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On the stability of compressible
Navier–Stokes–Korteweg equations

by Tong Tang and Hongjun Gao (Nanjing)

Abstract. We consider the compressible Navier–Stokes–Korteweg (N-S-K) equations.
Through a remarkable identity, we reveal a relationship between the quantum hydrody-
namic system and capillary fluids. Using some interesting inequalities from quantum fluids
theory, we prove the stability of weak solutions for the N-S-K equations in the periodic
domain Ω = TN , when N = 2, 3.

1. Introduction. Due to its importance in science, the Navier–Stokes–
Korteweg (N-S-K) system modeling viscous compressible fluids has been
studied recently both from the theoretical and numerical point of view. In
fluid mechanics, the existence, uniqueness and stability of weak solutions
have been the object of active research. The present paper addresses the
problem of stability of weak solutions for the following N-S-K equations in
the periodic domain Ω = TN (N = 2, 3):{

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇P = div T + divK,

where the unknown functions ρ = ρ(x, t), u = (u1, . . . , uN ) and P are the
density, velocity and pressure respectively. The function ρ and u are periodic
in Ω. Moreover, the viscous stress tensor T and the Korteweg stress tensor
K are defined by

T = 2µD(u) + (λdiv u)I,

K =
(
ρκ∆ρ+ 1

2(κ+ ρκρ)|∇ρ|2
)
I − κ∇ρ⊗∇ρ,

where D(u) = 1
2(∇u + ∇>u) is the strain tensor, I is the identity matrix

and µ = µ(ρ), λ = λ(ρ), κ = κ(ρ) denote the shear coefficient viscosity of
the fluid, the second viscosity coefficient and the capillary coefficient. As the
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fluid is assumed to be Newtonian, the two Lamé viscosity coefficients satisfy

µ > 0, 2µ+Nλ ≥ 0.

Generally speaking, the pressure P depends on the density and temperature.
In that case, the system is not closed and should be complemented by the
energy equation. However, there are physically relevant situations in which
we assume that the fluid flow is barotropic, i.e., the pressure depends only
on the density. This is the case when either the temperature or the entropy is
supposed to be constant. The typical expression is P (ρ) = ργ (γ > 1 denotes
the adiabatic exponent).

It was Van der Waals and Korteweg who first considered the compress-
ible fluids model endowed with internal capillarity. Later, the model was
developed by Dunn and Serrin [DS], who could describe the variation of
density at the interfaces between the two phases, generally a liquid-vapor
mixture. The N-S-K model can be reduced to many classical models by
specifying various coefficients, such as the compressible Euler equations if
we take µ = λ = κ = 0, and the compressible Navier–Stokes equations if we
take µ > 0, 2µ+Nλ ≥ 0 and κ = 0.

As to the compressible Navier–Stokes equations, there is much literature
and results depending on whether the viscosity coefficients are constant or
not. If µ and λ are both constant, Kazhikhov [KS], Serre [S], Hoff [H], Mat-
sumura and Nishida [MN], and Valli and Zajączkowski [VZ] had done much
pioneering work. The first general result on the weak solutions was obtained
by Lions [L]. Later, Feireisl et al. [FNP] and Jiang and Zhang [JZ] extended
Lions’ result. The case where the viscosity coefficients depend on the density
has received much attention lately. Mellet and Vasseur [MV] proved the L1

stability of weak solutions to the compressible Navier–Stokes equations. Li
et al. [LLX] and Guo et al. [GJX] proved the existence of weak solutions
respectively in the one-dimensional case and the three-dimensional spherical
symmetric case.

The compressible N-S-K system has recently been extensively studied in
fluid mechanics and applied mathematics due to its physical importance,
complexity, rich phenomena and mathematical challenges. When the vis-
cosity coefficients µ, λ and the capillarity coefficient κ are constant, a lot
of mathematical results for that system have been obtained. Hattori and
Li [HL1, HL2] proved the local and global existence of smooth solutions
in Sobolev spaces. Danchin and Desjardins [DD] studied the existence of
smooth solutions in Besov spaces.

In contrast to a system with constant viscosity coefficients, it is inevitable
that the N-S-K system becomes complicated when the coefficients depend on
the density. On the one hand, the viscosity coefficient is density-dependent,
and degenerates at vacuum. Moreover, the strongly nonlinear third-order dif-
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ferential operator and dispersive structure of the momentum equation in the
N-S-K system need hard analysis. Luckily, Bresch et al. [BD1]–[BD3], [BDL]
introduced a new entropy estimate, which provided more information about
the density. More precisely in [BDL], they dealt with a special Korteweg
model: µ = ρ, λ = 0, κ = 1 and obtained the stability of weak solutions
in TN , N = 2, 3. Recently, Haspot [H2] obtained a similar stability result,
assuming µ = ρ, λ = 0 and the Korteweg stress tensor with κ = 1/ρ.

In this paper, we will extend the previous results with the same Korteweg
stress tensor, but for more general viscosity coefficients. More precisely, we
take κ = 1/ρ, so the system under study becomes

(1.1)


∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u) +∇ργ = 2 div(µ(ρ)D(u)) +∇(λ(ρ) div u)

+ div(ρ∇2 ln ρ),

with the initial conditions

(1.2) ρ|t=0 = ρ0 ≥ 0, ρu|t=0 = m0.

By a direct computation, we find the following remarkable identity:

(1.3) div(ρ∇2 ln ρ) = 2ρ∇
(

∆
√
ρ

√
ρ

)
,

which reveals a relationship between the quantum hydrodynamic system
and capillary fluids. The term ∆

√
ρ√
ρ is the Bohm potential which can be

interpreted as a quantum potential in a quantum fluid. Jüngel [J1] proved
the global existence of weak solutions to the compressible quantum Navier–
Stokes equations with µ = ρ, λ = 0.

Our aim is to show the stability of weak solutions to the compressible
N-S-K equations with viscosity coefficients vanishing at the vacuum in both
two-dimensional and three-dimensional periodic domains. Although the pe-
riodic case does not correspond to a physical configuration, it retains the
main mathematical difficulties of the problem. Comparing with works on the
compressible Navier–Stokes equations, we will encounter extra difficulties in
studying the compressible N-S-K equations. More precisely, the appearance
of the nonlinear third-order derivatives of the density makes it difficult to
establish entropy estimates and pass to the limit. However, utilizing some in-
teresting inequalities, we overcome the above difficulties and obtain stability.
The stability of weak solutions, in other words compactness, is a remarkable
property which allows us to develop a rigorous existence theory, without any
restriction on the size of the initial data and the length of the time interval.

The strategy of the proof is as follows. In Section 2, we define precisely
the notion of weak solutions and state our main result. In order to deal
with the convection term, we have chosen test functions of the form ρϕ in
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the weak formulation, where ϕ is some smooth function. In Section 3, we
give the energy equality and an entropy estimate, and use some interesting
inequalities to obtain an H2 estimate for √ρ, which is the key to stability
analysis. Finally, in Section 4, we give the proof of Theorem 2.2. The most
delicate task here is to control possible concentrations rather than oscillations
of weakly converging fields.

2. Notation and main result

2.1. Conditions on µ(ρ), λ(ρ). To the best of our knowledge, a rig-
orous mathematical analysis for compressible flows is beyond the available
mathematical framework. Hence, we need to add some additional hypotheses
on the viscosity coefficients µ and λ.

First we assume that µ(ρ), λ(ρ) are two C2(0,∞) ∩ C[0,∞) functions
satisfying

(2.1) λ(ρ) = 2ρµ′(ρ)− 2µ(ρ).

This relation is fundamental to get more regularity of the density. Moreover,
we assume that there exists a positive constant ν > 0 such that

µ′(ρ) ≥ ν, µ(0) ≥ 0, ∀ρ > 0,(2.2)
|λ′(ρ)| ≤ Cµ′(ρ), ∀ρ > 0,(2.3)
M1µ(ρ) ≤ 2µ(ρ) +Nλ(ρ) ≤M2µ(ρ), ∀ρ ≥ 0,(2.4)

where M1,M2 are two positive constants.
In addition, for some small ε > 0, we assume that

(2.5) |µ′′(ρ)| ≤ ε/ρ, ∀ρ > 0.

Remark. The functions µ(ρ) = ρ, λ(ρ) = 0 satisfy assumptions (2.1)–
(2.5). So do the functions: µ(ρ)=ρ+ε(ρ+1) ln(ρ+1), λ(ρ) = 2ε[ρ−ln(ρ+1)];
µ(ρ) = ρ+ερ ln(ρ+1), λ(ρ) = 2ε ρ2

ρ+1 ; µ(ρ) = ρ+ ε
2ρ ln(ρ2 +1), λ(ρ) = ε ρ2

ρ2+1
.

We will verify this in the appendix.

Remark. Assumptions (2.3) and (2.4) will be used to pass to the limit
in the term ∇(λ(ρn) div un). For more details refer to [MV].

2.2. Weak solutions. Before stating the compactness result, we need
to specify the definition of weak solutions which we will apply. It is nec-
essary to require that the weak solutions should satisfy the natural energy
estimates and from the viewpoint of physics, the mass and momentum con-
servation laws should also be satisfied, at least in the sense of distributions.
Based on those considerations, the definition of reasonable global-in-time
weak solutions goes as follows.
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Definition 2.1. We say that (ρ, u) is a weak solution of (1.1)–(1.2) on
Ω × [0, T ], with initial conditions, if

√
ρ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

ρ ∈ L∞(0, T ;Lγ(Ω)) ∩ L2(0, T ;W 1,3(Ω)),
√
ρ u ∈ L∞(0, T ;L2(Ω)), ρu ∈ L2(0, T ;W 1,3/2(Ω)),

with ρ ≥ 0, and (ρ, ρu) satisfying

∂tρ+ div(ρu) = 0 in D′((0, T )×Ω),

and moreover the following equality holds for all smooth test functions ϕ(t, x)
with compact support such that ϕ(T, ·) = 0:

−
�

Ω

ρ2
0u0 · ϕ(·, 0) dx

=

T�

0

�

Ω

(
ρ2u · ϕt − ρ2udiv u · ϕ+ ρu⊗ ρu : ∇ϕ+

γ

γ + 1
ργ divϕ

− 2∆
√
ρ(2
√
ρ∇ρ · ϕ+ ρ3/2 divϕ)− µ(ρ)D(u) : (∇ρ⊗ ϕ+ ρ∇ϕ)

− λ(ρ) div u(∇ρ · ϕ+ ρdivϕ)

)
dx dt,

where the product “A : B” means summation over both indices of the ma-
trices A and B.

We now give the main result of this paper.

Theorem 2.2. Assume that γ > 1 if N = 2 and γ > 3 if N = 3. As-
sume further µ(ρ), λ(ρ) are two C2(0,∞)∩C[0,∞) functions of ρ satisfying
conditions (2.1)–(2.5). Let (ρn, un) be a sequence of weak solutions of (1.1)
which satisfy the entropy equalities (3.1) and (3.2), with initial data

ρn|t=0 = ρn0 (x) ≥ 0, ρnun|t=0 = mn
0 (x) = ρn0 (x)un0 (x),

where ρn0 , u
n
0 are such that

ρn0 → ρ0 in L1(Ω), ρn0u
n
0 → ρ0u0 in L1(Ω),

and satisfy (with C being a constant independent of n)
�

Ω

[
ρn0
|un0 |2

2
+

1

γ − 1
(ρn0 )γ + |∇

√
ρn0 |

2

]
dx ≤ C,

�

Ω

1

ρn0
|∇µ(ρn0 )|2 dx ≤ C.

Then, up to a subsequence, (ρn, ρnun) converges strongly to a weak solution
of (1.1)–(1.2) satisfying the entropy equalities (3.1) and (3.2).

3. The energy equality and entropy estimate. In this section, we
will give an energy equality and state an entropy estimate, both important
in the proof of Theorem 2.2. When deriving a priori estimates it is customary
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to assume that all quantities appearing in the equations are as smooth as is
necessary.

By multiplying the momentum equation by u, using the mass equation
and integrating by parts, we get the following energy equality:

(3.1)
d

dt

�

Ω

[
ρ
u2

2
+

1

γ − 1
ργ + 2|∇√ρ|2

]
dx+

�

Ω

2µ(ρ)|D(u)|2dx

+
�

Ω

λ(ρ)(div u)2 dx = 0,

where we use the identity (1.3), since
�

Ω

div(ρ∇2 ln ρ)u dx =
�

Ω

2ρ∇
(

∆
√
ρ

√
ρ

)
u dx = −2

�

Ω

div(ρu)

(
∆
√
ρ

√
ρ

)
dx

= 2
�

Ω

∂tρ

(
∆
√
ρ

√
ρ

)
dx = −2

�

Ω

∂t|∇
√
ρ|2 dx.

It is well-known that equality (3.1) alone is not sufficient to build up a reason-
able stability theory for weak solutions to the compressible N-S-K equations
in the sense of distributions, since we cannot obtain any estimates on the
dissipations. Therefore, we need to investigate further estimates. Inspired
by [BDL] and [MV], we get the following lemma which offers the crucial
estimate.

Lemma 3.1. Assume that µ(ρ), λ(ρ) are two C2(0,∞)∩C[0,∞) functions
satisfying (2.1)–(2.5). Then the following equality holds for smooth solutions
of (1.1):

(3.2)
d

dt

�

Ω

[
1

2
ρ|u+∇ψ(ρ)|2 +

1

γ − 1
ργ + 2|∇√ρ|2

]
dx+

�

Ω

∇ψ(ρ) · ∇ργ dx

+ 2
�

Ω

µ(ρ)|A(u)|2 dx−
�

Ω

div(ρ∇2 ln ρ) · ∇ψ(ρ) dx = 0,

with ψ′ = 2µ′/ρ and A(u) = (∇u−∇tu)/2.

Proof. The proof is similar to one in [MV], with minor changes.

Next, we need to control all terms in (3.2). By a straightforward calcu-
lation, we have

∇2 ln ρ = − 1

ρ2
∇ρ⊗∇ρ+

1

ρ
∇2ρ,

∇µ′ ⊗∇ ln ρ =
µ′′

ρ
∇ρ⊗∇ρ.(3.3)
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Combining the above identity (3.3) and condition (2.5), we deduce

(3.4) |∇µ′ ⊗∇ ln ρ| ≤ ε
∣∣∣∣∇2 ln ρ− 1

ρ
∇2ρ

∣∣∣∣.
Thus

(3.5) −
�

Ω

div(ρ∇2 ln ρ) · ∇ψ(ρ) dx = −
�

Ω

div(ρ∇2 ln ρ) · 2µ′

ρ
∇ρ dx

= − 2
�

Ω

div(ρ∇2 ln ρ) · µ′∇ ln ρ dx

= 2
�

Ω

ρ∇2 ln ρ : (∇µ′ ⊗∇ ln ρ+ µ′∇2 ln ρ) dx.

In the following, we utilize (2.5) and the Cauchy inequality to handle the
term

	
Ω∇

2 ln ρ : ∇µ′ ⊗∇ ln ρ:∣∣∣ �
Ω

ρ∇2 ln ρ : ∇µ′ ⊗∇ ln ρ dx
∣∣∣ ≤ �

Ω

|ρ∇2 ln ρ|ε
∣∣∣∣∇2 ln ρ− 1

ρ
∇2ρ

∣∣∣∣ dx
≤ ε

�

Ω

ρ|∇2 ln ρ|2dx+ ε
�

Ω

ρ|∇2 ln ρ|
∣∣∣∣1ρ∇2ρ

∣∣∣∣ dx.
Using the Cauchy inequality, we deduce

�

Ω

ρ|∇2 ln ρ|
∣∣∣∣1ρ∇2ρ

∣∣∣∣ dx =
�

Ω

|√ρ∇2 ln ρ|
∣∣∣∣∇2ρ
√
ρ

∣∣∣∣ dx
≤
( �

Ω

ρ|∇2 ln ρ|2 dx
)1/2

( �

Ω

∣∣∣∣∇2ρ
√
ρ

∣∣∣∣2 dx)1/2

.

By direct calculation, we have

∇2√ρ = −1

4

1

ρ3/2
∇ρ⊗∇ρ+

1

2
√
ρ
∇2ρ,

∇2ρ
√
ρ

= 2∇2√ρ+
1

2

1

ρ3/2
∇ρ⊗∇ρ,

|∇ 4
√
ρ|4 =

∣∣∣∣14 ∇ρρ3/4

∣∣∣∣4 =
1

44

|∇ρ|4

ρ3
.

Hence, we deduce that∣∣∣∣∇2ρ
√
ρ

∣∣∣∣2 ≤ C1|∇2√ρ|2 + C2
|∇ρ|4

ρ3
≤ C1|∇2√ρ|2 + C2|∇ 4

√
ρ|4.

Now, we use some interesting inequalities to obtain the H2 estimate for √ρ
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(which is derived from [J1]):
�

Ω

ρ|∇2 ln ρ|2 dx ≥ κN
�

Ω

|∇2√ρ|2 dx,

with κ2 = 7/8, κ3 = 11/15, and the inequality
�

Ω

ρ|∇2 ln ρ|2 dx ≥ κ
�

Ω

|∇ 4
√
ρ|4 dx, κ > 0.

Recalling condition (2.2), we have
�

Ω

µ′ρ|∇2 ln ρ|2 dx ≥ ν
�

Ω

ρ|∇2 ln ρ|2 dx.

Choosing ε small enough (so that it can be controlled by ν), we get

d

dt

�

Ω

[
1

2
ρ|u+∇ψ(ρ)|2 +

1

γ − 1
ργ + 2|∇√ρ|2

]
dx+

�

Ω

∇ψ(ρ) · ∇ργ dx

+2
�

Ω

µ(ρ)|A(u)|2 dx+ C
�

Ω

|∇2√ρ|2 dx ≤ 0.

Combining (3.1)–(3.2) and the finite initial energy, we get the following es-
timates:

‖√ρ u‖L∞(0,T ;L2(Ω)) ≤ C,
‖√ρ‖L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω)) ≤ C,
‖ρ‖L∞(0,T ;Lγ(Ω)) ≤ C,
‖√ρ∇ψ‖L∞(0,T ;L2(Ω)) = ‖µ′(ρ)∇√ρ‖L∞(0,T ;L2(Ω)) ≤ C,

‖
√
µ(ρ)∇u‖L2(0,T ;L2(Ω)) ≤ C,

‖
√
µ′(ρ)ργ−2∇ρ‖L2(0,T ;L2(Ω)) ≤ C,

where C > 0 is a constant.

4. The proof of Theorem 2.2. With the a priori estimates obtained
in the previous sections, we now study the stability of sequences of weak
solutions (ρn, un) and pass to the limit in the nonlinear terms. To begin
with, we recall the following facts:

‖√ρn un‖L∞(0,T ;L2(Ω)) ≤ C,(4.1)

‖√ρn‖L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω)) ≤ C,(4.2)

‖ρn‖L∞(0,T ;Lγ(Ω)) ≤ C,(4.3)

‖µ′(ρn)∇√ρn‖L∞(0,T ;L2(Ω)) ≤ C,(4.4)
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‖
√
µ(ρn)∇un‖L2(0,T ;L2(Ω)) ≤ C,(4.5) ∥∥∥√µ′(ρn)ργ−2

n ∇ρn
∥∥∥
L2(0,T ;L2(Ω))

≤ C.(4.6)

The hypothesis on the viscosity coefficient (2.2) yields

‖√ρn∇un‖L2(0,T ;L2(Ω)) ≤ C,(4.7)

‖∇ργ/2n ‖L2(0,T ;L2(Ω)) ≤ C,(4.8)

where C > 0 is (here and in the following) a generic constant independent
of n.

The proof of Theorem 2.2 will be given in a sequence of seven lemmas.
In the first two steps, we show the convergence of the density and pressure
(note that the convergence of the pressure is straightforward). The key fact
is the strong convergence of ρnun, and of the diffusion terms.

Lemma 4.1. For every ρn satisfying the mass equation of system (1.1),
we have

√
ρn is bounded in L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

∂t
√
ρn is bounded in L2(0, T ;H−1(Ω)).

Then, up to a subsequence, √ρn converges a.e. and
√
ρn →

√
ρ in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;Lr(Ω)) (1 ≤ r < 6).

Moreover,

ρn → ρ in L2(0, T ;W 1,p(Ω))
(
3 < p < 6γ

γ+3

)
.

Proof. From the above estimate (4.2), we easily get the bound of √ρn.
Using the continuity equation of (1.1)1, we write

∂t
√
ρn = −1

2

√
ρn div un − un · ∇ρn = 1

2

√
ρn div un − div(un

√
ρn).

Then we deduce from (4.1) and (4.5) that

∂t
√
ρn is bounded in L2(0, T ;H−1(Ω)).

We have the compactness of √ρn by Aubin’s lemma, i.e.,
√
ρn →

√
ρ in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;Lr(Ω)) (1 ≤ r < 6).

Next we will discuss the compactness of ρn.
Combining the estimates (4.2)–(4.3) with the Gagliardo–Nirenberg in-

equality and Sobolev embeddings, we easily get the following facts (for more
details see [J1, Lemma 4.3]):

ρn is bounded in L2(0, T ;W 2,p(Ω)),

ρnun is bounded in L2(0, T ;W 1,3/2(Ω)),
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where p = 2γ/(γ + 1) if N = 3 and p < 2 if N = 2. It follows that ∂tρn is
bounded in L2(0, T ;L3/2(Ω)), since ∂tρn = −div(ρnun). Thus, again using
Aubin’s lemma, we obtain the compactness of ρn,

ρn → ρ in L2(0, T ;W 1,p(Ω))
(
3 < p < 6γ

γ+3

)
.

The next lemma concerns the convergence of the pressure.

Lemma 4.2. The pressure ργn is bounded in L5/3((0, T )×Ω) when N = 3,
and Lr((0, T )×Ω) for all r ∈ [1, 2) when N = 2. In particular, ργn converges
to ργ strongly in L1((0, T )×Ω).

Proof. See [MV, Lemma 4.2] for more details.

Lemma 4.3. µ(ρn)/
√
ρn and λ(ρn)/

√
ρn are bounded in L∞(0, T, L6(Ω)).

Proof. See [MV, Lemma 4.5], with a little modification.

Lemma 4.4. Let mn = ρnun be a sequence satisfying the momentum
equation (1.1)2. Then

ρnun → m in L2(0, T ;Lq(Ω)) (1 ≤ q < 3),

ρnun → m for a.e . (x, t) in Ω × (0, T ).

Proof. Firstly, we can prove directly fromLemma 4.1 that ρnun is bounded
in L2(0, T ;W 1,3/2(Ω)).

Next, we rewrite the momentum equation and deal with ∂t(ρnun):

∂t(ρnun) = − div(ρnun ⊗ un)−∇ργn + 2 div(µ(ρn)D(un))

+∇(λ(ρn) div un) + div(ρn∇2 ln ρ).

Since the sequence (ρnun ⊗ un) is bounded in L∞(0, T ;L1(Ω)), it follows
that div(ρnun ⊗ un) is bounded in L∞(0, T ; (Hs(Ω))∗) for s > N/2 + 1. It
is easy to check that ∇ργn is also bounded in L∞(0, T ; (Hs(Ω))∗).

From [J1, Lemma 4.4] and [MV, Lemma 4.4], we have:

div(ρn∇2 ln ρn) is bounded in L4(0, T ; (W 1,3(Ω))∗) ↪→L4/3(0, T ; (Hs(Ω))∗),

div(µ(ρn)∇un) is bounded in L∞(0, T ;W−2,4/3(Ω)).

Therefore, ∂t(ρnun) is uniformly bounded in L4/3(0, T ; (Hs(Ω))∗). Using
Aubin’s lemma, we get the compactness of ρnun in L2(0, T ;Lq(Ω)) (1 ≤
q < 3).

Lemma 4.5. There exists a function u such that m = ρu and

ρnun → ρu in L2(0, T ;Lq(Ω)) (1 ≤ q < 3).

In particular, m = 0 a.e. on the set {ρ = 0}.
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Proof. We setmn = ρnun. Sincemn/
√
ρn is bounded in L∞(0, T ;L2(Ω)),

Fatou’s lemma yields
�

Ω

lim inf
m2
n

ρn
dx <∞.

In particular, m = 0 a.e. on {ρ = 0}. So if we define the limit velocity
u := m/ρ in {ρ 6= 0} and u := 0 in {ρ = 0}, we obtain m = ρu.

Considering the previous results, we show that we can pass to the limit
in all terms of the weak solution of (1.1).

First, using the above lemmas, we can obtain the following convergences
(for more details see [J1]):

ρ2
nun → ρ2u strongly in L1(0, T ;Lq(Ω)) (q < 3),

ρnun ⊗ ρnun → ρu⊗ ρu strongly in L1(0, T ;Lq/2(Ω)) (q < 3),

∆
√
ρn
√
ρn∇ρn ⇀ ∆

√
ρ
√
ρ∇ρ weakly in L1(0, T ;L1(Ω)).

Here, we need the assumption γ > 3 if N = 3, which allows us to ob-
tain compactness of ρ in W 1,p with p > 3. Then it remains to pass to the
limit in the nonlinear terms ρ2

n div(un)un, µ(ρn)D(un)ρn, µ(ρn)D(un)∇ρn,
λ(ρn) div un∇ρn and ρnλ(ρn) div un.

We consider the term µ(ρn)D(un)ρn; others are handled in a similar
way. We introduce functions β ∈ C∞(R) (similarly to [BDL, J1]) such that
β(s) = 1 for s ≥ 2, β(s) = 0 for s ≤ 1, and 0 ≤ β(s) ≤ 1. For any α > 0, βα
is defined by βα(·) = β(·/α). This function allows us to deal with the density
close to zero, so we can estimate the low-density part of µ(ρn)D(un)ρn by

‖(1− βα(ρn))ρnµ(ρn)D(un)‖L1(0,T ;L1)

=

∥∥∥∥(1− βα(ρn))ρn ·
µ(ρn)
√
ρn
· √ρnD(un)

∥∥∥∥
L1(0,T ;L1)

≤ ‖(1− βα(ρn))ρn‖L2(0,T ;L3)‖
√
ρnD(un)‖L2(0,T ;L2)

∥∥∥∥µ(ρn)
√
ρn

∥∥∥∥
L∞(0,T ;L6)

≤ Cα,

‖(1− βα(ρn))∇ρnµ(ρn)D(un)‖L1(0,T ;L1)

≤ ‖(1− βα(ρn))
√
ρn‖L∞(0,T ;L∞)‖∇

√
ρn‖L2(0,T ;L3),

∥∥∥∥µ(ρn)
√
ρn

∥∥∥∥
L∞(0,T ;L6)

‖√ρnD(un)‖L2(0,T ;L2) ≤ C
√
α,
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‖(1− βα(ρn))ρ2
nun div un‖L1(0,T ;L1)

≤ ‖(1− βα(ρn))
√
ρn‖L∞(0,T ;L∞)‖

√
ρn div un‖L2(0,T ;L2)‖ρnun‖L2(0,T ;L2)

≤ C
√
α.

Therefore, we are reduced to study βα(ρn)ρnµ(ρn)D(un) for a given posi-
tive α. We split it into two terms βα(ρn)ρ

3/2
n D(un) and µ(ρn)/

√
ρn.

First, we observe that µ(ρn)/
√
ρn is bounded in L∞(0, T ;L6). This term

converges a.e. to µ(ρ)/
√
ρ (defined to be zero on the vacuum set), so con-

verges strongly in L2((0, T )×Ω). We write

βα(ρn)ρ3/2
n D(un) = D(βα(ρn)ρ3/2

n un)

− ρnun ⊗∇ρn ·
√
ρn

[
β′α(ρn) +

3

2

βα(ρn)

ρn

]
.

Using a similar method to [BDL, J1], we have (where p > 2)

βα(ρn)ρ3/2
n D(un) ⇀ βα(ρ)ρ3/2D(u) weakly in Lp(0, T ;Lp(Ω)).

Moreover, from strong convergence of µ(ρn)/
√
ρn in L2((0, T )×Ω), we infer

that

βα(ρn)ρ3/2
n D(un)

µ(ρn)
√
ρn

⇀ βα(ρ)ρ3/2D(u)
µ(ρ)
√
ρ

weakly in L
2p
p+2 (0, T ;L

2p
p+2 (Ω)).

We write, for a test function ϕ,

(4.9)
�

Ω

(
µ(ρn)D(un)ρn − µ(ρ)D(u)ρ

)
∇ϕdx

=
�

Ω

(
βα(ρn)ρnµ(ρn)D(un)− βα(ρ)ρµ(ρ)D(u)

)
∇ϕdx

+
�

Ω

(
(βα(ρ)− βα(ρn)

)
ρµ(ρ)D(u)∇ϕdx

+
�

Ω

(1− βα(ρn))
(
ρnµ(ρn)D(un)− ρµ(ρ)D(u)

)
∇ϕdx.

For fixed α > 0, the first term on the right in (4.9) converges to zero as n→ 0.
Furthermore, the last integral can be estimated by Cα uniformly in n. For
the second integral, we recall that βα(ρn) converges strongly to βα(ρ) in
Lp(0, T ;Lp(Ω)) for any p < ∞. What is more, since ρ ∈ L∞(0, T ;Lγ(Ω))
and µ(ρ)/

√
ρ ∈ L∞(0, T ;L6(Ω)) and √ρD(u) ∈ L2(0, T ;L2(Ω)), we have

ρµ(ρ)D(u) = ρ
µ(ρ)
√
ρ

√
ρD(u) ∈ Lr(0, T ;Lr)

(
r = 3γ

2γ+3 > 1
)
.
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Letting n→∞ in (4.9), one gets

µ(ρn)D(un)ρn ⇀ µ(ρ)D(u)ρ weakly in L1(0, T ;L1(Ω)).

We can easily pass to the limit, so the proof of Theorem 2.2 is complete.

Remark. As shown in [MV], the motivation for considering the sta-
bility of weak solutions is to show their existence. The key ingredient is
the construction of approximate sequences of solutions (ρn, un) which pre-
serve physical bounds and the mathematical entropy, uniformly with respect
to smoothing parameters. As to the compressible Navier–Stokes equations
with viscosity coefficients depending on the density, to the best of our knowl-
edge, there are two ways to built such approximate sequences. Bresch and
Desjardins [BD2] constructed approximate solutions by adding a drag term
and cold pressure in T2. Li et al. [LLX] and Guo et al. [GJX] used another
way, adding an approximate density term respectively in the one-dimensional
case and the three-dimensional spherical symmetric case. However, the above
methods cannot be applied to our model directly, since the main problem is
that the lower bound of ρ is difficult to obtain. In [J1], Jüngel used a clever ef-
fective velocity variable v = u+∇ ln ρ, changing the quantum Navier–Stokes
equations into the viscous quantum Euler model. Then following the stan-
dard Faedo–Galerkin method, he constructed an approximation. Though a
similar effective velocity can be taken as in [J2], v = u + 1

ρ∇µ(ρ), we can-
not obtain the crucial H2 estimate for √ρ. Therefore, the construction of
approximate solutions in this framework is still elusive, and left for further
investigation.

5. Appendix. There are many functions that could satisfy the hypoth-
esis on the viscosity. In the following, we want to verify these conditions. In
particular, we take µ(ρ) = ρ+ ε(ρ+ 1) ln(ρ+ 1), λ(ρ) = 2ε[ρ− ln(ρ+ 1)] for
example; others are similar.

First, µ′′(ρ) = ε/(ρ+ 1) obviously satisfies (2.5).
Then, as µ′(ρ) = 1 + ε[ln(ρ+ 1) + 1], λ′(ρ) = 2ε

(
1− 1

ρ+1

)
, we easily get

(2.2).
We have |λ′(ρ)| ≤ 2µ′(ρ); to see that, we just need to prove ε

∣∣1− 1
ρ+1

∣∣ ≤
ε
(
1+ 1

ρ+1

)
≤ 1+ε(1+ln(ρ+1)). Let F (ρ) = ε[ 1

ρ+1− ln(ρ+1)]−1; obviously
we have F (ρ) ≤ F (0) < 0, which proves (2.3).

Finally, we find 2µ(ρ) + Nλ(ρ) = 2[(1 + Nε)ρ + ερ ln(ρ + 1) −
(N − 1)ε ln(ρ + 1)], which obviously yields 2µ(ρ) + Nλ(ρ) ≤ M2µ(ρ) if we
take M2 ≥ 2(1 +Nε).

Let

F (ρ) = [2(1 +Nε)−M1]ρ+ (2−M1)ερ ln(ρ+ 1)− (2N −2 +M1)ε ln(ρ+ 1).
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By a simple calculation, we have

F ′(ρ) = 2(1 +Nε)−M1 + (2−M1)ε ln(ρ+ 1)

+ (2−M1)ε
ρ

ρ+ 1
− (2N − 2 +M1)ε

1

ρ+ 1
.

Using F ′′(ρ) > 0, we find that F ′(ρ) > F ′(0). So if we want to have F ′(0) =
2(1 +Nε)−M1 − (2N − 2 +M1)ε > 0, we just need M1 < 2, which implies
M1µ(ρ) ≤ 2µ(ρ) +Nλ(ρ). This verifies (2.4).
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