\end{align*}
$$

Here and in the following u, v, w, \ldots denote tangent vectors and fields. The induced connection ∇ is torsion free, h is bilinear and symmetric, S is the shape or Weingarten operator and τ is a 1-form, the connection form; the sign in front of S in the Weingarten equation is a convention corresponding to an appropriate choice of the orientation of z. The coefficients in the structure equations depend on the normalization, they are invariant under the affine group of transformations in \mathbb{R}^{n+1}.
2.1.2. Non-degenerate hypersurfaces. In the following, in general, we restrict to non-degenerate hypersurfaces defined as follows: A hypersurface x is non-degenerate if the bilinear form h in the Gauß structure equation is nondegenerate; it is well known that this property is independent of the choice of the normalization as all such symmetric bilinear forms are conformally related, defining a conformal class \mathfrak{C}. Thus, on a non-degenerate hypersurface, any transversal field z induces a semi-Riemannian metric $h \in \mathfrak{C}$ with Levi-Civita connection $\nabla(h)$ and Riemannian volume form $\omega(h)$.

The non-degeneracy of x is equivalent to the fact that any conormal field Y itself is an immersion $Y: M \rightarrow \mathbb{R}^{(n+1) *}$ with transversal position vector Y. The associated Gau β structure equation reads

$$
\begin{equation*}
\bar{\nabla}_{v} d Y(w)=d Y\left(\nabla_{v}^{*} w\right)+\frac{1}{n-1} \operatorname{Ric}^{*}(v, w)(-Y) \tag{7}
\end{equation*}
$$

where the conormal connection ∇^{*} is torsion free and Ricci-symmetric, i.e. its Ricci tensor Ric* is symmetric. The Ricci symmetry is equivalent to the existence of a local ∇^{*}-parallel volume form ω^{*} on M which is unique modulo a non-zero constant factor. We have

$$
\begin{equation*}
\omega^{*}\left(v_{1}, \ldots, v_{n}\right):=\operatorname{det}^{*}\left(d Y\left(v_{1}\right), \ldots, d Y\left(v_{n}\right),-Y\right) \tag{8}
\end{equation*}
$$

for an arbitrary local frame. It is well known (see e.g. [10]) that all conormal connections are projectively related; we denote the class of all conormal
connections by \mathfrak{P}^{*}. Moreover, for a non-degenerate hypersurface there is a bijective correspondence between the class of conormal fields and the conformal class \mathfrak{C} of semi-Riemannian metrics; that allows one to define a metric via a conormal. This can be seen from the relation

$$
\begin{equation*}
h(v, w)=-\langle d Y(v), d x(w)\rangle \tag{9}
\end{equation*}
$$

2.1.3. Relative normalizations. A normalization (Y, y) of x is called relative if $\tau \equiv 0$ in the structure equation of Weingarten. One can easily prove that any non-degenerate hypersurface admits infinitely many different relative normalizations. A triple (x, Y, y) is called a relative hypersurface if x is non-degenerate and its normalization (Y, y) is relative. Note that for such hypersurfaces the shape operator S is h-self adjoint and the induced connection ∇ is also Ricci-symmetric (see [9]). From now on we consider relative hypersurfaces only.
2.1.4. The cubic form. An important invariant in relative hypersurface geometry is the cubic form. It is defined as follows:

Denote by K the symmetric difference tensor with

$$
K(u, v):=\frac{1}{2}\left(\nabla_{u} v-\nabla_{u}^{*} v\right)
$$

Then the cubic form C, defined by $C(u, v, w):=h(K(u, v), w)$, is totally symmetric in its three arguments (see [9, Section 4.4.3]).
2.1.5. Extrinsic curvature functions. If S is diagonizable with eigenvalues k_{i} for $i=1, \ldots, n$, we denote by

$$
\begin{equation*}
H_{l}:=\binom{n}{l}^{-1} \sum_{1 \leq i_{1}<\cdots<i_{l} \leq n} k_{i_{1}} \cdots k_{i_{l}} \tag{10}
\end{equation*}
$$

the normalized elementary symmetric functions for $l=1, \ldots, n$, and set $H_{0}:=1$. We call k_{i} a (relative) principal curvature and the functions H_{l} extrinsic higher mean curvature functions. In case rk $S=n$ we also consider the principal radii of curvature R_{i} and the corresponding normalized elementary symmetric functions

$$
P_{l}:=\binom{n}{l}^{-1} \sum_{1 \leq i_{1}<\cdots<i_{l} \leq n} R_{i_{1}} \cdots R_{i_{l}}
$$

where again $P_{0}:=1$.
Except for Section 6, we assume the existence of an eigenbasis of the relative shape operator S at each point of M. In particular this is guaranteed for locally strongly convex relative hypersurfaces, while in the case of a Euclidean normalization we can omit the convexity assumption as then the shape operator S always has an eigenbasis. Below we will consider both types of extrinsic curvature functions: H_{l} and P_{l}.
2.2. Euclidean hypersurfaces. The Euclidean space \mathbb{R}^{n+1} and its dual vector space are identified, and now the scalar product denotes the inner product. For a hypersurface the Euclidean unit normal μ and the associated conormal coincide, i.e. $(Y, y)=(\mu, \mu)$. We denote the first fundamental form by $I(u, v):=\langle d x(u), d x(v)\rangle$, and by $I I$ and III the second and the third fundamental form; $I I$ is an element of the conformal class \mathfrak{C} of relative metrics, namely, in case of a Euclidean normalization, $h=I I$ in the structure equations (5). A Euclidean hypersurface x is non-degenerate if and only if rk $I I=n$; this is equivalent to the fact that the Euclidean shape (Weingarten) operator S has maximal rank; unless otherwise stated, we will assume that rk $S=n$ below.

If $\operatorname{rk} S=n$ then I and $I I I$ are Riemannian metrics, $I I$ is semi-Riemannian (and Riemannian exactly if x is locally strongly convex). Recall that S is self adjoint with respect to all three fundamental forms, and that

$$
I I(u, v)=I(S u, v) \quad \text { and } \quad I I I(u, v)=I(S u, S v)
$$

The Levi-Civita connections $\nabla(I)$ and $\nabla(I I I)$ of I and $I I I$, resp., satisfy $\nabla(I I I)_{u} v=S^{-1} \nabla(I)_{u} S v$ (see e.g. [11]).

From [9] we recall the following characterization; note that the covariant derivative $\nabla(I I I) I I$ is totally symmetric.

Proposition 2.1. Let x be a non-degenerate hypersurface in Euclidean space with absolute Gau β-Kronecker curvature $G:=\left|H_{n}\right|$. Then x is a quadric if and only if, in local components,

$$
\begin{equation*}
\nabla(I I I)_{k} I I_{i j}+\frac{1}{n+2}\left(I I_{i j} \partial_{k} \ln G+I I_{j k} \partial_{i} \ln G+I I_{k i} \partial_{j} \ln G\right) \equiv 0 \tag{11}
\end{equation*}
$$

2.3. Blaschke hypersurfaces. Considering \mathbb{R}^{n+1} and $\mathbb{R}^{n+1 *}$ as vector spaces, for each we have a one-dimensional vector space of determinant forms, and the duality of determinant forms is given by a pairing (det, det*).

Consider a non-degenerate hypersurface in affine space \mathbb{R}^{n+1} with a given relative normalization (Y, y). Then any pair (det, det*) induces a pair of volume forms on M by

$$
\begin{aligned}
\omega\left(v_{1}, \ldots, v_{n}\right) & :=\operatorname{det}\left(d x\left(v_{1}\right), \ldots, d x\left(v_{n}\right), y\right) \\
\omega^{*}\left(v_{1}, \ldots, v_{n}\right) & :=\operatorname{det}\left(d Y\left(v_{1}\right), \ldots, d Y\left(v_{n}\right), Y\right)
\end{aligned}
$$

where $\left(v_{1}, \ldots, v_{n}\right)$ is a frame. Any other dual pair (det ${ }^{\sharp}, \operatorname{det}^{\sharp *}$) with

$$
\operatorname{det}^{\sharp}=c \operatorname{det} \quad \text { and } \quad \operatorname{det}^{\sharp *}=c^{-1} \operatorname{det}^{*}
$$

analogously induces volume forms ω^{\sharp} and $\omega^{\sharp *}$. On any frame, we have

$$
\omega\left(v_{1}, \ldots, v_{n}\right) \cdot \omega^{*}\left(v_{1}, \ldots, v_{n}\right)=\omega^{\sharp}\left(v_{1}, \ldots, v_{n}\right) \cdot \omega^{\sharp *}\left(v_{1}, \ldots, v_{n}\right) .
$$

Recall that the volume forms det and det* are parallel with respect to the canonical flat connections in \mathbb{R}^{n+1} and $\mathbb{R}^{(n+1) *}$, resp. Modulo non-zero con-
stants there is a unique volume form that is parallel to the canonical flat connection in the vector space considered.

Analogously the induced volume forms ω and ω^{*} are parallel with respect to the connections ∇ and ∇^{*}, resp., and their parallelity determines them uniquely modulo non-zero constants.

To characterize so called Blaschke hypersurfaces within the class of relative hypersurfaces in affine space \mathbb{R}^{n+1} without fixing a determinant form in the ambient space, we use the foregoing facts and proceed as follows:

Definition 2.2. A relative hypersurface (x, Y, y) in affine space \mathbb{R}^{n+1} is called a Blaschke hypersurface if $\omega=c \omega^{*}$ for some non-zero constant $c \in \mathbb{R}$.

Fixing an orientation on the ambient space, the induced volume forms will have the same orientation and thus c will be positive. Moreover, we can compare the induced oriented volume forms ω and ω^{*} with the oriented Riemannian volume form $\omega(h)$ of the relative metric h and characterize a Blaschke hypersurface in affine space \mathbb{R}^{n+1} as follows (compare [9, Sections 4.4.7-4.4.9 and 6.2]):

LEmma 2.3. A relative hypersurface (x, Y, y) in affine space \mathbb{R}^{n+1} is a Blaschke hypersurface if one of the following conditions is satisfied:

- any two of the three oriented volume forms $\omega, \omega^{*}, \omega(h)$ coincide modulo constant positive factors;
- the Tchebychev form T vanishes identically (apolarity condition), where with the above notations

$$
2 n T:=d \ln \frac{\omega\left(v_{1}, \ldots, v_{n}\right)}{\omega^{*}\left(v_{1}, \ldots, v_{n}\right)}
$$

LEMMA 2.4. A non-degenerate Blaschke hypersurface is a hyperquadric if and only if $C=0$.

3. Parallel hypersurfaces

3.1. The deformation operator. For a relative hypersurface (x, Y, y) on M consider the one-parameter family of mappings

$$
x_{t}:=x+t y
$$

If x_{t} is an immersion we say that t is admissible. Consider the differential

$$
d x_{t}=d x+t d y=d x(\mathrm{id}-t S)
$$

which shows that the mapping x_{t} is parallel to x. Moreover, if t is admissible then $\left(Y_{t}, y_{t}\right):=(Y, y)$ is a relative normalization for x_{t}. This can be seen as follows:

As $\left\langle Y, d x_{t}(v)\right\rangle=0$ for all tangent vectors v, and as y is transversal to the tangent plane of x_{t}, we immediately see that $\left(Y_{t}, y_{t}\right):=(Y, y)$ is a
normalization of x_{t}, and the following lemma shows that this normalization is again relative if L_{t} has maximal rank.

Lemma 3.1.
(i) x_{t} is an immersion if and only if $\operatorname{rk} L_{t}=n$, as

$$
d x_{t}(v)=d x \circ L_{t}(v)
$$

for any tangent vector v. The set of points of M where x_{t} is an immersion is open in M.
(ii) If $\mathrm{rk} L_{t}=n$ then the pair $\left(Y_{t}, y_{t}\right):=(Y, y)$ defines a relative normalization of each (admissible) hypersurface immersion x_{t} with relative shape operator $S_{t}=L_{t}^{-1} S$.

Proof. For the proof of (ii) we use the definition of x_{t} and the Weingarten structure equation to calculate

$$
-d x_{t}\left(S_{t} v\right)=d y_{t}(v)=d y(v)=-d x(S v)=-d x_{t}\left(L_{t}^{-1} S v\right)
$$

We call

$$
L_{t}:=\mathrm{id}-t S
$$

the deformation operator of the deformation $x \mapsto x_{t}$; this operator completely describes the deformation; in particular this means that we will be able to describe the deformation of all intrinsic and extrinsic invariants in terms of L_{t}.

REmARK 3.2. (i) For the following, we emphasize that, when we consider a one-parameter parallel family $\left\{x_{t}\right\}$, we assume, in general, that t is admissible, meaning that $\mathrm{rk} L_{t}$ is maximal for all $p \in M$; moreover, in general, the mark " t " is used only for admissible parameters t. We drop the assumption that t is admissible in Section 6; there, under appropriate assumptions, we will prove the existence of admissible parameter values t.
(ii) If (x, Y, y) is a Blaschke hypersurface then the parallel deformation $x \mapsto x_{t}$ in general does not lead to a Blaschke hypersurface $\left(x_{t}, Y_{t}, y_{t}\right)=$ $\left(x_{t}, Y, y\right)$ again; see below.
(iii) Note that $L_{t}=\mathrm{id}-t S$ is positive definite for sufficiently small t in a sufficiently small neighborhood of any point, and if x_{t} is considered in case $\operatorname{rk} L_{t}=n$ only, we necessarily have $\operatorname{det} L_{t}>0$ for such sufficiently small t. But note that det L_{t} is a polynomial in t with only finitely many zeros (at a fixed point of M) and that a parallel deformation might be of interest also when $\operatorname{det} L_{t}<0$.
3.2. Structure equations for x_{t}. As stated above, the geometry of a relative hypersurface $\left(x_{t}, Y_{t}, y_{t}\right)$ can be described in terms of its induced volume form and the induced geometric invariants defined via the structure
equations of Gauß and Weingarten. For the invariants of a relative hypersurface $\left(x_{t}, Y_{t}, y_{t}\right)=\left(x_{t}, Y, y\right)$ we use an obvious notation with appropriate mark " t ".

$$
\begin{aligned}
\bar{\nabla}_{v} d x_{t}(w) & =d x_{t}\left(\nabla(t)_{v} w\right)+h_{t}(v, w) y_{t}, \\
d y_{t}(v) & =d x_{t}\left(-S_{t}(v)\right), \\
\bar{\nabla}_{v} d Y_{t}(w) & =d Y_{t}\left(\nabla^{*}(t)_{v} w\right)+\frac{1}{n-1} \operatorname{Ric}(t)^{*}(v, w)\left(-Y_{t}\right) ;
\end{aligned}
$$

here and in the following the ${ }^{*}$-notation marks invariants of the ∇^{*}-geometry.
3.3. Relation between the invariants of x and x_{t}. Straightforward computations give the following relations between the invariants of x and x_{t}, and how they depend on the deformation operator L_{t}; moreover we list further properties of these invariants.

Considering the relative shape operators S and S_{t}, we now restrict to the case where S is diagonalizable, and thus also L_{t} and S_{t} are diagonalizable. In this case we have (joint) eigenbases for S and S_{t}. In a few cases (which we explicitly state) we allow that $\mathrm{rk} S<n$. We make frequent use of the fact that L_{t} satisfies the Codazzi equations relative to the connection ∇, which implies the intrinsic properties stated in (i) and (iii) below; for details see [7, [8, 11].
3.4. Invariants of x and x_{t}. Assume that L_{t} has maximal rank and S is diagonalizable. The following is a list of relations between invariants of x and x_{t}.
(i) Relative metric and its volume form:
(a) (see [9, Section 4.8.3])

$$
\begin{aligned}
h_{t}(u, v) & =h\left(L_{t} u, v\right)=h\left(u, L_{t} v\right)=h(u, v)-t h(u, S v) \\
& =h(u, v)-t \frac{1}{n-1} \operatorname{Ric}^{*}(u, v) \\
& =h(u, v)-t \frac{1}{n-1} \operatorname{Ric}^{*}(t)(u, v) .
\end{aligned}
$$

(b) $\omega\left(h_{t}\right)=\operatorname{det}\left(L_{t}\right)^{n / 2} \omega(h)$,
(c) $\nabla(h)-\nabla\left(h_{t}\right)=K-K(t)$.
(ii) Connections and their parallel volume forms:
(d) $\nabla(t)_{u} v=L_{t}^{-1} \nabla_{u} L_{t} v$, briefly $\nabla(t)=L_{t}^{-1} \nabla L_{t}$,
(e) $\nabla^{*}(t)=\nabla^{*}$,
(f) $\omega(t)=\operatorname{det}\left(L_{t}\right)^{n} \omega$ and $\omega^{*}(t)=\omega^{*}$; recall that parallel volume forms are unique modulo a non-zero constant factor.
(iii) Intrinsic curvature:

Denote by R and $R(t)$ the $(1,3)$ curvature operators of the induced connections ∇ and $\nabla(t)$, resp., and denote by R^{*} and $R(t)^{*}$ the corresponding operators for ∇^{*} and $\nabla(t)^{*}$; then
(g) $L_{t} R(t)(u, v) w=R(u, v) L_{t} w$, and thus
(h) $R(t)(u, v) w=R(u, v) w+t[S R(t)(u, v) w-R(u, v) S w]$,
(j) if rk $S=n$ then

$$
\begin{aligned}
S^{-1} R(u, v) S w & =R^{*}(u, v) w=R^{*}(t)(u, v) w \\
& =S_{t}^{-1} R(t)(u, v) S_{t} w
\end{aligned}
$$

(iv) Extrinsic curvature:
(k) $S_{t}=L_{t}^{-1} S$,
(l) the operators S, L_{t} and S_{t} are self adjoint with respect to the relative metrics h and h_{t}, resp.
(m) if S has an eigenbasis then the operators S, L_{t} and finally S_{t} have the same eigenbasis (see e.g. [11], 8]); thus S, L_{t} and S_{t} pairwise commute; the corresponding eigenvalues satisfy:
(n) $\quad k_{i}(t)=\frac{k_{i}}{1-t k_{i}}$ and, for $k_{i}(t) \neq 0, \frac{1}{k_{i}(t)}=R_{i}(t)=R_{i}-t$,
(p) $\quad k_{i}=\frac{k_{i}(t)}{1+t k_{i}(t)}$ and $R_{i}=R_{i}(t)+t$.
(v) Further properties:
(q) if x is locally strongly convex and $\operatorname{det} L_{t}>0$ then x_{t} is locally strongly convex; then h and also h_{t} are definite (and positive definite for an appropriate orientation of the normalization);
(r) the pairs (∇, S) and $\left(\nabla, L_{t}\right)$ satisfy the Codazzi equations (see [9, Section 4.8.1]).
(vi) Cubic form:
(s) $K(t)(u, v)+\frac{t}{2} L_{t}^{-1}\left(\nabla_{u} S\right) v=K(u, v)$,
(t) $C(t)(u, v, w)=C\left(u, v, L_{t} w\right)-\frac{1}{2} \operatorname{th}\left(\left(\nabla_{u} S\right) v, w\right)$.
(vii) Support function:

Define the support function of x with respect to a fixed $c_{0} \in \mathbb{R}$ by $\rho\left(c_{0}\right):=\left\langle Y, x-c_{0}\right\rangle$. Then $\rho(t)\left(c_{0}\right)=\rho\left(c_{0}\right)-t$.

Proof. The proof for $\omega(t)$ in (f) follows from (b) above and [9, Lemma 3.4.4.1.ii]. The proof of (s) uses the definition of K and (e):

$$
\begin{aligned}
(K(t)-K)(u, v) & =\frac{1}{2}\left(L_{t}^{-1} \nabla_{u} L_{t} v-\nabla_{u} v\right) \\
& =\frac{1}{2} L_{t}^{-1}\left(\nabla_{u} L_{t} v-L_{t} \nabla_{u} v\right) \\
& =\frac{1}{2} L_{t}^{-1}\left(\nabla_{u} L_{t}\right) v=-\frac{1}{2} t L_{t}^{-1}\left(\nabla_{u} S\right) v
\end{aligned}
$$

3.5. Deformation invariants. If, in the following, a condition is satisfied for some t, it is satisfied for any admissible t. In other words, the foregoing list of invariants implies that the following invariants of a parallel relative family $\left\{x_{t}\right\}$ are independent of t :
(1) $L_{t} \nabla(t) L_{t}^{-1}=\nabla$,
(2) $\nabla^{*}(t)=\nabla\left(h_{t}\right)-K(t)=\nabla(h)-K=\nabla^{*}$,
(3) $\frac{1}{n-1} \operatorname{Ric}(t)^{*}(u, v)=h_{t}\left(S_{t} u, v\right)=h(S u, v)=\frac{1}{n-1} \operatorname{Ric}^{*}(u, v)$,
(4) $\operatorname{det}\left(L_{t}\right)^{-n / 2} \omega\left(h_{t}\right)=\omega(h)$,
(5) $L_{t} R(t)(u, v) L_{t}^{-1} w=R(u, v) w$,
(6) $L_{t} S_{t}=S$,
(7) $R_{i}(t)+t=R_{i}$ for $i=1, \ldots, n$,
(8) $x_{t}+R_{i}(t) y_{t}=x+R_{i} y$, and thus $x_{t}+P_{1}(t) y_{t}=x+P_{1} y$,
(9) $\rho(t)+t=\rho$.

Remark 3.3. Following [9, Section 4.6], for rk $S=n$ the mappings

$$
y: M \rightarrow \mathbb{R}^{n+1}, \quad Y: M \rightarrow \mathbb{R}^{(n+1) *}
$$

are immersions themselves and then are interpreted as relative spherical indicatrices or relative Gauß maps. In this case the symmetric bilinear form $\hat{S}(u, v):=h(S u, v)$ is the joint spherical metric of both indicatrices.

If $\mathrm{rk} S=n$ then also rk $S_{t}=n$, thus the spherical metric \hat{S}_{t} is defined for all admissible t; then relation (3) in the foregoing list of deformation invariants states that all relative hypersurfaces in the family $\left\{x_{t}\right\}$ have the same spherical metric.
3.6. The deformation $x_{t} \mapsto x_{t+s}$. So far we only considered the deformation $x \mapsto x_{t}$. To study the deformations $x_{t} \mapsto x_{t+s}$ for admissible arguments, it is necessary to extend our notation as follows. Set

$$
x_{t+s}:=x_{t}+s y_{t}, \quad \text { where } \quad y_{t}=y
$$

then

$$
d x_{t+s}(v)=\left(d x_{t}+s d x_{t}\left(-S_{t}\right)\right)(v)=d x(\mathrm{id}-(t+s) S)(v)
$$

To describe the deformation $x_{t} \mapsto x_{t+s}$ appropriately, we introduce the operator

$$
L(t, s):=\mathrm{id}-s S_{t} \quad \text { with } \quad L(0, s):=L_{s}
$$

then

$$
d x_{t+s}(v)=d x_{t}(L(t, s))(v)
$$

One easily verifies:
Lemma 3.4.

$$
\begin{gathered}
L_{t} \cdot L(t, s)=L(0, t) \cdot L(t, s)=L(0, t+s)=L_{t+s} \\
L(0, t) \cdot L(t,-t)=\mathrm{id}
\end{gathered}
$$

From the foregoing lemma the set $\{L(t, s)\}$ forms a local one-parameter group.
3.7. Curvature relations. As emphasized above, considering extrinsic curvature in relative hypersurface theory, we assume that S has an eigenbasis. For simplicity assume now that there exists a maximal non-empty open interval

$$
\mathfrak{I}(U):=\left(-\epsilon_{1}(U), \epsilon_{2}(U)\right),
$$

where $0<\epsilon_{i}(U) \in \mathbb{R}$ for $i=1,2$, such that L_{t} has maximal rank for $t \in \mathfrak{I}(U)$ and $p \in U$, where $U \subset M$ is open.

LEMmA 3.5. Consider the one-parameter family $\left\{x_{t}\right\}$ on a chart $U \subset M$ and assume that there is a non-empty interval $\mathfrak{I}(U)$ as stated above. Then

$$
S_{t_{2}+t_{1}}=\left(L_{t_{2}}\right)^{-1}\left(L_{t_{1}}\right)^{-1} S=\left(L_{t_{2}}\right)^{-1} S_{t_{1}} .
$$

We have the following relations between curvature functions of x_{t} and x.
Proposition 3.6.

$$
\begin{align*}
& \binom{n}{k} P_{k}(t)=\sum_{j=0}^{k}\binom{n}{j} P_{j}(t) t^{k-j} \tag{12}\\
& \binom{n}{k} P_{k}(t)=\sum_{j=0}^{k}\binom{n}{j} P_{j}(-t)^{k-j} \tag{13}\\
& \binom{n}{k} H_{k}(t)=\sum_{j=0}^{n-k}\binom{n}{n-j} H_{n-j}(t) \operatorname{det} L_{t} \cdot t^{k-j} \tag{14}
\end{align*}
$$

Proof. The first relation follows directly from $R_{i}=R_{i}(t)+t$. For the last relation apply $H_{k}=P_{n-k} / P_{n}=H_{n} P_{n-k}$ for $k=0,1, \ldots, n$.
3.8. Parallel relative hypersurfaces in dimension $n=2$. As before, we assume that S is diagonalizable. We consider a chart U for x without umbilics. Consequently, S_{t} is without umbilics for any admissible t. On U we choose a curvature line parametrization such that S has a diagonal representation, and h, h_{t} and S_{t} have the following matrix representations:

$$
\begin{array}{cc}
h:\left(\begin{array}{cc}
h_{11} & 0 \\
0 & h_{22}
\end{array}\right), & h_{t}:\left(\begin{array}{cc}
\left(1-k_{1} t\right) h_{11} & 0 \\
0 & \left(1-k_{2} t\right) h_{22}
\end{array}\right) \\
S_{t}:\left(\begin{array}{cc}
\frac{k_{1}}{1-t k_{1}} & 0 \\
0 & \frac{k_{2}}{1-t k_{2}}
\end{array}\right) .
\end{array}
$$

3.9. Parallel deformation in special geometries. We study families of parallel hypersurfaces in special geometries, namely in the most important
relative geometries (see [9]). The parallel deformation of a centroaffine hypersurface is of no interest as its transversal field is given by its position vector. Thus here we restrict to the study of parallel hypersurfaces in Euclidean and in Blaschke geometry.
3.9.1. Parallel hypersurfaces in Euclidean geometry. It is trivial to verify that the parallel deformation of a hypersurface with Euclidean normalization gives a family of parallel hypersurfaces with the same parallel Euclidean normal μ. We refer to [11] and recall that, for $x_{t}=x+t \mu$, the first and the second fundamental forms are related by

$$
\begin{align*}
I(t)(u, v) & =I\left(L_{t} u, L_{t} v\right) \tag{15}\\
I I(t)(u, v) & =I I\left(L_{t} u, v\right)=I I\left(u, L_{t} v\right) \tag{16}
\end{align*}
$$

for all t (which here and later again means for all admissible t). As the pair $\left(\nabla(I), L_{t}\right)$ satisfies the Codazzi equations, we have (see [11])

$$
\nabla(I(t))_{u} v=L_{t}^{-1} \nabla(I)_{u} L_{t} v \quad \text { for all } t
$$

The Weingarten operator always has an eigenbasis, thus at the same time it is an eigenbasis of L_{t} for all t. As the one-parameter family $\left\{x_{t}\right\}$ has parallel normals, the third fundamental forms coincide: $I I I(t)=I I I$ for all t. In an obvious short notation we have

$$
S^{-1} \cdot \nabla(I) \cdot S=\nabla(I I I)=\nabla(I I I(t))=S_{t}^{-1} \cdot \nabla(I(t)) \cdot S_{t}
$$

REmark 3.7. The relation (15) and the definition of L_{t} finally give

$$
\begin{align*}
I(t) & =I+2 t \cdot I I+t^{2} \cdot I I I \tag{17}\\
I I(t) & =I I-t \cdot I I I \tag{18}
\end{align*}
$$

In dimension $n=2$, the foregoing relations and

$$
K(t) I(t)-2 H(t) I I(t)+I I I(t)=0
$$

imply

$$
\begin{aligned}
0 & =\mathrm{id}-2\left(t+P_{1}(t)\right) \cdot S+\left(t^{2}+2 t P_{1}(t)+P_{2}(t)\right) \cdot S^{2} \\
& =\mathrm{id}-2 P_{1} \cdot S+P_{2} \cdot S^{2}
\end{aligned}
$$

3.9.2. Parallel hypersurfaces in Blaschke's hypersurface theory. While the parallel deformation of a Euclidean hypersurface gives a family of Euclidean hypersurfaces with the same Euclidean normal, the situation is different in Blaschke's hypersurface theory. This is seen from the following lemma.

Lemma 3.8. Let (x, Y, y) be a non-degenerate hypersurface with Blaschke normalization, and let $x_{\tau}=x+\tau y$, for $\tau \neq 0$ fixed and admissible, be a hypersurface in the parallel relative family $\left\{x_{t}\right\}$. Then the following statements are equivalent:
(i) $\left(x_{\tau}, Y_{\tau}, y_{\tau}\right)=\left(x_{\tau}, Y, y\right)$ is again a Blaschke hypersurface,
(ii) $\operatorname{det} L_{\tau}=\mathrm{const} \neq 0$ on M,
(iii) the relative Gauß-Kronecker curvatures coincide modulo a non-zero constant on M :

$$
H_{n}(\tau)=\text { const } \cdot H_{n} \neq 0
$$

Proof. From Subsection 3.4 we know that

$$
\omega(\tau)^{*}=\omega^{*} \quad \text { and } \quad \omega(h(\tau))=\left(\operatorname{det}\left(L_{\tau}\right)^{n / 2}\right) \cdot \omega(h)
$$

The characterization of Blaschke's geometry within relative geometry states that x_{τ} is a Blaschke hypersurface if and only if $\omega(\tau)^{*}=c \omega(h(\tau))$ with $0<c \in \mathbb{R}$ (see Lemma 2.3). Both statements imply that x_{τ} is a Blaschke hypersurface if and only if $\operatorname{det} L_{\tau}=$ const. Now (iii) follows from $3.4(\mathrm{k})$.
4. Proper relative spheres and quadrics. We recall the characterization of two important classes of hypersurfaces in relative geometry. As above, the parameter t is used only for admissible t.

REMARK 4.1. (i) Quadrics. In relative geometry, a non-degenerate quadric can be characterized by the vanishing of the trace-free part of the difference tensor K; it is well known that the trace-free part of K is the same tensor in any relative geometry, independent of the relative normalization chosen on the hypersurface x. Recall that K itself is trace-free exactly in Blaschke's unimodular affine hypersurface theory (apolarity), and recall the characterization of quadrics in Blaschke's hypersurface geometry, given in Section 2.3 (see [9, Sections 5.1 and 7.1]). As above, a quadric with center is called a centered quadric.
(ii) Relative spheres. A relative hypersurface (x, Y, y) is a proper relative sphere with center c_{0} if the position vector $x-c_{0}$ of the hypersurface and the relative normal y satisfy $y=\lambda\left(x-c_{0}\right)$. A proper relative sphere can be characterized by $S=H$. id with relative mean curvature $H:=H_{1}=$ const $\neq 0$ (see [9]).

REMARK 4.2. (a) x is a proper relative sphere with center c_{0} if and only if $\rho\left(c_{0}\right)=$ const $\neq 0$. This is obvious from [9, Section 4.13.1].
(b) x is a proper relative sphere with center if and only if x_{t} is a proper relative sphere with center; this follows from 3.4 (vii).
(c) The hypersurface x is a relative sphere with $S=H$ id if and only if the hypersurface x_{t} is a relative sphere with $S_{t}=\frac{H}{1-t H}$ id.
4.1. Parallel deformation of quadrics in Blaschke's geometry. This and the following subsection compare parallel deformations of hyperquadrics in different hypersurface theories. From both subsections we get the proof of Theorem 1.2 .

Proposition 4.3. Let x be a non-degenerate centered hyperquadric with Blaschke structure in unimodular \mathbb{R}^{n+1}. Then any x_{t} is a centered hyperquadric.

Proof. Every non-degenerate centered hyperquadric is a proper affine sphere, thus $\nabla S \equiv 0$. Now $3.4(\mathrm{~s})$ states that $K(t) \equiv 0$ if and only if $K \equiv 0$.
4.2. Parallel deformation of quadrics in Euclidean geometry. We list some trivial observations.

Observation.

(i) $p \in M$ is umbilical for x if and only if p is umbilical for x_{t}.
(ii) If x is spherical then x_{t} is spherical.
(iii) In Euclidean geometry, S is always diagonalizable with eigenbasis $\left\{e_{i}\right\}$, thus L_{t} and S_{t} have the same eigenbasis.
(iv) Assume that $S e_{i}=k_{i} e_{i}$ and $I\left(e_{i}, e_{j}\right)=\delta_{i j}$ for $i, j=1, \ldots, n$ at $p \in M$. Then at $p \in M$:

$$
\begin{aligned}
I I\left(e_{i}, e_{j}\right) & =k_{i} \delta_{i j}, & I I I\left(e_{i}, e_{j}\right) & =k_{i} k_{j} \delta_{i j}, \\
L_{t}\left(e_{i}\right) & =\left(1-t k_{i}\right) e_{i}, & I(t)\left(e_{i}, e_{j}\right) & =\left(1-t k_{i}\right)\left(1-t k_{j}\right) \delta_{i j}, \\
I I(t)\left(e_{i}, e_{j}\right) & =k_{i}\left(1-t k_{j}\right) \delta_{i j}, & I I I(t)\left(e_{i}, e_{j}\right) & =\operatorname{III}\left(e_{i}, e_{j}\right) .
\end{aligned}
$$

(v) $I I(t)=I I-t \cdot I I I$.
(vi) $\operatorname{det} L_{t} \cdot H_{n}(t)=H_{n}$.
(vii) x is non-degenerate if and only if x_{t} is non-degenerate.
(viii) $\nabla(I I I(t)) I I(t)=\nabla(I I I) I I$.

Lemma 4.4. Let x be a non-degenerate, non-spherical quadric. Then $H_{n} \neq$ const.

Proof. Assume that $H_{n}=$ const $=c$. Then $c \neq 0$ as x is non-degenerate. From the quadric characterization it follows that $\nabla(I I I) I I \equiv 0$ on M. As $I I I$, considered as a Riemannian metric, has constant curvature 1, this metric is irreducible, thus $I I=\lambda \cdot I I I$ with $\lambda^{n} \cdot H_{n}=1$, and so x is spherical; a contradiction.

Notation. Let Z be a $(0,3)$-tensor on M with local components $Z_{i j k}$; then $\mathfrak{z}(Z)$ denotes the totally symmetrized $(0,3)$-tensor with local components

$$
\mathfrak{z}(Z)_{i j k}:=Z_{i j k}+Z_{j k i}+Z_{k i j} .
$$

Proposition 4.5. Let x be part of a Euclidean non-degenerate centered quadric without umbilics; then there is no quadric in the parallel family x_{t}.

Proof. Both x and x_{t} satisfy the quadric equation (11); we set $G:=\left|H_{n}\right|$ and $G(t):=\left|H_{n}(t)\right|$, and obey (18) and $G(t) \cdot\left|\operatorname{det} L_{t}\right|=G$. Then

$$
\begin{aligned}
0= & \nabla(I I I(t)) I I(t)+\frac{1}{n+2} \mathfrak{z}(I I(t) \otimes d \ln G(t)) \\
= & {\left[\nabla(I I I) I I+\frac{1}{n+2} \mathfrak{z}(I I \otimes d \ln G)\right]-\frac{1}{n+2} \mathfrak{z}\left(I I \otimes d \ln \operatorname{det}\left|L_{t}\right|\right) } \\
& -\frac{1}{n+2} \cdot t \cdot \mathfrak{z}(I I I \otimes d \ln G(t))
\end{aligned}
$$

As x is a quadric, we have [...] $=0$. We evaluate the last equation at an arbitrary point $p \in M$ and choose a local frame $\left\{e_{i}\right\}$ such that, at p,

$$
I I_{i j}=k_{i} \delta_{i j} \quad \text { and } \quad I I I_{i j}=k_{i} k_{j} \delta_{i j} .
$$

Then, for fixed indices k and $i=j$,
$I I_{i i} e_{k}\left(\ln \operatorname{det}\left|L_{t}\right|\right)+t \cdot I I I_{i i} e_{k}(\ln G(t))=k_{i}\left\{e_{k}\left(\ln \operatorname{det}\left|L_{t}\right|\right)+t k_{i} \cdot e_{k}(\ln G(t))\right\}$. As x is non-degenerate we have $k_{i} \neq 0$ for any $i=1, \ldots, n$, thus

$$
e_{k}\left(\ln \operatorname{det}\left|L_{t}\right|\right)+t k_{i} \cdot e_{k}(\ln G(t))=0
$$

This equation is true for any pair (i, k); recall that $G(t) \neq$ const; thus we finally get $k_{1}=\cdots=k_{n}$ at p; this is a contradiction, as p cannot be umbilical. Therefore x_{t} cannot be part of a quadric.
4.3. A characterization of proper relative spheres. One can characterize relative spheres in terms of preservation of intrinsic invariants.

Proposition 4.6. Let $x: M \rightarrow \mathbb{R}^{n+1}$ be a relative hypersurface and $\operatorname{rk} S>1$. Consider a parallel deformation x_{t} and let x_{t} be an immersion. Then x is a proper relative sphere if and only if the curvature tensors of the induced connections coincide: $R(t)=R$.

Proof. We need only prove that $R(t)=R$ implies that x is a proper relative sphere. This assumption, the definition of L_{t} and $3.4(\mathrm{~g})$ imply that

$$
R(u, v) S=S R(u, v) \quad \text { for any } u, v
$$

Using now the assumption rk $S>1$ and the Gauß and Ricci equations, one easily sees that S must be a multiple of the identity.
5. Hypersurfaces with parallel shape operator. Relative hypersurfaces with parallel shape operator were investigated in [1]. There the author proved:

LEmma 5.1. Let (x, Y, y) be a relative hypersurface; then we have the following equivalences:
(i) $\nabla S \equiv 0$,
(ii) $\nabla^{*} S \equiv 0$,
(iii) $\nabla(h) S \equiv 0$.

In particular the author gave a complete classification in dimensions $n=$ 2,3 of such hypersurfaces without any restriction on $\mathrm{rk} S$. If (x, Y, y) is a Blaschke hypersurface and $\operatorname{rk} S=n \geq 3$ then $\nabla S \equiv 0$ implies that (x, Y, y) is an affine sphere (see [7, Corollary 3.11]).

If $\operatorname{rk} S=n$ then the list in Subsection 3.4 and [7, Section 3] have the following consequences:

Corollary 5.2.
(a) If, for a parallel family $x_{t}=x+t y$, the relation $\nabla S \equiv 0$ holds for $x=x_{0}$ then, for any admissible t, the following conditions are satisfied:
(i) $\nabla=\nabla(t)$.
(ii) $K=K(t)$.
(iii) $\nabla(h)=\nabla(h(t))$.
(iv) $\nabla(t) S_{t} \equiv 0$.

Vice versa, if for some admissible t one of conditions (i)-(iv) is satisfied then all these conditions hold for any admissible t, and additionally $\nabla S \equiv 0$.
(b) If $\nabla S \equiv 0$ then, for any admissible t, $\operatorname{det} L_{t}=$ const. Namely, (iii) implies that the Riemannian volume forms coincide (modulo a non-zero constant), and then 3.4(b) gives the assertion. This has a remarkable consequence: As the polynomial $P(t):=\operatorname{det} L_{t}$ has only finitely many roots, we have $\operatorname{det} L_{t} \neq 0$ for almost all t. Thus for hypersurfaces satisfying $\nabla S \equiv 0$ only finitely many t are non-admissible.
(c) We have $\nabla S \equiv 0 \Leftrightarrow \nabla L_{t} \equiv 0$ for any (admissible) t. Then it follows from [7, Corollary 3.6] that x and x_{t} are affine homothetic if $n>2$.
(d) Recall Lemma 3.8. If x is a Blaschke hypersurface with $\nabla S \equiv 0$ then $\operatorname{det} L_{t}=$ const $\neq 0$, and x_{t} is again a Blaschke hypersurface.
Proof. (i) The relation $\nabla S \equiv 0$ and the definitions of $\nabla(t)$ and L_{t} give

$$
\left.L_{t} \nabla(t)\right)_{u} v=\nabla_{u} v-t \cdot \nabla_{u}(S v)=\nabla_{u} v-t \cdot S \nabla_{u} v=L_{t} \nabla_{u} v .
$$

(ii) follows from 3.4 (s).
(iii) follows from $\nabla(h)=\nabla-K$ (see [9, Section 4.4.3]).
(iv) We have

$$
\begin{aligned}
\left(\nabla(t)_{u} S_{t}\right) v & =\nabla(t)_{u}\left(S_{t} v\right)-S_{t}\left(\nabla(t)_{u} v\right)=L_{t}^{-1}\left(\nabla_{u} L_{t} L_{t}^{-1} S\right) v-L_{t}^{-1} S\left(\nabla_{u} v\right) \\
& =L_{t}^{-1}\left(\nabla_{u} S\right) v
\end{aligned}
$$

6. Weingarten hypersurfaces. In the literature, a Weingarten hypersurface is defined by some differentiable relation between its curvature functions, e.g. there exists a differentiable function \mathfrak{W}_{i}, where $i \in\{H, P, k, R\}$, such that

- $\mathfrak{W}_{H}\left(H_{1}, \ldots, H_{n}\right)=0$, or
- $\mathfrak{W}_{P}\left(P_{1}, \ldots, P_{n}\right)=0$, or
- $\mathfrak{W}_{k}\left(k_{1}, \ldots, k_{n}\right)=0$, or
- $\mathfrak{W}_{R}\left(R_{1}, \ldots, R_{n}\right)=0$.

The subindices for \mathfrak{W} mark the type of the relation. In case such a relation is linear, the term linear Weingarten hypersurface is used. In the Introduction we pointed out that such linearity relations are not necessarily equivalent.

We will specify below when the assumption $\mathrm{rk} S=n$ is needed.
6.1. Linear Weingarten hypersurfaces-part I. For this subsection we assume that the relative shape operator S, and thus S, S_{t} and also L_{t} have a (joint) eigenbasis. As already stated, in Euclidean hypersurface theory S, S_{t} and also L_{t} always have a (joint) eigenbasis.

Definition 6.1.
(i) We say that a hypersurface x is polynomial Weingarten if there exists a polynomial relation of one of the foregoing four types.
(ii) For the definition of an H-linear Weingarten hypersurface see the Introduction.
(iii) We say that a hypersurface x is P-linear Weingarten if there are real numbers b_{0}, \ldots, b_{n} such that $\sum_{i=1}^{n}\left(b_{i}\right)^{2} \neq 0$ and

$$
P_{n} b_{n}+\cdots+P_{1} b_{1}+b_{0}=0
$$

at each point of M.
(iv) We say that a hypersurface x is k-linear Weingarten if there are real numbers c_{0}, \ldots, c_{n} such that $\sum_{i=1}^{n}\left(c_{i}\right)^{2} \neq 0$ and

$$
k_{n} c_{n}+\cdots+k_{1} c_{1}+c_{0}=0
$$

at each point of M.
(v) We say that a hypersurface x is R-linear Weingarten if there are real numbers d_{0}, \ldots, d_{n} such that $\sum_{i=1}^{n}\left(d_{i}\right)^{2} \neq 0$ and

$$
R_{n} d_{n}+\cdots+R_{1} d_{1}+d_{0}=0
$$

at each point of M.
Remark 6.2. In (iii) and (v) of the foregoing definition we have to assume that $\operatorname{rk} S=n$. If $\operatorname{rk} S=n$ then the hypersurface x is H-linear Weingarten if and only if it is P-linear Weingarten; thus it is sufficient to investigate one of the two classes in this case.

Indeed, from $\binom{n}{k}=\binom{n}{n-k}$ we have $H_{n-k}=H_{n} \cdot P_{k}$ and $P_{n-k}=P_{n} \cdot H_{k}$.
Then $0=\sum a_{i} H_{i}=\sum a_{i} \frac{P_{n-i}}{P_{n}}$ gives $0=\sum a_{i} P_{n-i}=\sum b_{j} P_{j}$ where $b_{j}=a_{n-j}$. The rest is analogous.

REmARK 6.3. (i) In the Introduction we formulated a theorem on the deformation of H-linear Weingarten hypersurfaces. The proof is a straightforward but long computation.

Note that

$$
\frac{1}{n!} H_{0}(t) W^{(n)}(t)=a_{0}
$$

(ii) In particular, for $n=2$ the H-linear relation from the Introduction reads

$$
0=a_{0}+\left[2 a_{0} t+a_{1}\right] H_{1}(t)+\left[a_{0} t^{2}+a_{1} t+a_{2}\right] H_{2}(t)
$$

(iii) For $n=3$ we have

$$
\begin{aligned}
0= & a_{0}+\left[3 t a_{0}+a_{1}\right] H_{1}(t)+\left[3 a_{0} t^{2}+2 a_{1} t+a_{2}\right] H_{2}(t) \\
& +\left[a_{0} t^{3}+a_{1} t^{2}+a_{2} t+a_{3}\right] H_{3}(t) .
\end{aligned}
$$

(iv) If x satisfies a polynomial relation $\mathfrak{W}_{H}=0$ then any x_{t} is again H-polynomial. Analogously, if $\operatorname{rk} S=n$ and x satisfies a polynomial relation $\mathfrak{W}_{P}=0$ then x_{t} is again P-polynomial.

THEOREM 6.4. Consider a linear Weingarten hypersurface x.
(P) Let x be P-linear satisfying the relation

$$
\sum_{k=0}^{n} b_{k} P_{k}=0
$$

then x_{t} satisfies the relation

$$
\sum_{j=0}^{n} P_{j}(t) \sum_{l=j}^{n} b_{l} t^{l-j}=0
$$

(k) Let x be k-linear; then x_{t} is H-polynomial.
(R) Let x be R-linear satisfying the relation

$$
0=\sum_{i} a_{i} R_{i}+a_{0}
$$

then x_{t} is R-linear satisfying

$$
0=\sum_{i} a_{i} R_{i}(t)+a_{0}^{*}
$$

where $a_{0}^{*}:=a_{0}+t \sum_{i} a_{i}$.
Proof. (P) Use the expression 12 for P_{k}.
Proposition 6.5. Consider a one-parameter family $\left\{x_{t}\right\}$ parallel to x.
(i) If $H_{k}=$ const for some $k \in\{1, \ldots, n\}$ then the family is H-linear Weingarten.
(ii) If $P_{k}=$ const for some $k \in\{1, \ldots, n\}$ then the family is P-linear Weingarten.
(iii) If $\omega\left(h_{t}\right)=\omega(h)$ for some t then $\left\{x_{t}\right\}$ is $H(t)$-linear Weingarten.

Proof. The assumption in (iii) implies det $L_{t}=1$, thus $\prod\left(1-t k_{i}\right)=1$.
REmARK 6.6. A modified version of (iii) is: If det $L_{t}=$ const $\neq 0$ then the family $\left\{x_{t}\right\}$ is $H(t)$-linear.

Corollary 6.7. Let (x, Y, y) be a Blaschke hypersurface and let $x_{\tau}=$ $x+\tau y$, for fixed $\tau \neq 0$, be in the parallel family a Blaschke hypersurface again. Then (x, Y, y) is H-linear Weingarten.

Proof. Apply Lemma 3.8 and Proposition 6.5.

6.2. Linear Weingarten hypersurfaces-part II

6.2.1. Algebraic results on polynomials

LEMMA 6.8. Let a, k_{1}, \ldots, k_{n} be real numbers such that $k_{1} \neq 0$; in this subsection, as in 10, we denote their normalized elementary symmetric functions by H_{l} for $l=1, \ldots, n$. If we have the equality of polynomials

$$
t^{n}+a_{1} t^{n-1}+\cdots+a_{n}=\left(t-\frac{1}{k_{1}}\right)^{n-1}(t-a)
$$

then

$$
\begin{equation*}
n k_{1}^{n-1}\left(1+a_{1} H_{1}+\cdots+a_{n} H_{n}\right)=\left(1-a k_{1}\right)\left(k_{1}-k_{2}\right) \cdots\left(k_{1}-k_{n}\right) . \tag{19}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
&\left(t-\frac{1}{k_{1}}\right)^{n-1}(t-a) \\
&= \sum_{l=0}^{n-l} t^{n-l}(-1)^{l}\left(\frac{1}{k_{1}}\right)^{l}\binom{n-1}{l}-\sum_{l=0}^{n-1} t^{n-1-l}(-1)^{l} \cdot a\left(\frac{1}{k_{1}}\right)^{l}\binom{n-1}{l} \\
&= t^{n}+\sum_{l=1}^{n-1} t^{n-l}(-1)^{l}\left(\frac{1}{k_{1}}\right)^{l}\binom{n-1}{l} \\
&-a \sum_{l=1}^{n-1} t^{n-l}(-1)^{l-1}\left(\frac{1}{k_{1}}\right)^{l-1}\binom{n-1}{l-1}+a(-1)^{n}\left(\frac{1}{k_{1}}\right)^{n-1} \\
&= t^{n} \\
& \quad+\sum_{l=1}^{n-1} t^{n-l}(-1)^{l}\left(\frac{1}{k_{1}}\right)^{l} \frac{1}{n}\binom{n}{l}\left[(n-l)+k_{1} l a\right]+a(-1)^{n}\left(\frac{1}{k_{1}}\right)^{n-1}
\end{aligned}
$$

Thus

$$
\begin{aligned}
a_{l} & =(-1)^{l}\left(\frac{1}{k_{1}}\right)^{l} \frac{1}{n}\binom{n}{l}\left[(n-l)+k_{1} l a\right] \quad \text { for } l=1, \ldots, n-1 \\
a_{n} & =a(-1)^{n}\left(\frac{1}{k_{1}}\right)^{n-1}
\end{aligned}
$$

We introduce the following notations:

$$
\sum_{1 \mapsto n}:=\sum_{1 \leq i_{1}<\cdots<i_{l} \leq n} k_{i_{1}} \cdots k_{i_{l}} \text { and } \sum_{2 \mapsto n}:=\sum_{2 \leq i_{1}<\cdots<i_{l} \leq n} k_{i_{1}} \cdots k_{i_{l}} .
$$

Now for $l=1, \ldots, n-1$ we have

$$
\begin{aligned}
n k_{1}^{n-1} a_{l} H_{l}= & (-1)^{l} k_{1}^{n-l-1}\left[(n-l)+k_{1} l a\right] \sum_{1 \mapsto n} \\
= & (-1)^{l} k_{1}^{n-l-1}(n-l) \sum_{1 \mapsto n}+(-1)^{l} k_{1}^{n-l} l a \sum_{1 \mapsto n} \\
= & (-1)^{l} k_{1}^{n-l-1}(n-l)\left(\sum_{2 \leq i_{1}<\cdots<i_{l-1} \leq n} k_{1} k_{i_{1}} \cdots k_{i_{l-1}}+\sum_{2 \mapsto n}\right) \\
& +(-1)^{l} k_{1}^{n-l} l a\left(\sum_{2 \leq i_{1}<\cdots<i_{l-1} \leq n} k_{1} k_{i_{1}} \cdots k_{i_{l-1}}+\sum_{2 \mapsto n}\right) \\
= & (-1)^{l} k_{1}^{n-l}(n-l) \sum_{2 \leq i_{1}<\cdots<i_{l-1} \leq n} k_{i_{1}} \cdots k_{i_{l-1}} \\
& +(-1)^{l} k_{1}^{n-l-1}(n-l) \sum_{2 \leq i_{1}<\cdots<i_{l} \leq n} k_{i_{1}} \cdots k_{i_{l}} \\
& +(-1)^{l} k_{1}^{n-l+1} l a \sum_{2 \leq i_{1}<\cdots<i_{l-1} \leq n} k_{i_{1}} \cdots k_{i_{l-1}}+(-1)^{l} k_{1}^{n-l} l a \sum_{2 \mapsto n} .
\end{aligned}
$$

Using these computations we get

$$
\begin{aligned}
n k_{1}^{n-1} & +\sum_{l=1}^{n-1}(-1)^{l} k_{1}^{n-l-1}(n-l) \sum_{1 \leq i_{1}<\cdots<i_{l} \leq n} k_{i_{1}} \cdots k_{i_{l}} \\
= & k_{1}^{n-1} \\
& +\sum_{l=1}^{n-2}\left[(-1)^{l}(n-l)+(-1)^{l+1}(n-l-1)\right] k_{1}^{n-l-1} \sum_{2 \leq i_{1}<\cdots<i_{l} \leq n} k_{i_{1}} \cdots k_{i_{l}} \\
& +(-1)^{n-1} k_{2} \cdots k_{n} \\
= & k_{1}^{n-1}+\sum_{l=1}^{n-1}(-1)^{l} k_{1}^{n-l-1} \sum_{2 \leq i_{1}<\cdots<i_{l} \leq n} k_{i_{1}} \cdots k_{i_{l}}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{l=1}^{n-1}(-1)^{l} & k_{1}^{n-l-1}(n-l) k_{1} l a \sum_{1 \leq i_{1}<\cdots<i_{l} \leq n} k_{i_{1}} \cdots k_{i_{l}}+n k_{1}^{n-1} a_{n} H_{n} \\
= & (-1) k_{1}^{n} a \\
& +\sum_{l=1}^{n-2} a k_{1}^{n-l}\left[(-1)^{l} l+(-1)^{l+1}(l+1)\right] \sum_{2 \leq i_{1}<\cdots<i_{l} \leq n} k_{i_{1}} \cdots k_{i_{l}}
\end{aligned}
$$

$$
\begin{aligned}
& +(-1)^{n-1}(n-1) a k_{1} \cdots k_{n}+(-1)^{n} n a k_{1} \cdots k_{n} \\
= & (-1) k_{1}^{n} a+\sum_{l=1}^{n-1}(-1)^{l+1} k_{1}^{n-l} a \sum_{2 \leq i_{1}<\cdots<i_{l} \leq n} k_{i_{1}} \cdots k_{i_{l}} .
\end{aligned}
$$

Now one can easily deduce the equality (19).
LEMMA 6.9. Let k_{1}, \ldots, k_{n}, for $n \geq 2$, be real numbers such that $k_{1} \neq 0$. If we have the equality of polynomials

$$
t^{n-1}+a_{2} t^{n-2}+\cdots+a_{n}=\left(t-\frac{1}{k_{1}}\right)^{n-1}
$$

then

$$
n k_{1}^{n-2}\left(H_{1}+a_{2} H_{2}+\cdots+a_{n} H_{n}\right)=\left(k_{1}-k_{2}\right) \cdots\left(k_{1}-k_{n}\right) .
$$

Proof. We have

$$
\begin{aligned}
\left(t-\frac{1}{k_{1}}\right)^{n-1} & =\sum_{l=0}^{n-1}\binom{n-1}{l}(-1)^{l}\left(\frac{1}{k_{1}}\right)^{1} t^{n-1-l} \\
& =t^{n-1}+\sum_{l=2}^{n}\binom{n-1}{l-1}(-1)^{l-1}\left(\frac{1}{k_{1}}\right) t^{n-l}
\end{aligned}
$$

Thus for $l=2, \ldots, n$ we have

$$
a_{l}=\binom{n-1}{l-1}(-1)^{l-1}\left(\frac{1}{k_{1}}\right)^{l-1}
$$

it follows that

$$
n k_{1}^{n-2} a_{l} H_{l}=(-1)^{l-1} l k_{1}^{n-l-1} \sum_{1 \leq k_{i_{1}}<\cdots<k_{i_{l}} \leq n} k_{i_{1}} \cdots k_{i_{l}}
$$

for $l=2, \ldots, n$. Consequently,

$$
\begin{aligned}
n k_{1}^{n-2} & \left(H_{1}+a_{2} H_{2}+\cdots+a_{n} H_{n}\right) \\
= & k_{1}^{n-1} \\
& +\sum_{i=2}^{n} k_{1}^{n-2} k_{i}+\sum_{l=2}^{n-1}(-1)^{l-1} l k_{1}^{n-l} \sum_{2 \leq i_{1}<\cdots<i_{l-1} \leq n} k_{i_{1}} \cdots k_{i_{l-1}} \\
& +\sum_{l=2}^{n-1}(-1)^{l-1} l k_{1}^{n-l-1} \sum_{2 \leq i_{1}<\cdots<i_{l} \leq n} k_{i_{1}} \cdots k_{i_{l}}+(-1)^{n-1} n k_{2} \cdots k_{n} \\
= & k_{1}^{n-1}+\sum_{l=2}^{n-1}(-1)^{l-1}[l-(l-1)] k_{1}^{n-l} \sum_{2 \leq i_{1}<\cdots<i_{l-1} \leq n} k_{i_{1}} \cdots k_{i_{l-1}} \\
& +(-1)^{n-2}(n-1) k_{2} \cdots k_{n}+(-1)^{n-1} n k_{2} \cdots k_{n}
\end{aligned}
$$

$$
\begin{aligned}
= & k_{1}^{n-1} \\
& +\sum_{l=2}^{n-1}(-1)^{l-1} k_{1}^{n-l} \sum_{2 \leq i_{1}<\cdots<i_{l-1} \leq n} k_{i_{1}} \cdots k_{i_{l-1}}+(-1)^{n-1} k_{2} \cdots k_{n} \\
= & \left(k_{1}-k_{2}\right) \cdots\left(k_{1}-k_{n}\right) .
\end{aligned}
$$

6.2.2. Geometric results on hypersurfaces. From Theorem 1.4 we obtain:

THEOREM 6.10. If a relative hypersurface x with mutually distinct principal curvatures at each point of M is H-linear Weingarten satisfying the equation (2) with $a_{0} \neq 0$, and if the polynomial (3) has a root t_{0} of multiplicity $n-1$, then $x_{t_{0}}$ is an immersion with constant non-zero mean curvature.

Proof. By (4) it suffices to prove that $x_{t_{0}}$ is an immersion. Assume that it is not. Then $\operatorname{det} L_{t_{0}}=0$ at some point $p \in M$, so

$$
\left(1-t k_{1}(p)\right) \cdots\left(1-t k_{n}(p)\right)=0 .
$$

We can assume that $1-t k_{1}(p)=0$. It follows that $k_{1}(p) \neq 0$ and $t_{0}=1 / k_{1}(p)$. Since $a_{0} \neq 0$, further we can assume that $a_{0}=1$. The polynomial associated with x is now of the form $\left(t-1 / k_{1}(p)\right)^{n-1}(t-a)$, where $a k_{1}(p) \neq 1$. Using now Lemma 6.8 and the fact that the principal curvatures $k_{1}(p), \ldots, k_{n}(p)$ are mutually distinct we get a contradiction.

Using Lemma 6.9, in the same manner as Theorem 6.10, one can prove the following theorem.

THEOREM 6.11. If a relative immersion $x: M \rightarrow \mathbb{R}^{n+1}$ has mutually distinct principal curvatures at each point of M and satisfies the equation (2) with $a_{0}=0, a_{1} \neq 0$, and if the polynomial (3) has a root t_{0} of multiplicity $n-1$, then $x_{t_{0}}$ is an immersion and $H_{1}\left(t_{0}\right)=0$ on M.
6.3. H-linear Weingarten hypersurfaces in dimension $n=2$. In this subsection we do not assume that S is diagonalizable. In particular, the results can be applied to surfaces in a pseudo-Euclidean space \mathbb{R}^{3}. It is clear that if a surface $x: M \rightarrow \mathbb{R}^{3}$ is pseudo-Euclidean and x_{t} is an immersion then x_{t} is pseudo-Euclidean of the same index as x. As before, $H_{1}=\frac{1}{2} \operatorname{tr} S$ and $H_{2}=\operatorname{det} S$.

Assume that $x: M \rightarrow \mathbb{R}^{3}$ is a relative linear Weingarten surface satisfying the condition

$$
\begin{equation*}
a_{2} H_{2}+a_{1} H_{1}+a_{0}=0 \tag{20}
\end{equation*}
$$

where not all a_{0}, a_{1}, a_{2} are zero. If $a_{0} \neq 0$, we have the trinomial

$$
W(t)=a_{0} t^{2}+a_{1} t+a_{2}
$$

and $\Delta:=a_{1}^{2}-4 a_{0} a_{2}$. A mapping x_{t} is an immersion if and only if $\operatorname{det} L_{t} \neq 0$.

Since in the 2-dimensional case

$$
\operatorname{det} L_{t}=H_{2} t^{2}-2 H_{1} t+1
$$

we see that x_{t} is an immersion if and only if

$$
H_{2} t^{2}-2 H_{1} t+1 \neq 0
$$

at each point of M. By a straightforward computation we obtain
Proposition 6.12. Let x be a relative H-linear Weingarten surface satisfying the equality (20). If x_{t} is an immersion then x_{t} is also H-linear Weingarten, that is, the following relation holds on M :

$$
\begin{equation*}
0=a_{0}+\left[2 a_{0} t+a_{1}\right] H_{1}(t)+\left[a_{0} t^{2}+a_{1} t+a_{2}\right] H_{2}(t) \tag{21}
\end{equation*}
$$

Proposition 6.13. Assume that $x: M \rightarrow \mathbb{R}^{3}$ is a relative H-linear Weingarten surface satisfying $\sqrt{20}$ and such that $H_{1}^{2}-H_{2} \neq 0$ at each point of M. If in its associated polynomial $a_{0} \neq 0, \Delta>0$, and if t_{1}, t_{2} are the roots of the polynomial, then $x_{t_{1}}, x_{t_{2}}$ are immersions of constant mean curvature satisfying $H_{1}\left(t_{1}\right)=1 /\left(t_{2}-t_{1}\right)$ and $H_{1}\left(t_{2}\right)=1 /\left(t_{1}-t_{2}\right)$.

Proof. We have $a_{1}=-a_{0}\left(t_{1}+t_{2}\right)$ and $a_{2}=a_{0} t_{1} t_{2}$. Observe first that $x_{t_{1}}$ is an immersion. Indeed, assume it is not. Then at some point p of M we have $\operatorname{det} L_{t_{1}}=0$, i.e.

$$
\begin{equation*}
H_{2} t_{1}^{2}-2 H_{1} t_{1}+1=0 \tag{22}
\end{equation*}
$$

We also have

$$
0=H_{2} a_{2}+H_{1} a_{1}+a_{0}=H_{2} t_{1} t_{2} a_{0}-H_{1}\left(t_{1}+t_{2}\right) a_{0}+a_{0}
$$

By subtracting the two equalities we obtain

$$
H_{2} t_{1}\left(t_{1}-t_{2}\right)-H_{1}\left(t_{1}-t_{2}\right)=0
$$

hence

$$
\begin{equation*}
H_{2} t_{1}=H_{1} \tag{23}
\end{equation*}
$$

Inserting this into the equality (22), we get $H_{1} t_{1}=1$. It follows that $t_{1} \neq 0$ and $H_{1}=1 / t_{1}$. Using now (23) we obtain $H_{2}=1 / t_{1}^{2}$, which contradicts the assumption that $H_{1}^{2}-H_{2} \neq 0$ at each point of M. Now we use 21 to get $H_{1}(t)=1 /\left(t_{2}-t_{1}\right)$.

Proposition 6.14. Assume that $x: M \rightarrow \mathbb{R}^{3}$ is a relative H-linear Weingarten surface satisfying (20) and such that $H_{2} \neq 0$ at each point of M. If in the associated polynomial $a_{0} \neq 0$ and $\Delta \neq 0$ then there is $t \in \mathbb{R}$ such that x_{t} is an immersion with constant curvature $H_{2}(t)=4 a_{0}^{2} / \Delta$.

Proof. Take t such that $2 a_{0} t+a_{1}=0$, i.e. $t=-a_{1} /\left(2 a_{0}\right)$. Then $\operatorname{det} L_{t}=\left(-\frac{a_{1}}{2 a_{0}}\right)^{2} H_{2}-2\left(-\frac{a_{1}}{2 a_{0}}\right) H_{1}+1=\frac{1}{4 a_{0}^{2}}\left[a_{1}^{2} H_{2}+4 a_{1} a_{0} H_{1}+4 a_{0}^{2}\right]$.

Since $a_{0}+a_{1} H_{1}+a_{2} H_{2}=0$, we have

$$
4 a_{1} a_{0} H_{1}+4 a_{0}^{2}=4 a_{0}\left(a_{1} H_{1}+a_{0}\right)=-4 a_{0} a_{2} H_{2}
$$

Hence

$$
\operatorname{det} L_{t}=\frac{1}{4 a_{0}^{2}}\left[a_{1}^{2} H_{2}-4 a_{0} a_{2} H_{2}\right]=\frac{1}{4 a_{0}^{2}} H_{2} \Delta \neq 0
$$

at each point of M. Thus x_{t} is an immersion and using formula (21) one sees that x_{t} has constant curvature $H_{2}(t)=4 a_{0}^{2} / \Delta$.

Proposition 6.15. Assume that $x: M \rightarrow \mathbb{R}^{3}$ is a relative H-linear Weingarten surface satisfying (20) such that $H_{2} \neq 0$ and $H_{1}^{2}-H_{2} \neq 0$ at each point of M. If in the associated polynomial $a_{0}=0$ then there is $t \in \mathbb{R}$ such that x_{t} is an immersion and $H_{1}(t)=0$ on M.

Proof. Now the equation

$$
\begin{equation*}
a_{1} H_{1}+a_{2} H_{2}=0 \tag{24}
\end{equation*}
$$

is satisfied. Since $H_{2} \neq 0$, we have $a_{1} \neq 0$. Take $t=-a_{2} / a_{1}$. By 21 it is sufficient to prove that x_{t} is an immersion. Suppose it is not. Then $\operatorname{det} L_{t}=0$ at some point p, i.e.

$$
0=1+2 H_{1} \frac{a_{2}}{a_{1}}+H_{2}\left(\frac{a_{2}}{a_{1}}\right)^{2}
$$

at p. If we insert $a_{2} H_{2}=-a_{1} H_{1}$ into this formula, we get $a_{1}=-H_{1} a_{2}$, which implies that $a_{2} \neq 0$ and $H_{1}=-a_{1} / a_{2}$. Using again (24) we get a contradiction to the assumption $H_{1}^{2}-H_{2} \neq 0$.

Proof of Proposition 1.5. Take $t=-a_{2} / a_{1}$ as in the proof of the foregoing proposition. It suffices to observe that x_{t} is an immersion. We have $H_{1}=$ $-a_{2} H_{2} / a_{1}$. Then $H_{2} \leq 0$ implies that

$$
\operatorname{det} L_{t}=1-2 \frac{a_{2}}{a_{1}} \frac{a_{2} H_{2}}{a_{1}}+\left(\frac{a_{2}}{a_{1}}\right)^{2} H_{2}>0
$$

Proposition 6.16.
(a) If a relative immersion $x: M \rightarrow \mathbb{R}^{3}$ has positive constant curvature H_{2} and $H_{1}^{2}-H_{2} \neq 0$ at each point of M then there is t such that x_{t} is an immersion of constant mean curvature $H_{1}(t)$.
(b) If for x the curvature H_{2} is non-zero at each point of M and H_{1} is a non-zero constant then there is t such that x_{t} has positive constant curvature $H_{2}(t)$.

Proof. (a) If x has constant non-zero curvature H_{2}, we can set $a_{2}=1 / H_{2}$, $a_{0}=-1, a_{1}=0$. Since $H_{2}>0$, we have $\Delta>0$ and we can use Proposition 6.13
(b) If H_{1} is constant then we set $a_{2}=0, a_{1}=-1, a_{0}=H_{1}$. Take $t=1 /\left(2 H_{1}\right)$. We now have

$$
\operatorname{det} L_{t}=1-2 \frac{1}{2 H_{1}} H_{1}+\frac{1}{4 H_{1}^{2}} H_{2}=\frac{1}{4} \frac{H_{2}}{H_{1}^{2}} \neq 0
$$

From (21) we obtain

$$
0=H_{1}+\left[H_{1} \frac{1}{4 H_{1}^{2}}-\frac{1}{2 H_{1}}\right] H_{2}(t)=H_{1}-\frac{1}{4 H_{1}} H_{2}(t)
$$

Thus $H_{2}(t)=4 H_{1}^{2}$.
6.4. The case of Blaschke hypersurfaces. In this subsection we do not assume, in general, that S is diagonalizable. We assume that the ambient space \mathbb{R}^{n+1} is equipped with a fixed determinant. Hence the affine normal vector field is unique up to sign. Assume that $x: M \rightarrow \mathbb{R}^{n+1}$ is a Blaschke hypersurface with affine normal field y and affine normal bundle $\mathcal{N}=\mathbb{R} y$. Let $x_{t}=x+t y$ be a one-parameter deformation.

Denote

$$
\begin{aligned}
c(t) & =\operatorname{det} L_{t}=\operatorname{det}(\mathrm{id}-t S) \\
& =1+(-t)\binom{n}{1} H_{1}+\cdots+(-t)^{i}\binom{n}{i} H_{i}+\cdots+(-t)^{n} H_{n} .
\end{aligned}
$$

We already know that \mathcal{N} is the affine normal for an immersion x_{t} if and only if $c(t)$ is a non-zero constant. Assume that $c(t)$ is a non-zero constant. The bundle \mathcal{N} is the affine normal bundle for x_{t} but y is not necessarily the affine normal for x_{t}. The affine normal \tilde{y}_{t} to x_{t} is equal to $\Phi(t) y$ where

$$
\Phi(t)=\varepsilon|c(t)|^{-1 /(n+2)}
$$

and ε is the sign of $c(t)$ (see [7, (32)]). Denote by \tilde{S}_{t} the affine shape operator for x_{t}. Then

$$
\tilde{S}_{t}=\Phi(t) S_{t}=\Phi(t) L_{t}^{-1} S
$$

Assume that S is diagonalizable. Then \tilde{S}_{t} is diagonalizable as well. It is worth emphasizing that if x is locally strongly convex then x_{t} need not be, but the shape operator for x_{t} is diagonalizable (of course if x_{t} is an immersion).

As before we shall denote by k_{i}, H_{i} the curvature quantities determined by y. The eigenvalues of \tilde{S}_{t}, i.e. the affine principal curvature functions $\tilde{k}_{i}(t)$ for x_{t}, are equal to $\Phi(t) k_{i}(t)$. Hence the affine \tilde{H}-curvatures for x_{t} are given by

$$
\tilde{H}_{k}(t)=\Phi(t)^{k} H_{k}(t)
$$

The same formula can be proved if S is not diagonalizable. In that case H_{i}, \tilde{H}_{i} are normalized coefficients of the characteristic polynomials of the corresponding shape operators. By the above considerations we have

Proposition 6.17.

(a) If there is t_{0} such that $x_{t_{0}}$ is an immersion and \mathcal{N} is the affine normal bundle for $x_{t_{0}}$ then x is H-linear Weingarten. The H-curvatures satisfy the equality

$$
\begin{equation*}
0=\left(1-c\left(t_{0}\right)\right)+\left(-t_{0}\right)\binom{n}{1} H_{1}+\cdots+\left(-t_{0}\right)^{i}\binom{n}{i} H_{i}+\cdots+\left(-t_{0}\right)^{n} H_{n} . \tag{25}
\end{equation*}
$$

(b) If moreover S is diagonalizable then $x_{t_{0}}$ is also H-linear Weingarten and \tilde{H}-linear Weingarten.
(c) If $n=2$ (and S is not necessarily diagonalizable) then

$$
\begin{aligned}
& t_{0}^{2} H_{2}\left(t_{0}\right)+2 t_{0} H_{1}\left(t_{0}\right)+\frac{c\left(t_{0}\right)-1}{c\left(t_{0}\right)}=0 \\
& t_{0}^{2} H_{2}-2 t_{0} H_{1}+\left(1-c\left(t_{0}\right)\right)=0 \\
& t_{0}^{2} c\left(t_{0}\right)^{3 / 2} \tilde{H}_{2}\left(t_{0}\right)+2 \varepsilon c\left(t_{0}\right)^{5 / 4} \tilde{H}_{1}\left(t_{0}\right)+c\left(t_{0}\right)-1=0 .
\end{aligned}
$$

In particular, if $c\left(t_{0}\right)=1$ then

$$
\tilde{H}_{2}\left(t_{0}\right) H_{1}=-\tilde{H}_{1}\left(t_{0}\right) H_{2}
$$

If S is diagonalizable and non-singular at every point of M then

$$
P_{1}=-\tilde{P}_{1}\left(t_{0}\right) .
$$

Proof. To prove the last sentence it suffices to observe that $H_{2}\left(t_{0}\right)=$ $\frac{1}{c\left(t_{0}\right)} H_{2}$. Now we see that the inequality $H_{2} \neq 0$ implies $\tilde{H}_{2}\left(t_{0}\right) \neq 0$.

Observe that, in general, the H-curvatures satisfying (25) are not constant. In such a case, if $n=2$ then t_{0} is the only parameter (except for $t=0$) for which \mathcal{N} is its affine normal bundle. Namely, if x_{t} is an immersion and \mathcal{N} is its affine normal bundle then $t^{2} H_{2}-2 t H_{1}$ and $t_{0}^{2} H_{2}-2 t_{0} H_{1}$ are constants. Hence $2 d H_{1}=t d H_{2}$ and $2 d H_{1}=t_{0} d H_{2}$. This is not possible unless H_{1} and H_{2} are constant.

Assume now that all the curvature functions H_{1}, \ldots, H_{n} are constant. Then $c(t)$ is constant for all t. Hence if $c(t)$ is not zero then the bundle \mathcal{N} is the affine normal bundle for x_{t}. If S is diagonalizable then using induction from n to 1 and the formula

$$
\binom{n}{k} H_{k}(t)=\frac{1}{c(t)} \sum_{j=0}^{n-k}\binom{n}{n-j}(-t)^{k-j} H_{n-j}
$$

we see that all curvatures $H_{1}(t), \ldots, H_{n}(t)$ are constant. It follows that $\tilde{H}_{1}(t), \ldots, \tilde{H}_{n}(t)$ are constant as well.

We can also use the considerations of Subsection 6.4. For instance, we have

Proposition 6.18. Let $x: M \rightarrow \mathbb{R}^{3}$ be a Blaschke surface with constant curvatures $H_{1}, H_{2} \neq 0$ and $H_{1}^{2}-H_{2} \neq 0$. There is t such that x_{t} is a minimal Blaschke immersion.

Proof. We set $a_{0}=0, a_{1}=1, a_{2}=-H_{1} / H_{2}$. If we take $t_{0}=H_{1} / H_{2}$ then we have $c\left(t_{0}\right)=-H_{1}^{2} / H_{2}+1 \neq 0$. Now we can use 21.

Acknowledgments. B. Opozda is supported by the AvH-Stiftung and the grant NN 201 545738; U. Simon is partially supported by DFG 158/8-1.

References

[1] Th. Binder, On relative hypersurfaces with parallel shape operator, Results Math. 46 (2004), 227-236.
[2] J. A. Gálvez, A. Martinez and F. Milán, Linear Weingarten surfaces in \mathbb{R}^{3}, Monatsh. Math. 138 (2003), 133-144.
[3] H. Hopf, Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr. 4 (1951), 232-249.
[4] W. Kühnel and M. Steller, On closed Weingarten surfaces, Monatsh. Math. 146 (2005), 113-126.
[5] A. M. Li, U. Simon and G. Zhao, Global Affine Differential Geometry of Hypersurfaces, de Gruyter, Berlin, 1993.
[6] R. López, On linear Weingarten surfaces, Int. J. Math. 19 (2008), 439-448.
[7] B. Opozda, Parallel submanifolds, Results Math. 56 (2009), 231-244.
[8] A. Schwenk-Schellschmidt and U. Simon, Codazzi-equivalent affine connections, Results Math. 56 (2009), 211-229.
[9] U. Simon, A. Schwenk-Schellschmidt and H. Viesel, Introduction to the Affine Differential Geometry of Hypersurfaces, Lecture Notes, Science Univ. Tokyo, 1991.
[10] U. Simon, Affine hypersurface theory revisited: gauge invariant structures, Russian Math. (Izv. VUZ) 48 (2004), 48-73.
[11] U. Simon, A. Schwenk-Schellschmidt and L. Vrancken, Codazzi-equivalent Riemannian metrics, Asian J. Math. 14 (2010), 291-302.
$[12]$ K. Voss, Über geschlossene Weingartensche Flächen, Math. Ann. 138 (1959), 42-54.

Barbara Opozda
Wydział Matematyki i Informatyki UJ
Łojasiewicza 6
30-048 Kraków, Poland
E-mail: Barbara.Opozda@im.uj.edu.pl

Udo Simon
Mathematisches Institut MA 8-3
TU Berlin
Straße des 17. Juni 136
D-10623 Berlin, Germany
E-mail: simon@math.tu-berlin.de

Received 15.3.2013
and in final form 14.6.2013

[^0]: 2010 Mathematics Subject Classification: 53A15, 53A07, 53B25, 53C42.
 Key words and phrases: parallel submanifolds, relative hypersurfaces, Weingarten hypersurfaces, quadrics, parallel shape operator.

