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A characterization of elliptic operators

by GRZEGORZ LySIK and PAWEL M. WOJCICKI (Warszawa)

Abstract. We give a characterization of constant coefficients elliptic operators in
terms of estimates of their iterations on smooth functions.

Let P be a linear differential operator of order m € N with real analytic
coefficients on an open set 2 C R™. Such an operator can be written in the
form

Pu)@) = S aa@)(Du)(2), ueC™(Q),ze
a€eNg, la|<m
where a, for a € Ny with |a] := a1 + - - + a;, < m belong to the set A(£2)
of real analytic, complex-valued functions on (2. Recall that the operator P
is called elliptic on {2 if its principal symbol

O'm(xv 5) = Z aa(‘r)fa
a€eNY, |a|=m
does not vanish on 2 x R™\{0}.
In 1962 M. S. Narasimhan and Kotake proved that if P is elliptic on {2,
u € C*(2) and for any compact set K € {2 one can find a constant C' < oo
such that

1PVull 2y < CYTH(Nm)! - for N € Ny,

then u € A(£2) (see INKl Theorem 1]). Clearly, the same conclusion holds if
in the above estimates the L?-norm is replaced by the sup norm.

The aim of the present note is to prove that ellipticity of a constant coef-
ficients operator P can be characterized in terms of estimates of its iterations
PN on smooth functions. Namely we prove

THEOREM 1. Let P be a constant coefficients differential operator of or-
der m € N and {2 an open subset of R". Fix u € C*(§2) and consider the
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following property of the iterates:

for any compact set K € {2 there exists a constant

(1) C =C(u, K) < oo such that
sup |PNu(z)] < CNTY(Nm)!  for all N € Ny.
zeK

If for any uw € C*°(2) the property (I) implies that u € A(S2), then P is
elliptic.

Note that the ellipticity of a constant coefficients operator P does not
depend on (2. Before the proof of Theorem 1 recall that a differential operator
P is called analytic-hypoelliptic on (2 if for any u € C*°(£2),

Pu e A(f2) implies ue€ A(S2).

The idea of the proof of Theorem 1 is the following. Fix u € C°°({2)
and assume that Pu € A(f2). We shall show that the property (I) holds. By
assumption this implies that u € A(£2). Thus P is analytic-hypoelliptic and
by |[Rl Theorem 2.2.11|, P is elliptic.

Proof of Theorem 1. Let u € C*(£2) be such that Pu € A(f2). Fix a
compact set K € §2. Our aim is to show the estimate in (I) for any N € No.
Clearly it holds for N = 0 with any C' > supy |u|. Let N = 1. Since Pu is
real analytic it is well known [N, Prop. 1.1.14] that there exists a constant
M = M(u, K) < oo such that

(1) sup |DY(Pu)(z)| < MY*1a!l  for any o € N,
reK

So in particular for v = 0 we get supy |Pu| < M < C?m! if C > (M/m!)'/2.
For N = 2 using (1) and a! < |a|! we estimate

sup | P?u| < aq|sup |D*(Pu)| < | M1 10
u | Pul > laalsup [D*(Pu)| > laal

aeNg, Jal<m a€Ng, Ja|<m
lal+1p1 3 !
< Z |ag| M ml < C°(2m)!
a€eNg, la|<m
it O > (AM™ ml/(2m))'? with A =3 cnn jaj<im |@al- |
Finally, fix a general N € N, N > 2. In the sums below we use 5* € N}

fori=1,..., N — 1. Since P is a constant coefficients operator we have
PNu = Z CLBIDBI (PN=1y)
|Bt|<m

Z Z . Z agiage - -aﬁN—1Dﬂl+B2+”'+BN71(Pu).

1B |<m |B2|<m [BN—1|1<m
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Hence
sup |[PNu| < Z lag|-- - |agn-1]|-sup \D61+"'+BN71(PU)\
K K
|5’\<m
=1,.,N—1
H B+ +BN T +1, (51 N-1
< Z ‘a,31|"'|CLBN—1|M (ﬁ +---+ B )l
B*|<m
=1,..,N—1
< ANTIM DL (N — 1)m)!
< CNTY(Nm)!

if ¢ > [AN"IMN=DmHL (N — 1)m)/(N )}1/ N+ S0 if ¢ > max(1, 4,
supg |u|) - max(1, M™*1), then the estimate in (I) holds, which by assump-
tion implies that u € A(f2). The application of |[Rl Theorem 2.2.11] finishes
the proof. =

Since elliptic operators with constant coefficients are analytic-hypoellip-
tic [R}, Theorem 2.2.8], by Theorem [I] and [NK|, Theorem 1] we get

COROLLARY 2. Let P be a constant coefficient differential operator of
order m € N. Then the following conditions are equivalent:

(i) P is elliptic.
(ii) P is analytic-hypoelliptic.
(iii) For every open set 2 C R™, if u € C*°(82) and (1) is satisfied, then
u € A(12).

Finally, let us remark that the above equivalence does not hold for oper-
ators with variable coefficients. Indeed, let P = 8 + 22 2. Then P is an
analytic-hypoelliptic operator [Rl, Theorem 2.3.5] as Well as (111) is satisfied
[BM), Theorem 1.1], but P is not elliptic.
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