ANNALES POLONICI MATHEMATICI 111.2 (2014)

A characterization of elliptic operators

by Grzegorz Łysik and Paweł M. Wójcicki (Warszawa)

Abstract. We give a characterization of constant coefficients elliptic operators in terms of estimates of their iterations on smooth functions.

Let P be a linear differential operator of order $m \in \mathbb{N}$ with real analytic coefficients on an open set $\Omega \subset \mathbb{R}^n$. Such an operator can be written in the form

$$(Pu)(x) = \sum_{\alpha \in \mathbb{N}_0^n, |\alpha| \le m} a_{\alpha}(x)(D^{\alpha}u)(x), \quad u \in C^m(\Omega), x \in \Omega,$$

where a_{α} for $\alpha \in \mathbb{N}_{0}^{n}$ with $|\alpha| := \alpha_{1} + \cdots + \alpha_{n} \leq m$ belong to the set $\mathcal{A}(\Omega)$ of real analytic, complex-valued functions on Ω . Recall that the operator P is called *elliptic* on Ω if its principal symbol

$$\sigma_m(x,\xi) := \sum_{\alpha \in \mathbb{N}_n^n, |\alpha| = m} a_\alpha(x) \xi^\alpha$$

does not vanish on $\Omega \times \mathbb{R}^n \setminus \{0\}$.

In 1962 M. S. Narasimhan and Kotake proved that if P is elliptic on Ω , $u \in C^{\infty}(\Omega)$ and for any compact set $K \subseteq \Omega$ one can find a constant $C < \infty$ such that

$$||P^N u||_{L^2(K)} \le C^{N+1}(Nm)!$$
 for $N \in \mathbb{N}_0$,

then $u \in \mathcal{A}(\Omega)$ (see [NK, Theorem 1]). Clearly, the same conclusion holds if in the above estimates the L^2 -norm is replaced by the sup norm.

The aim of the present note is to prove that ellipticity of a constant coefficients operator P can be characterized in terms of estimates of its iterations P^N on smooth functions. Namely we prove

THEOREM 1. Let P be a constant coefficients differential operator of order $m \in \mathbb{N}$ and Ω an open subset of \mathbb{R}^n . Fix $u \in C^{\infty}(\Omega)$ and consider the

²⁰¹⁰ Mathematics Subject Classification: Primary 35J30; Secondary 35H10. Key words and phrases: elliptic operators, analytic-hypoellipticity.

following property of the iterates:

for any compact set $K \subseteq \Omega$ there exists a constant

(I)
$$C = C(u, K) < \infty \text{ such that}$$
$$\sup_{x \in K} |P^N u(x)| \le C^{N+1}(Nm)! \text{ for all } N \in \mathbb{N}_0.$$

If for any $u \in C^{\infty}(\Omega)$ the property (I) implies that $u \in \mathcal{A}(\Omega)$, then P is elliptic.

Note that the ellipticity of a constant coefficients operator P does not depend on Ω . Before the proof of Theorem 1 recall that a differential operator P is called *analytic-hypoelliptic* on Ω if for any $u \in C^{\infty}(\Omega)$,

$$Pu \in \mathcal{A}(\Omega)$$
 implies $u \in \mathcal{A}(\Omega)$.

The idea of the proof of Theorem 1 is the following. Fix $u \in C^{\infty}(\Omega)$ and assume that $Pu \in \mathcal{A}(\Omega)$. We shall show that the property (I) holds. By assumption this implies that $u \in \mathcal{A}(\Omega)$. Thus P is analytic-hypoelliptic and by [R, Theorem 2.2.11], P is elliptic.

Proof of Theorem 1. Let $u \in C^{\infty}(\Omega)$ be such that $Pu \in \mathcal{A}(\Omega)$. Fix a compact set $K \in \Omega$. Our aim is to show the estimate in (I) for any $N \in \mathbb{N}_0$. Clearly it holds for N = 0 with any $C \geq \sup_K |u|$. Let N = 1. Since Pu is real analytic it is well known [N, Prop. 1.1.14] that there exists a constant $M = M(u, K) < \infty$ such that

(1)
$$\sup_{x \in K} |D^{\alpha}(Pu)(x)| \le M^{|\alpha|+1} \alpha! \quad \text{for any } \alpha \in \mathbb{N}_0^n.$$

So in particular for $\alpha = 0$ we get $\sup_K |Pu| \le M \le C^2 m!$ if $C \ge (M/m!)^{1/2}$. For N = 2 using (1) and $\alpha! \le |\alpha|!$ we estimate

$$\sup_{K} |P^{2}u| \leq \sum_{\alpha \in \mathbb{N}_{0}^{n}, |\alpha| \leq m} |a_{\alpha}| \sup_{K} |D^{\alpha}(Pu)| \stackrel{(1)}{\leq} \sum_{\alpha \in \mathbb{N}_{0}^{n}, |\alpha| \leq m} |a_{\alpha}| M^{|\alpha|+1} \alpha!$$
$$\leq \sum_{\alpha \in \mathbb{N}_{0}^{n}, |\alpha| \leq m} |a_{\alpha}| M^{|\alpha|+1} m! \leq C^{3}(2m)!$$

if
$$C \ge (AM^{m+1}m!/(2m)!)^{1/3}$$
 with $A = \sum_{\alpha \in \mathbb{N}_0^n, |\alpha| \le m} |a_{\alpha}|$.

Finally, fix a general $N \in \mathbb{N}$, $N \geq 2$. In the sums below we use $\beta^i \in \mathbb{N}_0^n$ for i = 1, ..., N - 1. Since P is a constant coefficients operator we have

$$P^{N}u = \sum_{|\beta^{1}| \leq m} a_{\beta^{1}} D^{\beta^{1}} (P^{N-1}u)$$

$$= \sum_{|\beta^{1}| \leq m} \sum_{|\beta^{2}| \leq m} \cdots \sum_{|\beta^{N-1}| \leq m} a_{\beta^{1}} a_{\beta^{2}} \cdots a_{\beta^{N-1}} D^{\beta^{1}+\beta^{2}+\cdots+\beta^{N-1}} (Pu).$$

Hence

$$\sup_{K} |P^{N}u| \leq \sum_{\substack{|\beta^{i}| \leq m \\ i=1,\dots,N-1}} |a_{\beta^{1}}| \cdots |a_{\beta^{N-1}}| \cdot \sup_{K} |D^{\beta^{1}+\dots+\beta^{N-1}}(Pu)|$$

$$\leq \sum_{\substack{|\beta^{i}| \leq m \\ i=1,\dots,N-1}} |a_{\beta^{1}}| \cdots |a_{\beta^{N-1}}| M^{|\beta^{1}+\dots+\beta^{N-1}|+1} \cdot (\beta^{1}+\dots+\beta^{N-1})!$$

$$\leq A^{N-1}M^{(N-1)m+1}((N-1)m)!$$

$$\leq C^{N+1}(Nm)!$$

if $C \geq \left[A^{N-1}M^{(N-1)m+1}\left((N-1)m\right)!/(Nm)!\right]^{1/(N+1)}$. So if $C \geq \max(1, A, \sup_K |u|) \cdot \max(1, M^{m+1})$, then the estimate in (I) holds, which by assumption implies that $u \in \mathcal{A}(\Omega)$. The application of [R, Theorem 2.2.11] finishes the proof. \blacksquare

Since elliptic operators with constant coefficients are analytic-hypoelliptic [R, Theorem 2.2.8], by Theorem 1 and [NK, Theorem 1] we get

COROLLARY 2. Let P be a constant coefficient differential operator of order $m \in \mathbb{N}$. Then the following conditions are equivalent:

- (i) P is elliptic.
- (ii) P is analytic-hypoelliptic.
- (iii) For every open set $\Omega \subset \mathbb{R}^n$, if $u \in C^{\infty}(\Omega)$ and (I) is satisfied, then $u \in \mathcal{A}(\Omega)$.

Finally, let us remark that the above equivalence does not hold for operators with variable coefficients. Indeed, let $P = \frac{\partial}{\partial x_1} + ix_1^2 \frac{\partial}{\partial x_2}$. Then P is an analytic-hypoelliptic operator [R, Theorem 2.3.5] as well as (iii) is satisfied [BM, Theorem 1.1], but P is not elliptic.

Acknowledgments. The authors would like to thank the referee for helpful remarks.

References

- [BM] M. S. Baouendi and G. Métivier, Analytic vectors of hypoelliptic operators of principal type, Amer. J. Math. 104 (1982), 287–320.
- [NK] M. S. Narasimhan and T. Kotake, Regularity theorems for fractional powers of a linear elliptic operator, Bull. Soc. Math. France 90 (1962), 449–471.
- [N] R. Narasimhan, Analysis on Real and Complex Manifolds, Masson, Paris, and North-Holland, Amsterdam, 1968.

[R] L. Rodino, Linear Partial Differential Operators in Gevrey Spaces, World Sci., River Edge, NJ, 1993.

Grzegorz Łysik Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland and Jan Kochanowski University Kielce, Poland E-mail: lysik@impan.pl Paweł M. Wójcicki Faculty of Mathematics and Information Science Warsaw University of Technology Koszykowa 75 00-662 Warszawa, Poland E-mail: p.wojcicki@mini.pw.edu.pl

Received 14.6.2013 and in final form 16.7.2013

(3139)