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Uniformity of holomorphic families

of non-homeomorphic planar Riemann surfaces

by Sachiko Hamano (Fukushima)

Abstract. We show the variation formula for the Schiffer span s(t) for moving Rie-
mann surfaces R(t) with t ∈ B = {t ∈ C | |t| < ρ}, and apply it to show the simultaneous
uniformization of moving planar Riemann surfaces of class OAD.

1. Introduction and main results. Let B be a disk in Ct. Let π :
R → B be a holomorphic family of Riemann surfaces R(t) = π−1(t), t ∈ B.
Assume that

(1) R is a 2-dimensional Stein manifold and R(t) is irreducible and non-
singular in R;

(2) each R(t), t ∈ B, is planar.

Nishino [9, Théorème II] showed that if R(t), t ∈ B, is conformally equiva-
lent to C, then R is biholomorphic to B × C. Yamaguchi [13, Théorème 2]
extended the above result by giving the variation formulas for the Robin
constants λ(t) for R(t): if R(t), t ∈ B, is of class OG (i.e., parabolic), then
R is biholomorphic to a univalent domain in B × P.

The purpose of this paper is to give a new uniformization.

In this paper we identify a holomorphic family π : R → B with the
variation R of Riemann surfaces R(t), t ∈ B:

R : t ∈ B → R(t),

and write R =
⋃

t∈B(t, R(t)). Let Γ (B,R) denote the set of all holomorphic
sections of R over B. Assume that R satisfies (1) and

(3) there exists a section a := {a(t) ∈ R(t) | t ∈ B} ∈ Γ (B,R).

In general, R(t) might have infinitely many ideal boundary components and
R : t ∈ B → R(t) might not be topologically trivial. By Oka–Grauert
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(see [10, Theorem 8.22]), R admits a Cω strictly plurisubharmonic exhaus-
tion function ϕ(t, z). Fix a disk B0 ⋐ B and consider R|B0

= π−1(B0) =⋃
t∈B0

(t, R(t)) and a|B0
= a ∩ R|B0

. Then, for c ≫ 1, we have R(c) :=

{(t, z) ∈ R|B0
| ϕ(t, z) < c} ⊃ a|B0

. There is an increasing sequence {cn}n
with cn > c and limc→∞ cn = ∞ such that the connected component R̂n of
R(cn) containing a|B0

satisfies the following:

(i) Each R̂n is a connected domain with real 3-dimensional Cω surfaces
∂R̂n :=

⋃
t∈B0

(t, ∂R̂n(t)) in R|B0
, where R̂n(t) = R(t)∩R̂n. Since R̂n(t), t ∈

B0, is not always connected, we denote by Rn(t) the connected component
of R̂n(t) with Rn(t) ∋ a(t). If ∂Rn(t), t ∈ B0, consists of a finite number
of Cω smooth contours in R(t), we call Rn :=

⋃
t∈B0

(t, Rn(t)) a smooth
variation in R|B0

.

(ii) If there exists a point (t, z(t)) ∈ ∂R̂n with ∂ϕ
∂z

(t, z(t)) = 0 (so that

z(t) is a singular point of ∂R̂n(t)) and ∂Rn(t) is not smooth at z(t), then
the variation Rn : t ∈ B0 → Rn(t) at (t, z(t)) is separated into two types as
follows:

• if there is only one boundary point of Rn(t) over the singular point
z(t), we say that the variation Rn is of (C1) type at (t, z(t));

• if there are two or more boundary points of Rn(t) over the singular
point z(t), we say that the variation Rn is of (C2) type at (t, z(t)).

B′

B′′

ℓ
B

(FI)

z(t)
a(t)

(FII)

z(t)

(FIII)

Rn(t
′), t′∈B′

Rn(t), t∈ ℓ Rn(t
′′), t′′∈B′′

z(t)
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For example, if the shadowed part above is Rn(t), then (FI) is of (C1)
type, and both (FII) and (FIII) are of (C2) type at (t, z(t)). If at each point

(t, z(t)) ∈ ∂R̂n with ∂ϕ
∂z

(t, z(t)) = 0 the variation Rn is of (C1) type, we
say that Rn is of (C1) type. Moreover, if there exists an increasing sequence
{cn} with limn→∞ cn = ∞ such that each Rn is of (C1) type, we say that
R|B0

is of (C1) type.
For example, let D be a polynomially convex domain in C

2 = Cz × Cw.
Let B ⊂ Cz and put D|B = D∩(B×Cw). Assume that there exists a section
a ∈ Γ (B,D). Then D|B is of (C1) type.

The main result of this paper is the following:

Main Theorem 1.1. Let B be a disk in Ct. Let π : R → B be a
holomorphic family of Riemann surfaces R(t) = π−1(t), t ∈ B, satisfying
the following conditions:

(1) R is a 2-dimensional Stein manifold and R(t) is irreducible and
non-singular in R;

(2) each R(t), t ∈ B, is a planar Riemann surface;
(3) there exists a section a := {a(t) ∈ R(t) | t ∈ B} ∈ Γ (B,R);
(4) for any t0 ∈ B, there exists a disk B0 = {|t − t0| < ρ0} ⋐ B such

that R|B0
is of (C1) type.

Assume that E = {t ∈ B | R(t) is of class OAD} is of positive logarithmic
capacity in Ct. Then

(i) each R(t), t ∈ B, is of class OAD;
(ii) R is biholomorphic to a univalent domain D in B×Pw by the holo-

morphic transformation

T : (t, z) ∈ R 7→ (t, w) = (t,M(t, z)) ∈ D.

Here M(t, z) is the maximizing function of the Schiffer span for
(R(t), a(t)) (which is necessarily holomorphic as a function of the
two complex variables (t, z) in R \ a).

Remark 1.2. We denote by AD(R) the family of analytic functions
which have a finite Dirichlet integral on a Riemann surface R. The class of
Riemann surfaces on which AD(R) consists entirely of constants is denoted
by OAD. In the classification theory of Riemann surfaces we have the table
(66) in [11, p. 390] of strict inclusion relations. The class OAD is characterized
as the largest class of Riemann surfaces in the table. As compared with [13,
Théorème 2], condition (4) of (C1) type is not necessary for [13], but the
condition of class OAD is weaker than of class OG.

Remark 1.3. We showed in [3, Theorem 1.5] the following simultaneous
uniformization. Let π : S → B be a holomorphic family of compact Riemann
surfaces S(t) = π−1(t), t ∈ B, of genus g ≥ 2. Let S̃(t) denote the Schottky
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covering of S(t) for each t ∈ B. Then the total space S̃ :=
⋃

y∈B(t, S̃(t)) is
biholomorphic to a univalent domain in B×P. Our proof is based on the fact
that S̃ is a Stein manifold. This is a new approach to the Bers simultaneous
uniformization [2] for the Schottky group.

This result becomes a simple corollary of the above Main Theorem 1.1
since S̃(t) is planar and of class OAD and since we can take an exhaustion

S̃n =
⋃

t∈B(t, S̃n(t)) of S̃ which is a smooth variation and pseudoconvex

in S̃. Moreover, our proof, which uses the variation of Schiffer spans, is more
elementary than [3] which uses the variation of harmonic spans (cf. Remark
4.2). We note that, since Main Theorem 1.1 contains the case when the
fibers are non-homeomorphic, the methods in the theory of the Teichmüller
space are not available to prove it.

Now we recall the notion of Schiffer span in the potential theory of one
complex variable. Let R be a planar bordered Riemann surface. Let a ∈ R
and let V = {|z| < r} be a local coordinate of a neighborhood U of a in R
such that a corresponds to z = 0. We denote by P(R) the set of all univalent
functions P on R such that P (z)−1/z is regular at 0. For w = P (z) ∈ P(R)
let EP denote the Euclidean area of Pw \ P (R), and set E(R) = sup{EP |
P ∈ P(R)}. Let P1 be the vertical slit map and P0 be the horizontal slit
map on R. Following the studies of Koebe and Grunsky, in 1943 Schiffer
[12, p. 209] introduced the quantity s := Re{A01 −A11}, called the Schiffer
span for (R, a), where Ai1 (i = 0, 1) is the coefficient of z of the Taylor
expansions of Pi(z) − 1/z at 0, and showed M(z) := (P1 + P0)/2 ∈ P(R)
and E(R) = πs/2 (for details, see §3 and [1, §12, Chap. III]). In this paper
we call M(z) the maximizing function of the Schiffer span. By the standard
approximation argument we define the Schiffer span and the maximizing
function of the Schiffer span for any planar Riemann surface.

The key tool for the proof of the Main Theorem 1.1 is:

Theorem 1.4. Let the notation be as in Main Theorem 1.1 and let R
satisfy (1)–(4). Then the Schiffer span s(t) for (R(t), a(t)) is logarithmically
subharmonic on B (i.e., log s(t) is subharmonic on B).

To the best of our knowledge, the above theorems are the first to show
that the Schiffer span has some significant properties not only in one complex
variable but in several complex variables.

2. Variation formulas for principal functions

2.1. Variation formulas for principal functions. Let B be a disk
in Ct. Let π : R̃ → B be a holomorphic family of Riemann surfaces R̃(t) =

π−1(t), t ∈ B, such that R̃(t) is irreducible and non-singular in R̃, and set
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R̃ =
⋃

t∈B(t, R̃(t)). If a subdomain R =
⋃

t∈B(t, R(t)) in R̃ satisfies the
following conditions:

(I) R̃(t) ⋑ R(t) 6= ∅ for t ∈ B, and R(t) is a connected Riemann surface

of genus g ≥ 0 such that ∂R(t) in R̃(t) consists of a finite number
of Cω smooth contours Cj(t) (j = 1, . . . , ν);

(II) the boundary ∂R =
⋃

t∈B(t, ∂R(t)) of R in R̃ is Cω smooth and

∂R is transverse to each fiber R̃(t), t ∈ B,

then we say thatR is a smooth variation in R̃ by regardingR as the variation
R : t ∈ B → R(t). We note that g and ν are independent of t ∈ B. Each Cj(t)
is oriented by ∂R(t) = C1(t)+ · · ·+Cν(t). Assume that there exists a section
a := {a(t) ∈ R(t) | t ∈ B} ∈ Γ (B,R). Let V := B × {|z| < r} be a π-local
coordinate of a neighborhood U of a inR such that a corresponds to B×{0}.
Let t∈B be fixed. Then among all harmonic functions u on R(t)\{a(t)} with
singularity Re(1/z) at a(t) normalized so that limz→0(u(t, z)−Re(1/z)) = 0,
we have two uniquely determined functions pi (i = 1, 0) with the following
boundary conditions (Li): for j = 1, . . . , ν,

(L1) p1(t, z) = cj(t) (constant) on Cj(t) and
�

Cj(t)

∂p1(t, z)

∂nz
dsz = 0;

(L0)
∂p0(t, z)

∂nz
= 0 on Cj(t).

Here ∂/∂nz is the outer normal derivative and dsz is the arc length element
of Cj(t) at z. We write

pi(t, z) = Re

{
1

z
+

∞∑

n=1

Ain(t)z
n

}
at z = 0 (i = 0, 1).(2.1)

We call pi(t, z) the Li-principal function and αi(t) := Re{Ai1(t)} the
Li-constant for (R(t), a(t)) with respect to the local coordinate {|z| < r}.

We show the following variation formulas of the second order for αi(t),
which are the key tools for the proof of Theorem 1.4.

Lemma 2.1. Let the notation be as above. Assume that R(t), t ∈ B, is
planar. Then

∂2α1(t)

∂t∂t
= −

1

π

�

∂R(t)

k2(t, z)

∣∣∣∣
∂p1(t, z)

∂z

∣∣∣∣
2

dsz −
4

π

� �

R(t)

∣∣∣∣
∂2p1(t, z)

∂t∂z

∣∣∣∣
2

dx dy,(2.2)

∂2α0(t)

∂t∂t̄
=

1

π

�

∂R(t)

k2(t, z)

∣∣∣∣
∂p0(t, z)

∂z

∣∣∣∣
2

dsz +
4

π

� �

R(t)

∣∣∣∣
∂2p0(t, z)

∂t̄∂z

∣∣∣∣
2

dx dy.(2.3)
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Here

k2(t, z) =

(
∂2ϕ

∂t∂t̄

∣∣∣∣
∂ϕ

∂z

∣∣∣∣
2

− 2Re

{
∂2ϕ

∂t̄∂z

∂ϕ

∂t

∂ϕ

∂z̄

}
+

∣∣∣∣
∂ϕ

∂t

∣∣∣∣
2 ∂2ϕ

∂z∂z̄

)∣∣∣∣
∂ϕ

∂z

∣∣∣∣
−3

on ∂R, where ϕ(t, z) is a C2 defining function of ∂R.

Note that the Levi curvature k2(t, z) for ∂R (see [6, (1.3)] and [7, (7)])
does not depend on the choice of the defining function ϕ(t, z) of ∂R. We
remark that the formulas (2.2) and (2.3) depend on the choice of the π-local
coordinate V = B × {|z| < r}.

As noted in [3], since R is pseudoconvex in R̃ if and only if k2(t, z) ≥ 0
on ∂R, Lemma 2.1 implies:

Lemma 2.2. Let R : t ∈ B → R(t) be a smooth variation in R̃ and

a := {a(t) ∈ R(t) | t ∈ B} ∈ Γ (B,R). If R is pseudoconvex in R̃ and each
R(t), t ∈ B, is planar, then

(1) the L1-constant α1(t) for (R(t), a(t)) is superharmonic on B;
(2) the L0-constant α0(t) for (R(t), a(t)) is subharmonic on B.

2.2. Proof of Lemma 2.1

Lemma 2.3. Let D be a domain in Cz bounded by Cω smooth contours
Cj (j = 1, . . . , ν) with D ∋ 0, and pi(z) (i = 0, 1) be an Li-principal function
for (D, 0). Let u(z) be a harmonic function on D such that

u(z) = u(0) + Re
{ ∞∑

n=1

anz
n
}

at z = 0.

Then

(2.4) Re{a1} =
1

2π

�

∂D

p0(z)
∂u(z)

∂nz
dsz.

If u(z) satisfies the boundary conditions

(2.5)
�

Cj

∂u(z)

∂nz
dsz = 0 (j = 1, . . . , ν),

then

(2.6) Re{a1} = −
1

2π

�

∂D

u(z)
∂p1(z)

∂nz
dsz.

Similarly, if p̃(z) is a harmonic function on D \ {0} such that

p̃(z) = Im
1

z
+ 0 + Re

{ ∞∑

n=1

ãnz
n
}

at z = 0
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and satisfies the condition (L1) on ∂D, then every u(z) with (2.5) satisfies

(2.7) Im{a1} = −
1

2π

�

∂D

u(z)
∂p̃(z)

∂nz
dsz.

Proof of (2.4). Let V0 = {|z| < ǫ} be a neighborhood of z = 0 in D. We
see from Green’s formula that

�

∂D−∂V0

p0(z)
∂u(z)

∂nz
dsz =

�

∂D−∂V0

u(z)
∂p0(z)

∂nz
dsz.

It follows from the condition for the L0-principal function p0(z) that

�

∂D

p0
∂u

∂nz
dsz =

�

∂V0

(p0du
∗−udp∗0) =

�

∂V0

(Im{(p0+ ip∗0) d(u+ iu∗)}−d(p∗0u)).

Since p∗0 is single-valued on V0 and ∂V0 = {|z| = ǫ} is a closed curve, we
have

	
∂V0

d(p∗0u) = 0. It follows that

�

∂D

p0
∂u

∂nz
dsz = Im

�

∂V0

(
1

z
+A01z +A02z

2 + · · ·

)
d(u(0) + iu∗(0) + a1z + · · · )

= Im{2πi · a1} = 2πRe{a1},

which is (2.4).

Proof of (2.6). From the condition for the L1-principal function p1(z)
on Cj and (2.5), we see that

ν∑

j=1

�

Cj

p1
∂u

∂nz
dsz =

ν∑

j=1

cj
�

Cj

∂u

∂nz
dsz = 0.

It follows from Green’s formula that

�

∂D

u
∂p1
∂nz

dsz =
�

∂V0

(u dp∗1 − p1 du
∗)

= Im
�

∂V0

(u(0) + iu∗(0) + a1z + · · · ) d

(
1

z
+A11z +A12z

2 + · · ·

)

= Im{−2πi · a1} = −2πRe{a1},

which is (2.6).
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Proof of (2.7). Similarly, it follows from the condition (L1) for p̃ and
(2.5) that

�

∂D

u
∂p̃

∂nz
dsz =

�

∂V0

(udp̃∗ − p̃du∗)

= Im
�

∂V0

(u(0) + iu∗(0)+ a1z + · · · )

(
i

z2
+ ã1 + 2ã2z + · · ·

)

= Im{2πi · a1i} = −2π Im{a1},

which is (2.7).

It suffices to prove Lemma 2.1 at t = 0. If necessary, take a smaller disk
B of center t = 0. Then by the standard use of the immersion theorem for
open Riemann surfaces [8], we have a π-biholomorphic mapping T from R̃

to an unramified Riemann domain D̃ over B×Cw such that the holomorphic
section a of R over B corresponds to the constant section B × {w = 0} of

D := T (R) over B. Then D is a smooth variation in D̃. It suffices to show the
lemma for the unramified domain D over B×Cw with the section B×{0}.

For convenience we use anew the notations R̃ and R for D̃ and D. We find
a neighborhood V =

⋃ν
j=1 Vj (disjoint union) of ∂R(0) =

⋃ν
j=1Cj(0) such

that (B × V ) ∩ a = ∅, Vj is a thin tubular neighborhood of Cj(0) with
Vj ⊃ Cj(t) for t ∈ B, and pi(t, z) is harmonic on (R(0) ∪ V ) \ {0}. Then

pi(t, z) is defined in the product B × R̂(0), where R̂(0) := R(0) ∪ V .

Proof of (2.2). We see from (2.1) that ∂2p1(t,z)
∂t∂t

is harmonic for z on

R(t) by setting ∂2p1
∂t∂t

(t, 0) = 0. For all t sufficiently close to t = 0, we may

assume ∂2p1(t,z)

∂t∂t
is harmonic on R(0). Since

	
Cj(0)

∂
∂nz

((
∂2p1
∂t∂t̄

)
(0, z)

)
dsz = 0

(j = 1, . . . , ν) by (L1), it follows from (2.6) that

∂2α1(t)

∂t∂t
(0) = −

1

2π

�

∂R(0)

∂2p1
∂t∂t

(0, z)
∂p1(0, z)

∂nz
dsz.

Under the boundary condition (L1), we proved in [3, Lemma (A)] that along
each Cj(0) (j = 1, . . . , ν),

∂2p1
∂t∂t

(0, z)
∂p1(0, z)

∂nz
dsz = 2k2(0, z)

∣∣∣∣
∂p1(0, z)

∂z

∣∣∣∣
2

dsz +
∂2cj
∂t∂t

(0)
∂p1(0, z)

∂nz
dsz

+ 4 Im

{
∂p1
∂t

(0, z)
∂2p1
∂t∂z

(0, z) dz

}
− 4 Im

{
∂cj
∂t

(0)
∂2p1
∂t∂z

(0, z) dz

}
.

We note that
�

Cj(0)

∂2cj
∂t∂t

(0)
∂p1(0, z)

∂nz
dsz =

∂2cj
∂t∂t

(0)
�

Cj (0)

∂p1(0, z)

∂nz
dsz = 0 by (L1).
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Since p1(t, z) is of class Cω for (t, z) in a neighborhood of (0, ∂R(0)) and
harmonic for z on R(0) \ {0} with (L1), by Green’s formula we have

�

Cj(0)

∂2p1
∂t∂z

(0, z) dz =
∂

∂t

( �

Cj(0)

∂p1(t, z)

∂z
(t, z) dz

)∣∣∣∣
t=0

= 0.

Thus we have

∂2α1

∂t∂t
(0) = −

1

π

�

∂R(0)

k2(0, z)

∣∣∣∣
∂p1(0, z)

∂z

∣∣∣∣
2

dsz(2.8)

−
2

π
Im

{ �

∂R(0)

∂p1
∂t

(0, z)
∂2p1
∂t∂z

(0, z) dz

}
.

Since ∂p1
∂t

(0, z) and ∂2p1
∂t∂z

(0, z) are harmonic on R(0), it follows from Green’s
formula that

�

∂R(0)

∂p1
∂t

(0, z)
∂2p1
∂t∂z

(0, z) dz

=
� �

R(0)

(
∂2p1
∂t∂z

(0, z)
∂2p1
∂t∂z

(0, z) +
∂p1
∂t

(0, z)
∂3p1

∂t∂z∂z

)
(0, z) dz ∧ dz

= 2i
� �

R(0)

∣∣∣∣
∂2p1
∂t∂z

(0, z)

∣∣∣∣
2

dx dy.

By substituting this into (2.8), we obtain (2.2).

Proof of (2.3). For each fixed t ∈ B, we consider the harmonic conjugate
function p∗0(t, z) of p0(t, z) in R(t) such that

p0(t, z) + ip∗0(t, z) =
1

z
+ 0 +

∞∑

n=1

A0n(t)z
n at z = 0.

Then p∗0(t, z) is a single-valued function on R(t) such that

p∗0(t, z) = Im
1

z
+ Im

{ ∞∑

n=1

A0n(t)z
n
}

at z = 0

and p∗0(t, z) satisfies (L1) on ∂R(t) =
∑ν

j=1Cj(t). Since ∂2

∂t∂t̄
is a real

operator, we have
∂2p∗

0
(t,z)

∂t∂t
= Im

{∑∞
n=1

∂2A0n(t)
∂t∂t

zn
}

at z = 0. Note that
∂2p∗

0
(t,z)

∂t∂t
is harmonic on R(0) by setting

∂2p∗
0

∂t∂t
(t, 0) = 0. For every t sufficiently

close to t = 0, we may assume that
∂2p∗

0
(t,z)

∂t∂t
is harmonic on R(0). Since p0
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satisfies (L0) on ∂R(t), by Green’s formula we have
�

Cj(0)

∂

∂nz

(
∂2p∗0
∂t∂t

(0, z)

)
dsz =

∂2

∂t∂t

( �

Cj(0)

∂p∗0(t, z)

∂nz
dsz

)∣∣∣∣
t=0

= 0.

Since p∗0(0, z) satisfies (L1) on ∂R(0), and
∂2p∗

0

∂t∂t
(0, z) is harmonic on R(0)

and satisfies (2.5) for Cj(0), it follows from (2.7) and Im
{
1
i
∂2A01(t)

∂t∂t

}
=

−Re
{∂2A01(t)

∂t∂t

}
that

Re

{
∂2A01

∂t∂t
(0)

}
=

1

2π

�

∂R(0)

∂2p∗0
∂t∂t

(0, z)
∂p∗0(0, z)

∂nz
dsz.

By the same calculation in the proof of (2.2), we see that the right-hand
side above becomes

1

π

�

∂R(0)

k2(0, z)

∣∣∣∣
∂p∗0(0, z)

∂z

∣∣∣∣
2

dsz +
4

π

� �

R(0)

∣∣∣∣
∂2p∗0
∂t∂z

(0, z)

∣∣∣∣
2

dx dy.

Since
∂p0(t, z)

∂z
=

1

i

∂p∗0(t, z)

∂z
,

∂2p∗0(t, z)

∂t∂z
=

1

i

∂2p0(t, z)

∂t∂z
,

and ∂2

∂t∂t̄
is real, the assertion (2.3) is shown.

3. Schiffer span and its geometric meaning. We now recall the
slit mapping theory in one complex variable. Let R be a planar bordered
Riemann surface with a finite number of smooth contours Cj (j = 1, . . . , ν).
Let a ∈ R and let {|z| < r} be a local coordinate of a neighborhood U of a
in R. We denote by P(R) the set of all univalent functions P on R such that
P (z) − 1/z is regular at 0. Koebe constructed the vertical slit mapping P1

and the horizontal slit mapping P0 for (R, a) with ReP1(z) = cj (constant)
and ImP0(z) = c̃j (constant) on Cj (j = 1, . . . , ν), respectively. The Schiffer
span (or analytic span) s for (R, a) is defined to be s := Re{A01−A11}, where
Ai1 (i = 0, 1) is the coefficient of z of the Taylor expansion of Pi(z) − 1/z
at 0, and s is positive (see [11, pp. 45–46]).

Proposition 3.1 (Schiffer [12]). For w = P (z) ∈ P(R) let EP denote
the Euclidean area of Pw \ P (R), and set E(R) = sup{EP | P ∈ P(R)}. Let
M(z) := (P1 + P0)/2. Then

(i) M(z) ∈ P(R) and (ii) E(R) = EM = πs/2.

We call M(z) the maximizing function of the Schiffer span s for (R, a)
with respect to the local coordinate {|z| < r}.

To extend our argument to open planar Riemann surfaces which may
have infinitely many ideal boundary components, we recall the definition of
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the vertical slit and the horizontal slit mappings and the Schiffer span: Let
R be such an open planar Riemann surface. Let a ∈ R and let {|z| < r} be
a local coordinate of a neighborhood U of a in R such that a corresponds
to z = 0. We choose a canonical exhaustion {Rn}

∞
n=1 of R such that a ∈ R1,

Rn ⋐ Rn+1, R =
⋃∞

n=1Rn, and R \Rn has no relatively compact connected
component inR. Then each Rn (n = 1, 2, . . .) carries the vertical slit mapping
Pn
1 (z) and the horizontal slit mapping Pn

0 (z) such that

Pn
i (z) =

1

z
+An

i1z +An
i2z

2 + · · · at z = 0 (i = 0, 1).

Since the Dirichlet integral
	 	

Rn

[(∂(Pn
i
−Pm

i
)

∂x

)2
+

(∂(Pn
i
−Pm

i
)

∂y

)2]
dx dy tends

to 0 as m ≥ n → ∞, Pn
i (z) converges to a certain univalent function Pi(z)

on R uniformly on any compact set in R, so that

(3.1) Pi(z) =
1

z
+Ai1z +Ai2z

2 + · · · at z = 0 (i = 0, 1).

Further, Pi(z) does not depend on the choice of the canonical exhaustion
{Rn}n ofR, so that Pi(z) is uniquely determined byR, a and the local coordi-
nate {|z| < r}. We call P1(z) (resp. P0(z)) the vertical (resp. horizontal) slit
mapping and ReA11 (resp. ReA01) the L1-(resp. L0-)constant for (R, a) with
respect to the local coordinate {|z| < r}. We call s := ReA01 − ReA11 the
Schiffer span for (R, a), and M(z) := (P1 + P0)/2 the maximizing function
of the Schiffer span s for (R, a). We note sn ց s as n → ∞.

The following is well-known in one complex variable (cf. [11, p. 46]):

Proposition 3.2. R is of class OAD if and only if (1) s = 0 (i.e.,
ReA11 = ReA01), or (2) P1(z) = P0(z) = M(z) := (P1(z)+P0(z))/2 on R,
or (3) P(R) consists of only one function P1(z).

We prepare the following for the proof of Main Theorem 1.1.

Lemma 3.3. Let R be of class OAD and P1(z) be as in (3.1). For a point
b (6= 0) in {|z| < r} let P b

1 (z) denote the vertical slit map for (R, b):

(3.2) P b
1 (z) =

1

z − b
+Ab

11(z − b) +Ab
12(z − b)2 + · · · at z = b.

Then

Ab
11 =

1

4

(
P ′′
1 (b)

P ′
1(b)

)2

−
1

6

(
P ′′′
1 (b)

P ′
1(b)

)
.

Proof. From the Taylor expansion about z = b, we have

P1(z) − P1(b) = P ′
1(b)(z − b)

(
1 +

∞∑

n=2

P
(n)
1 (b)

n!P ′
1(b)

(z − b)n−1

)
.
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Hence

P ′
1(b)

P1(z)− P1(b)
=

1

z − b
−

P ′′
1 (b)

2P ′
1(b)

+

[(
P ′′
1 (b)

2P ′
1(b)

)2

−
P ′′′
1 (b)

3!P ′
1(b)

]
(z − b) + · · · .

We set P̃1(z) :=
P ′

1
(b)

P1(z)−P1(b)
+

P ′′

1
(b)

2P ′

1
(b) , which is a univalent function on R. By

(3) in Proposition 3.2 (using b instead of 0) we have P̃1(z) = P b
1 (z) on R,

which proves the lemma.

By simple calculations we have limb→0A
b
11 = A11.

4. Variation formula for the Schiffer span. We return to a smooth
variation R : t ∈ B → R(t) ⋐ R̃(t) in R̃ :=

⋃
t∈B(t, R̃(t)). Let a :=

{a(t) ∈ R(t) | t ∈ B} ∈ Γ (B,R). If R(t), t ∈ B, is planar, then Lemma 2.1
immediately implies the following variation formula for the Schiffer span s(t):

∂2s(t)

∂t∂t̄
=

1

π

�

∂R(t)

k2(t, z)

(∣∣∣∣
∂p1(t, z)

∂z

∣∣∣∣
2

+

∣∣∣∣
∂p0(t, z)

∂z

∣∣∣∣
2)

dsz(4.1)

+
4

π

� �

R(t)

(∣∣∣∣
∂2p1(t, z)

∂t̄∂z

∣∣∣∣
2

+

∣∣∣∣
∂2p0(t, z)

∂t̄∂z

∣∣∣∣
2)

dx dy.

Lemma 4.1. Under the same assumptions as in Lemma 2.2, the Schiffer
span s(t) for (R(t), a(t)) with respect to the local coordinate {|z| < r} is
logarithmically subharmonic on B.

Proof. We divide the proof into two steps.

Step 1. Let ϕ(t) be any non-vanishing holomorphic function on B and
consider the holomorphic transformation

T : (t, z) ∈ V = B × {|z| < r} 7→ (t, ζ) = (t, ϕ(t)z) ∈ B × Cζ .

Take a bidisk V̂ = B×{|ζ| < r̂} ⊂ T (V) and consider the Schiffer span ŝ(t)
for (R(t), a(t)) with respect to the local coordinate {|ζ| < r̂}. Then

s(t) = |ϕ(t)|2ŝ(t), t ∈ B.

Indeed, let P̂1(t, ζ) and P̂0(t, ζ) be the vertical slit and the horizontal
slit mappings for (R(t), a(t)) with respect to the local coordinate {|ζ| < r̂}.
Then, for ζ = ϕ(t)z,

P̂1(t, ζ) + P̂0(t, ζ)

2
=

1

ζ
+ ĉ1(t)ζ + · · · =

1

ϕ(t)z
+ ĉ1(t)ϕ(t)z + · · ·

at z = 0, so that
(
P̂1+P̂0

2

)
· ϕ(t) ∈ P(R(t)) by Proposition 3.1(i). It follows

from the definition of s(t) and Proposition 3.1(ii) that ŝ(t)|ϕ(t)|2 ≤ s(t).
Similarly, we have s(t) 1

|ϕ(t)|2 ≤ ŝ(t), which proves Step 1.

Step 2. log s(t) is subharmonic on B.
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Since R is pseudoconvex in R̃, it follows from (4.1) that s(t) is subhar-
monic on B. More precisely we have

∂2s(t)

∂t∂t
≥

4

π

� �

R(t)

(∣∣∣∣
∂2p0(t, z)

∂t∂z

∣∣∣∣
2

+

∣∣∣∣
∂2p1(t, z)

∂t∂z

∣∣∣∣
2)

dx dy ≥ 0.

Similarly, ŝ(t) defined in Step 1 is subharmonic on B. Thus s(t)|ϕ(t)|2 is
subharmonic on B for any non-vanishing holomorphic function ϕ(t) on B.
By the standard argument due to Hartogs, log s(t) is subharmonic on B. In
fact, if it is not, we get a contradiction as follows: Assume that there exist
t0 ∈ B and B0 = {|t − t0| < r} ⊂ B such that 1

2π

	2π
0 log s(t0 + reiθ) dθ <

log s(t0). By using means of the Poisson integral, we construct a harmonic
function u(t) on B0 with u(t) = log s(t) on ∂B0. Then u(t0) < log s(t0). For
the non-vanishing holomorphic function φ(t) := e−(u+iu∗) on B0, |φ(t)|s(t) is
not subharmonic on B0 because |φ(t)|s(t) = 1 on ∂B0 and |φ(t0)|s(t0) > 1.
This is a contradiction.

Remark 4.2. Let R be as above. Assume that there exists another sec-
tion b := {b(t) ∈ R(t) | t ∈ B} ∈ Γ (B,R) with a ∩ b = ∅. Then the
Li-principal function qi(t, z) (i = 0, 1) for (R(t), a(t), b(t)) with two loga-
rithmic poles is determined such that qi = −log |z − a(t)| + ha(t, z) near
z = a(t) and qi = log |z − b(t)| + βi(t) + hb(t, z) near z = b(t), where ha
and hb are harmonic with ha(t, a(t)) = hb(t, b(t)) = 0 and βi(t) is a real
constant, and qi satisfies the condition (Li) on ∂R(t). In [3, Lemma 1.3]
and [5, Lemma 2.2], we showed variation formulas of the same type for
βi(t) (i = 0, 1), respectively, and applied them to the variation of harmonic
spans h(t) := β1(t) − β0(t). In contrast to the formulas for Li-constants
αi(t) and the Schiffer span s(t) for (R(t), a(t)), those for βi(t) and h(t) for
(R(t), a(t), b(t)) do not depend on the choice of π-local coordinates. We note
that h(t) is subharmonic on B (see [5, Theorem 4.1]), but s(t) is moreover
logarithmically subharmonic.

As regards the harmonic span h(t), we earlier studied certain non-smooth
variations R : t ∈ B → R(t) under pseudoconvexity. In [4, Theorem 1.3] we
showed that for the variation R of (C2) type there exists a counterexample
such that h(t) is not subharmonic on B, while for the variation R of (C1)
type, h(t) is subharmonic on B:

Theorem 4.3 ([5, Theorem 5.1]). Let R satisfy (1), (2) and (4) of Main
Theorem 1.1. Assume that there exist two sections a,b ∈ Γ (B,R) with
a ∩ b = ∅. Let h(t) be the harmonic span for (R(t), a(t), b(t)). Then h(t) is
subharmonic on B.

By similar considerations to those for Theorem 4.3, using Lemma 4.1 we
can show Theorem 1.4.
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5. Proof of Main Theorem 1.1. From the assumption and Proposi-
tion 3.2(1), the Schiffer span s(t) for (R(t), a(t)) is 0 on E. Since E is of
positive logarithmic capacity, Theorem 1.4 and the suction principle of sub-
harmonic functions imply s(t) ≡ 0 on B, and hence we obtain assertion (i).

For each t ∈ B, let P1(t, z) be a vertical slit mapping for (R(t), a(t)) with
respect to the local coordinate {|z| < r} such that

(5.1) P1(t, z) =
1

z
+A11(t)z +A12(t)z

2 + · · · at z = 0.

For the proof of (ii) it is enough to show that P1 is holomorphic as a function
of the two complex variables (t, z) in R, by Proposition 3.2(2). Since P1 is
holomorphic for z in R(t) \ {0} and each R(t) is non-singular in R, by
analytic continuation it suffices to show that P1 is holomorphic for (t, z)
only in V = B×{|z| < r}, i.e., A11(t), A12(t), . . . are holomorphic on B. We
divide the proof into four steps.

Step 1. The L1-constant Re{A11(t)} for (R(t), a(t)) is harmonic on B.

By similar considerations to those for Theorem 1.4, using Lemma 2.2 we
can show that Re{A11(t)} is superharmonic and Re{A01(t)} is subharmonic
on B under the conditions of R. It follows from Main Theorem 1.1(i) and
Proposition 3.2(1) that Re{A11(t)} = Re{A01(t)} on B, so that Re{A11(t)}
is harmonic on B.

Step 2. A11(t) is holomorphic for t ∈ B.

Let φ(t) be any non-vanishing holomorphic function on B and consider
the transformation

T : (t, z) ∈ V 7→ (t, w) = (t, φ(t)z) ∈ B × Cw.

We take a bidisk V̂ = B×{|w| < r̂} ⊂ T (V). Let P̂1(t, w) denote the vertical

slit mapping for (R̂(t), a(t)) with respect to the local coordinate {|w| < r̂}
such that

P̂1(t, w) :=
1

w
+ Â11(t)w + Â12(t)w

2 + · · · at w = 0.

For the same reason as in Step 1, Re{Â11(t)} is harmonic on B. If we set

P̌1(t, z) := φ(t)P̂1(t, φ(t)z) on R(t), t ∈ B, then

P̌1(t, z) =
1

z
+ (Â11(t)φ(t)

2)z + (Â12(t)φ(t)
3)z2 + · · · at z = 0.

Since P1(t, z) is a univalent function on R(t), and R(t) is of class OAD, Pro-

position 3.2(3) implies P̌1(t, z) = P1(t, z), and hence Â11(t) = A11(t)φ(t)
−2.

Thus Re{A11(t)φ(t)
−2} is harmonic on B. Since φ(t) is any non-vanishing

holomorphic function, A11(t) is holomorphic for t ∈ B, as desired.
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Step 3. The function

A(t, z) := 3

(
∂2P1/∂z

2

∂P1/∂z
(t, z)

)2

− 2
∂3P1/∂z

3

∂P1/∂z
(t, z)

is holomorphic as a function of the two complex variables (t, z) ∈ V.

Since each A(t, z), t ∈ B, is holomorphic for z in V = {|z| < r}, it is
enough to show that, for any b ∈ V , A(t, b) is holomorphic for t ∈ B. To
show this, we consider the constant section b := {z = b | t ∈ B}. Putting
w = z − b, the bidisk Vb := B × {|w| < r − |b|} is a local coordinate for

the section b of R over B. We have the vertical slit mapping P̃1(t, w) for

(R̃(t), b) such that

P̃1(t, w) =
1

w
+ Ã11(t)w + Ã12(t)w

2 + · · · at w = 0.

Then Step 2 implies that Ã11(t) is holomorphic on B. We set P̂1(t, z) :=

P̃1(t, z − b), so that P̂1(t, z) is univalent on R(t) and

P̂1(t, z) =
1

z − b
+ Ã11(t)(z − b) + Ã12(t)(z − b)2 + · · · at z = b.

By Proposition 3.2(3), P̂1(t, z) is identical with the vertical slit mapping

P b
1 (t, z) for (R(t), b) defined in (3.2). By Lemma 3.3 we have Ã11(t) = A(t, b),

t ∈ B. It follows that A(t, b) is holomorphic for t ∈ B. Thus A(t, z) is
holomorphic on B, and Step 3 is proved.

Step 4. P1(t, z) is holomorphic for (t, z) ∈ V.

We simply put V = B × V where V = {|z| < r}. We set

g(t, z) :=
∂2P1(t, z)

∂z2
/∂P1(t, z)

∂z
=

∂

∂z

(
log

∂P1(t, z)

∂z

)
on B × V .

Then

A(t, z) = g(t, z)2 − 2
∂g(t, z)

∂z
on B × V .

By (5.1) and a simple calculation we have

g(t, z) =
−2

z

{
1 +A12(t)z

3 + 3A13(t)z
4 + · · ·

1−A11(t)z2 − 2A12(t)z3 + · · ·

}
=

−2

z

{
1 +

∞∑

n=2

Bn(t)z
n
}
,

where B2(t) = A11(t), and Bk(t) = Fk(A11(t), . . . , A1k−1(t)) for k ≥ 3. Here,
Fk(X1, . . . ,Xk−1) is a polynomial of X1, . . . ,Xk−1. Thus by straightforward
calculation,

A(t, z) = 4[3B2(t) + 4B3(t)z + {B2(t)
2 + 5B4(t)}z

2 + · · · ].

Since A(t, z) is holomorphic as a function of the two complex variables (t, z)
in B × V by Step 3, and since B2(t) = A11(t) is holomorphic for t ∈ B
by Step 2, by induction each Bj(t) (j = 2, 3, . . .) is holomorphic on B.
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Thus g(t, z) itself is holomorphic as a function of (t, z) in B × V , and so is

log ∂P1(t,z)
∂z

. Since

log
∂P1

∂z
= log

(
−

1

z2

)
+ log

(
1−

∞∑

n=1

nA1n(t)z
n+1

)

= log

(
−

1

z2

)
−

∞∑

k=1

Gk(t)z
k+1,

where Gk(t) = kA1k(t) (k = 1, 2), Gk(t) = kA1k(t)+ F̃k(G1(t), . . . , Gk−1(t))

(k ≥ 3), and F̃k(X1, . . . ,Xk−1) is a polynomial of X1, . . . ,Xk−1, it follows
that each Gk(t) (k = 1, 2, . . .) is holomorphic for t ∈ B, and so is each A1k(t)
on B. Thus Step 4 is proved.

Thus, the proof of Main Theorem 1.1 is complete.

6. Example for Lemma 2.2 and Lemma 4.1. For t ∈ B = {|t| < ρ},
let D(t) = {z ∈ Cz | |z| < r(t)} such that log r(t) is superharmonic on B.
Then D =

⋃
t∈B(t,D(t)) is pseudoconvex in B×Cz. By use of the Joukowski

transformation we consider the vertical (resp. horizontal) slit mapping P1

(resp. P0) for (D(t), 0):

P1(t, z) =
1

z
−

z

r(t)2
and P0(t, z) =

1

z
+

z

r(t)2
on D(t).(6.1)

Then P1 (resp. P0) maps D(t) onto the slit domain P\
[
− 2i

r(t) ,
2i
r(t)

]
(resp. P\[

−2
r(t) ,

2
r(t)

]
). The L1-constant α1(t) = −1/r(t)2 < 0 is superharmonic on B,

while the L0-constant α0(t) = 1/r(t)2 is subharmonic on B. By (6.1) the
Schiffer span s(t) for (D(t), 0) is s(t) = 2/r(t)2 > 0 on B. Hence, log s(t) =
log 2− 2 log r(t) is subharmonic on B. We consider the maximizing function

M(t, z) :=
1

2
{P1(t, z) + P0(t, z)} =

1

z
,

and see that the complement of M(t,D(t)) in Pw is equal to {|w| ≤ 1/r(t)}.
It is convex and its Euclidean area is π/r(t)2, which is equal to πs(t)/2.
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