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Periodic solutions for first order
neutral functional differential equations

with multiple deviating arguments

by Lequn Peng (Changde) and Lijuan Wang (Jiaxing)

Abstract. We consider first order neutral functional differential equations with mul-
tiple deviating arguments of the form

(x(t) +Bx(t− δ))′ = g0(t, x(t)) +

n∑
k=1

gk(t, x(t− τk(t))) + p(t).

By using coincidence degree theory, we establish some sufficient conditions on the existence
and uniqueness of periodic solutions for the above equation. Moreover, two examples are
given to illustrate the effectiveness of our results.

1. Introduction. Recently, Liu and Huang [LH1, LH2] discussed the
problem of periodic solutions for first order neutral functional differential
equations (NFDE) of the form

(1.1) (x(t) +Bx(t− δ))′ = g1(t, x(t)) + g2(t, x(t− τ(t))) + p(t),

where τ, p : R→ R and g1, g2 : R×R→ R are continuous functions, B and δ
are constants, p is T -periodic, g1 and g2 are T -periodic in the first argument,
|B| 6= 1 and T > 0.

This kind of NFDE has been used in the study of distributed networks
containing lossless transmission lines [HM, KN]. Hence, in recent years, the
problem of the existence of periodic solutions for (1.1) has been extensively
studied. We refer the reader to [GM, H, HM, KN, LH1, LH2, LG, Z] and
the references cited therein for more details.

In particular, Liu and Huang [LH1, LH2] also provided a sufficient con-
dition for the existence and uniqueness of T -periodic solutions of (1.1) under
the following conditions:
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(A0) one of the following conditions holds:

(1) (gi(t, u1) − gi(t, u2))(u1 − u2) > 0 for i = 1, 2, ui, t ∈ R and
u1 6= u2,

(2) (gi(t, u1) − gi(t, u2))(u1 − u2) < 0 for i = 1, 2, ui, t ∈ R and
u1 6= u2;

(A0) there exist constants b1 and b2 such that

(1) b1T/π + 1
2b2T <

∣∣1− |B|∣∣,
(2) |gi(t, u1)− gi(t, u2)| ≤ bi|u1 − u2| for i = 1, 2, ui, t ∈ R.

However, to the best of our knowledge, there exists not much work on
the existence and uniqueness of periodic solutions of (1.1) without (A0)
and (A0). Moreover, the existence and uniqueness of periodic solutions of
NFDE with more than two delays have not been extensively studied. Mo-
tivated by this, we shall consider first order NFDE with multiple deviating
arguments of the form

(1.2) (x(t) +Bx(t− δ))′ = g0(t, x(t)) +
n∑
k=1

gk(t, x(t− τk)) + p(t),

where (for all k = 1, . . . , n) τk, p : R → R and g0, gk : R × R → R are
continuous functions, B and δ are constants, p and τk are T -periodic, g0
and gk are T -periodic in the first argument, |B| 6= 1 and T > 0.

The purpose of this article is to investigate the existence and unique-
ness of T -periodic solutions of (1.2). By using some differential inequality
techniques and Mawhin’s continuation theorem, we establish some sufficient
conditions for the existence and uniqueness of T -periodic solutions of (1.2)
without assuming the conditions (A0) and (A0)(1). Moreover, two illustra-
tive examples are given in Section 4.

For ease of exposition, throughout this paper we will adopt the following
notations:

|x|2 =
( T�

0

|x(t)|2 dt
)1/2

, |x|∞ = max
t∈[0,T ]

|x(t)|.

We also assume that τk ∈ C1(R, R), 1− τ ′k > 0 and k = 1, . . . , n. Let

X = {x ∈ C(R,R) | x(t+ T ) = x(t) for all t ∈ R}

be a Banach space with the norm ‖x‖X = |x|∞. We will suppose that
Λ ⊆ I = {1, . . . , n} is a nonempty set. For i ∈ Λ, we assume that there exist
a nonnegative constant b−i and an integer mi such that

(1.3) b−i |B| |x1−x2|
2≤B[gi(t, x1)− gi(t, x2)](x1−x2), τi(t) ≡ δ−miT,

for all t, x1, x2 ∈ R.
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Define linear operators

A : X → X, (Ax)(t) = x(t) +Bx(t− δ)
and

(1.4) L : D(L) ⊂ X → X, Lx = (Ax)′,

where D(L) = {x ∈ X | x′ ∈ C(R,R)}.
We also define a nonlinear operator N : X → X by setting

(1.5) Nx = g0(t, x(t)) +

n∑
k=1

gk(t, x(t− τk(t))) + p(t).

In Hale’s terminology [H], a solution u(t) of (1.2) is a function u ∈ C(R,R)
such thatAu ∈ C1(R,R) and (1.2) is satisfied on R. In general, u 6∈ C1(R,R).
But from Lemma 1 of [LG], in view of |B| 6= 1, it is easy to see that
(Ax)′=Ax′. So a T -periodic solution u(t) of (1.2) must be in C1(R,R).
Meanwhile, according again to Lemma 1 of [LG], we can easily see that

KerL = R and ImL = {x ∈ X |
	T
0 x(s) ds = 0}. Therefore, L is a Fredholm

operator with index zero. Define continuous projectors P : X → KerL and
Q : X → X/ImL by setting

Px(t) =
1

T

T�

0

x(s) ds and Qx(t) =
1

T

T�

0

x(s) ds.

Hence, ImP = KerL and KerQ = ImL. Set LP = L|D(L)∩KerP . Then LP
has a continuous inverse L−1P defined by

(1.6) L−1P y(t) = A−1
(

1

T

T�

0

sy(s) ds+

t�

0

y(s) ds

)
.

Therefore, it is easy to see from (1.5) and (1.6) that N is L-compact on Ω,
where Ω is an open bounded set in X.

2. Preliminary results. In view of (1.4) and (1.5), the operator equa-
tion

Lx = λNx

where λ ∈ (0, 1) is equivalent to

(2.1) x′(t) +Bx′(t− δ) = λ
[
g0(t, x(t)) +

n∑
k=1

gk(t, x(t− τk(t))) + p(t)
]
.

For later use, we introduce the continuation theorem from [GM]:

Lemma 2.1. Let X be a Banach space. Suppose that L : D(L) ⊂ X → X
is a Fredholm operator with index zero and N : Ω → X is L-compact on Ω,
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where Ω is an open bounded subset of X. Moreover, assume that all the
following conditions are satisfied:

(1) Lx 6= λNx for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(2) Nx 6∈ ImL for all x ∈ ∂Ω ∩KerL;
(3) the Brouwer degree satisfies

deg{QN,Ω ∩KerL, 0} 6= 0.

Then the equation Lx = Nx has a solution on Ω ∩D(L).

The following lemmas will be useful to prove our main results in Sec-
tion 3.

Lemma 2.2. Suppose that

(A1) there exist nonnegative constants b+0 , b
+
1 , . . . , b

+
n such that

|gk(t, x1)− gk(t, x2)| ≤ b+k |x1 − x2| for all t, x1, x2 ∈ R, k = 0, 1, . . . , n.

Moreover, assume that one of the following conditions is satisfied:

(1) there exists a positive constant b−0 such that

b−0 |x1 − x2|
2 ≤ −(g0(t, x1)− g0(t, x2))(x1 − x2) for all t, x1, x2 ∈ R

and

b−0 > |B|b+0 +
n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2

+ |B|
n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2

;

(2) we have∑
k∈Λ
|B|b−k > b+0 + |B|b+0 +

n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2

+ |B|
∑

k∈I−Λ
b+k max

t∈R

(
1

1− τ ′k(t)

)1/2

.

Then (1.2) has at most one T -periodic solution.

Proof. Suppose that x1(t) and x2(t) are two T -periodic solutions of (1.2).
Set Z(t) = x1(t)− x2(t). Then

(2.2) (Z(t) +BZ(t− δ))′ − [g0(t, x1(t))− g0(t, x2(t))]

−
n∑
k=1

[gk(t, x1(t− τk(t)))− gk(t, x2(t− τk(t)))] = 0.

Multiplying both sides of (2.2) by Z(t) + BZ(t − δ) and then integrating
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from 0 to T , we have

(2.3) −
T�

0

Z(t)[g0(t, x1(t))− g0(t, x2(t))] dt

= B

T�

0

Z(t− δ)[g0(t, x1(t))− g0(t, x2(t))] dt

+
n∑
k=1

T�

0

Z(t)[gk(t, x1(t− τk(t)))− gk(t, x2(t− τk(t)))] dt

+B

n∑
k=1

T�

0

Z(t− δ)[gk(t, x1(t− τk(t)))− gk(t, x2(t− τk(t)))] dt

and

(2.4)
∑
k∈Λ

T�

0

BZ(t− δ)[gk(t, x1(t− τk(t)))− gk(t, x2(t− τk(t)))] dt

= −
T�

0

Z(t)[g0(t, x1(t))− g0(t, x2(t))] dt

−B
T�

0

Z(t− δ)[g0(t, x1(t))− g0(t, x2(t))] dt

−
n∑
k=1

T�

0

Z(t)[gk(t, x1(t− τk(t)))− gk(t, x2(t− τk(t)))] dt

−
∑

k∈I−Λ
B

T�

0

Z(t− δ)[gk(t, x1(t− τk(t)))− gk(t, x2(t− τk(t)))] dt.

In view of (A1)(1) and (A1)(2), we shall consider two cases.

Case (i). If (A1)(1) holds, using (2.3) and the Schwarz inequality, we
get

(2.5) b−0 |Z|
2
2 ≤ −

T�

0

Z(t)[g0(t, x1(t))− g0(t, x2(t))] dt

= B

T�

0

Z(t− δ)[g0(t, x1(t))− g0(t, x2(t))] dt

+
n∑
k=1

T�

0

Z(t)[gk(t, x1(t− τk(t)))− gk(t, x2(t− τk(t)))] dt

+B

n∑
k=1

T�

0

Z(t−δ)[gk(t, x1(t−τk(t)))−gk(t, x2(t−τk(t)))] dt
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≤ |B|b+0
T�

0

|Z(t− δ)| |Z(t)| dt

+

n∑
k=1

b+k

T�

0

|Z(t)| |Z(t− τk(t))| dt

+ |B|
n∑
k=1

b+k

T�

0

|Z(t− δ)| |Z(t− τk(t))| dt

≤ |B|b+0
( T�

0

|Z(t− δ)|2 dt
)1/2( T�

0

|Z(t)|2 dt
)1/2

+

n∑
k=1

b+k

( T�
0

|Z(t)|2 dt
)1/2( T�

0

|Z(t− τk(t))|2 dt
)1/2

+ |B|
n∑
k=1

b+k

( T�
0

|Z(t− δ)|2 dt
)1/2( T�

0

|Z(t− τk(t))|2 dt
)1/2

= |B|b+0
( T�

0

|Z(t)|2 dt
)1/2( T�

0

|Z(t)|2 dt
)1/2

+
n∑
k=1

b+k

( T�
0

|Z(t)|2 dt
)1/2( T−τk(0)�

−τk(0)

|Z(s)|2 1

1− τ ′k(t)
ds

)1/2

+ |B|
n∑
k=1

b+k

( T�
0

|Z(t)|2 dt
)1/2( T−τk(0)�

−τk(0)

|Z(s)|2 1

1− τ ′k(t)
ds

)1/2

= |B|b+0
( T�

0

|Z(t)|2 dt
)1/2( T�

0

|Z(t)|2 dt
)1/2

+

n∑
k=1

b+k

( T�
0

|Z(t)|2 dt
)1/2( T�

0

|Z(s)|2 1

1− τ ′k(t)
ds

)1/2

+ |B|
n∑
k=1

b+k

( T�
0

|Z(t)|2 dt
)1/2( T�

0

|Z(s)|2 1

1− τ ′k(t)
ds

)1/2

≤
(
|B|b+0 +

n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2

+ |B|
n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2)
|Z|22,
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which implies that

Z(t) ≡ 0 for all t ∈ R.

Hence, x1(t) ≡ x2(t) for all t∈R. Therefore, (1.2) has at most one T -periodic
solution.

Case (ii). If (A1)(2) holds, using (2.4), (1.3) and the Schwarz inequality,
we obtain

(2.6)
∑
k∈Λ
|B|b−k |Z|

2
2

=
∑
k∈Λ
|B|b−k

T�

0

|Z(t)|2 dt

=
∑
k∈Λ
|B|b−k

T�

0

|Z(t− δ)| |Z(t− τk(t))| dt

≤
∑
k∈Λ

T�

0

BZ(t− δ)[gk(t, x1(t− τk(t)))− gk(t, x2(t− τk(t)))] dt

= −
T�

0

Z(t)[g0(t, x1(t))− g0(t, x2(t))] dt

−B
T�

0

Z(t− δ)[g0(t, x1(t))− g0(t, x2(t))] dt

−
n∑
k=1

T�

0

Z(t)[gk(t, x1(t− τk(t)))− gk(t, x2(t− τk(t)))] dt

−
∑

k∈I−Λ
B

T�

0

Z(t− δ)
[
gk(t, x1(t− τk(t)))

− gk(t, x2(t− τk(t)))
]
dt

≤
(
b+0 + |B|b+0 +

n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2

+ |B|
∑

k∈I−Λ
b+k max

t∈R

(
1

1− τ ′k(t)

)1/2)
|Z|22.

Then using a similar argument to that in Case (i), from (2.6) and (A2)(2),
we conclude that (1.2) has at most one T -periodic solution. The proof of
Lemma 2.2 is now complete.
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Lemma 2.3. Assume that

(A2) there exists a constant d > 0 such that

(1)
∑n

k=0 gk(t, xk) + p(t) < 0 for xk > d, t ∈ R, k = 0, 1, . . . , n;
(2)

∑n
k=0 gk(t, xk) + p(t) > 0 for xk < −d, t ∈ R, k = 0, 1, . . . , n.

Let x(t) be a T -periodic solution of (2.1). Then

(2.7) |x|∞ ≤ d+
1

2

T�

0

|x′(s)| ds.

Proof. Integrating (2.1) over [0, T ], we have

T�

0

[
g0(t, x(t)) +

n∑
k=1

gk(t, x(t− τk(t))) + p(t)
]
dt = 0.

Using the integral mean-value theorem, it follows that there exists t1 ∈ [0, T ]
such that

(2.8) g0(t1, x(t1)) +
n∑
k=1

gk(t1, x(t1 − τk(t1))) + p(t1) = 0.

We first claim that there exists a constant t2 ∈ R such that

(2.9) |x(t2)| ≤ d.
Assume, on the contrary, that (2.9) does not hold. Then

(2.10) |x(t)| > d for all t ∈ R.
Let τ0 ≡ 0 and t1 ∈ [0, T ] be the constant prescribed in (2.8). Using (A2),
(2.8) and (2.10), we see that there exist 0 ≤ i, j ≤ n such that

x(t1 − τi(t1)) = max
0≤k≤n

x(t1 − τk(t1)) ≥ min
0≤k≤n

x(t1 − τk(t1)) = x(t1 − τj(t1)),

which, together with (2.10), implies that

−d > x(t1 − τi(t1)) = max
0≤k≤n

x(t1 − τk(t1))

or
x(t1 − τj(t1)) = min

0≤k≤n
x(t1 − τk(t1)) > d.

Without loss of generality, we may assume that the latter condition holds
(for the former, the situation is analogous). Then

(2.11) x(t1−τi(t1)) ≥ x(t1−τk(t1)) ≥ x(t1−τj(t1)) > d, k = 0, 1, . . . , n.

According to (2.11) and (A2), we obtain

0 >
n∑
k=0

gk(t1, x(t1 − τk(t1))) + p(t1),

which contradicts (2.8); thus (2.9) is true.
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Let t2 = mT + t0 where t0 ∈ [0, T ] and m is an integer. Then

|x(t2)| = |x(t0)| ≤ d,

|x(t)| =
∣∣∣x(t0) +

t�

t0

x′(s) ds
∣∣∣ ≤ d+

t�

t0

|x′(s)| ds, t ∈ [t0, t0 + T ],

and

|x(t)| = |x(t− T )| =
∣∣∣x(t0)−

t0�

t−T
x′(s) ds

∣∣∣
≤ d+

t0�

t−T
|x′(s)| ds, t ∈ [t0, t0 + T ].

Combining the above two inequalities and using the Schwarz inequality, for
any T -periodic solution x(t) of (2.2), we have

|x|∞ ≤ max
t∈[t0,t0+T ]

{
d+

1

2

( t�

t0

|x′(s)| ds+

t0�

t−T
|x′(s)| ds

)}
= d+

1

2

T�

0

|x′(s)| ds.

This completes the proof of Lemma 2.3.

3. Main results

Theorem 3.1. Let (A2) hold. Assume that either the condition (A1)(1)
or (A1)(2) is satisfied. Then (1.2) has a unique T -periodic solution.

Proof. From Lemma 2.3, together with (A1) and (A2), it follows easily
that (1.2) has at most one T -periodic solution. Thus, to prove Theorem 3.1,
it suffices to show that (1.2) has at least one T -periodic solution. To do this,
we shall apply Lemma 2.1.

First, we claim that the set of all possible T -periodic solutions of (2.1)
is bounded.

Let x(t) be a T -periodic solution of (2.1). Multiplying x(t) + Bx(t − δ)
and (2.1), and then integrating from 0 to T , we have

(3.1)

T�

0

x(t)
[
g0(t, x(t)) +

n∑
k=1

gk(t, x(t− τk(t))) + p(t)
]
dt

+

T�

0

Bx(t− δ)
[
g0(t, x(t)) +

n∑
k=1

gk(t, x(t− τk(t))) + p(t)
]
dt = 0.

Now, we shall consider two cases.
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Case (i). If (A1)(1) holds, then from (3.1) and the Schwarz inequality,
we have

(3.2) b−0 |x|
2
2 ≤ −

T�

0

(x(t)− 0)[g0(t, x(t))− g0(t, 0)] dt

= B

T�

0

x(t− δ)[g0(t, x(t))− g0(t, 0)] dt

+

n∑
k=1

T�

0

x(t)[gk(t, x(t− τk(t)))− gk(t, 0)] dt

+B

n∑
k=1

T�

0

x(t− δ)[gk(t, x(t− τk(t)))− gk(t, 0)] dt

+
n∑
k=0

T�

0

x(t)gk(t, 0) dt+B
n∑
k=0

T�

0

x(t− δ)gk(t, 0) dt

+

T�

0

x(t)p(t) dt+B

T�

0

x(t− δ)p(t) dt

≤ |B|b+0
T�

0

|x(t− δ)| |x(t)| dt+
n∑
k=1

b+k

T�

0

|x(t)| |x(t− τk(t))| dt

+ |B|
n∑
k=1

b+k

T�

0

|x(t− δ)| |Z(t− τk(t))| dt

+ (1 + |B|)
√
T

n∑
k=0

|gk(t, 0)|∞|x|2 + (1 + |B|)
√
T |p|∞|x|2

≤
(
|B|b+0 +

n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2

+ |B|
n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2)
|x|22

+ (1 + |B|)
√
T

n∑
k=0

|gk(t, 0)|∞|x|2 + (1 + |B|)
√
T |p|∞|x|2.

Now, let

(3.3) D1 =
(1 + |B|)

√
T
∑n

k=0 |gk(t, 0)|∞ + (1 + |B|)
√
T |p|∞

b−0 −
(
|B|b+0 + (1 + |B|)

∑n
k=1 b

+
k maxt∈R

(
1

1−τ ′k(t)
)1/2) .
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In view of (3.2) and (3.3), we obtain

(3.4) |x|2 ≤ D1.

Case (ii). If (A1)(2) holds, from (1.3), (3.1) and the Schwarz inequality,
we get

(3.5)
∑
k∈Λ
|B|b−k |x|

2
2 =

∑
k∈Λ
|B|b−k

T�

0

|x(t)|2 dt

=
∑
k∈Λ
|B|b−k

T�

0

|x(t− δ)| |x(t− τk(t))| dt

≤
∑
k∈Λ

T�

0

Bx(t− δ)[gk(t, x(t− τk(t)))− gk(t, 0)] dt

= −
T�

0

x(t)[g0(t, x(t))− g0(t, 0)] dt

−B
T�

0

x(t− δ)[g0(t, x(t))− g0(t, 0)] dt

−
n∑
k=1

T�

0

x(t)[gk(t, x(t− τk(t)))− gk(t, 0)] dt

−B
∑

k∈I−Λ

T�

0

x(t− δ)[gk(t, x(t− τk(t)))− gk(t, 0)] dt

−
n∑
k=0

T�

0

x(t)gk(t, 0) dt−B
n∑
k=0

T�

0

x(t− δ)gk(t, 0) dt

−
T�

0

x(t)p(t) dt−B
T�

0

x(t− δ)p(t) dt

≤
(
b+0 + |B|b+0 +

n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2

+ |B|
∑

k∈I−Λ
b+k max

t∈R

(
1

1− τ ′k(t)

)1/2)
|x|22

+ (1 + |B|)
√
T

n∑
k=0

|gk(t, 0)|∞|x|2 + (1 + |B|)
√
T |p|∞|x|2.
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Now, let

Φ =

n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2

+ |B|
∑

k∈I−Λ
b+k max

t∈R

(
1

1− τ ′k(t)

)1/2

and

(3.6) D1 =
(1 + |B|)

√
T
∑n

k=0 |gk(t, 0)|∞ + (1 + |B|)
√
T |p|∞∑

k∈Λ |B|b
−
k − b

+
0 − |B|b

+
0 − Φ

.

According to (3.5) and (3.6), we obtain

(3.7) |x|2 ≤ D1.

If 1 > |B|, in view of (2.1), we get

T�

0

|x′(t)| dt =

T�

0

∣∣∣−Bx′(t− δ) + λ
[
g0(t, x(t))

+

n∑
k=1

gk(t, x(t− τk(t))) + p(t)
]∣∣∣ dt

≤ |B|
T�

0

|x′(t− δ)| dt+

T�

0

|g0(t, x(t))− g0(t, 0)| dt

+

n∑
k=1

T�

0

|gk(t, x(t− τk(t)))− gk(t, 0)| dt

+
n∑
k=0

T�

0

|gk(t, 0)| dt+

T�

0

|p(t)| dt

≤ |B|
T�

0

|x′(t)| dt+
√
T

(
b+0 +

n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2)
|x|2

+

n∑
k=0

T |gk(t, 0)|∞ + T |p|∞,

which together with (3.4) and (3.7) implies that

T�

0

|x′(t)| dt ≤ 1

1−|B|
√
T

(
b+0 +

n∑
k=1

b+k max
t∈R

(
1

1−τ ′k(t)

)1/2)
(D1+D1)(3.8)

+
1

1− |B|

( n∑
k=0

T |gk(t, 0)|∞ + T |p|∞
)

:= M1.
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If 1 < |B|, from (2.1), it follows that

|B|
T�

0

|x′(t)| dt =

T�

0

|Bx′(t− δ)| dt

=

T�

0

∣∣∣−x′(t) + λ
[
g0(t, x(t)) +

n∑
k=1

gk(t, x(t− τk(t))) + p(t)
]∣∣∣ dt

≤
T�

0

|x′(t)| dt+

T�

0

|g0(t, x(t))− g0(t, 0)| dt

+
n∑
k=1

T�

0

|gk(t, x(t− τk(t)))− gk(t, 0)| dt

+

n∑
k=0

T�

0

|gk(t, 0)| dt+

T�

0

|p(t)| dt

≤
T�

0

|x′(t)| dt+
√
T

(
b+0 +

n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2)
|x|2

+

n∑
k=0

T |gk(t, 0)|∞ + T |p|∞,

which together with (3.4) and (3.7) implies that

T�

0

|x′(t)| dt ≤ 1

|B|−1

√
T

(
b+0 +

n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2)
(D1+D1)(3.9)

+
1

|B| − 1

( n∑
k=0

T |gk(t, 0)|∞ + T |p|∞
)

:= M2.

Thus, from (2.7), (3.8) and (3.9) there exists a positive constant M such
that for all t ∈ R,

(3.10) |x|∞ ≤ d+ 1
2(M1 +M2) < M.

Set

Ω = {x ∈ X : |x|∞ < M}.

Then we know that equation (2.1) has no T -periodic solution for ∂Ω for
λ ∈ (0, 1). When x(t) ∈ ∂Ω ∩R, x(t) = M or x(t) = −M , from (A2) we can
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see that

− 1

T

T�

0

{
g0(t,M) +

n∑
k=1

gk(t,M) + p(t)
}
dt > 0,

− 1

T

T�

0

{
g0(t,−M) +

n∑
k=1

gk(t,−M) + p(t)
}
dt < 0,

so condition (ii) of Lemma 2.1 is also satisfied. Set

H(x, µ) = −(1− µ)x+ µ
1

T

T�

0

[
g0(t, x) +

n∑
k=1

gk(t, x) + p(t)
]
dt.

When x ∈ ∂Ω ∩R, µ ∈ [0, 1], we have

xH(x, µ) = −(1− µ)x2 + µx
1

T

T�

0

[
g0(t, x) +

n∑
k=1

gk(t, x) + p(t)
]
dt < 0.

Thus H(x, µ) is a homotopic transformation and

deg{−x,Ω ∩ R, 0} = deg

{
1

T

T�

0

[
g0(t, x) +

n∑
k=1

gk(t, x) + p(t)
]
dt,Ω ∩ R, 0

}
= deg{x,Ω ∩ R, 0} 6= 0,

so condition (iii) of Lemma 2.1 is satisfied. In view of that lemma, equation
(1.1) has a solution with period T . This completes the proof.

Similar to the proof of Theorem 3.1, one can prove the following result:

Theorem 3.2. Suppose that

(A∗1) there exist nonnegative constants b+0 , b
+
1 , . . . , b

+
n such that

|gk(t, x1)− gk(t, x2)| ≤ b+k |x1 − x2| for all t, x1, x2 ∈ R, k = 0, 1, . . . , n.

Moreover, assume that one of the following conditions is satisfied:

(1) there exists a positive constant b−0 such that

b−0 |x1 − x2|
2 ≤ [g0(t, x1)− g0(t, x2)](x1 − x2) for all t, x1, x2 ∈ R,

and

b−0 > |B|b+0 +
n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2

+ |B|
n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2

;
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(2) Λ ⊆ {1, . . . , n} is a nonempty set such that∑
k∈Λ
|B|b−k > b+0 + |B|b+0 +

n∑
k=1

b+k max
t∈R

(
1

1− τ ′k(t)

)1/2

+ |B|
∑

k∈I−Λ
b+k max

t∈R

(
1

1− τ ′k(t)

)1/2

.

(A∗2) there exists a constant d > 0 such that

(1)
∑n

k=0 gk(t, xk) + p(t) > 0 for xk > d, t ∈ R, k = 0, 1, . . . , n;

(2)
∑n

k=0 gk(t, xk) + p(t) < 0 for xk < −d, t ∈ R, k = 0, 1, . . . , n.

Then (1.2) has a unique T -periodic solution.

4. Examples and remarks

Example 4.1. The first order NFDE

(4.1)
(
x(t) + 1

30x(t− 2)
)′

= −100(2 + sin t)x+
∣∣ cosx

(
t− 1

2 sin t
)∣∣+ ecos t

has a unique 2π-periodic solution.

Proof. From (4.1), we have B = 1/30, g0(t, x) = −100(2 + sin t)x,
g1(t, x) = | cosx| and p(t) = ecos t. Then, b−0 = 100, b+0 = 300, b+1 = 1.
It follows that (4.1) satisfies the conditions (A1)(1) and (A2). Therefore,
from Theorem 3.1, (4.1) has a unique 2π-periodic solution.

Remark 4.1. Since B = 1/30, p(t) = ecos t, g1(t, x) = |cosx| and
g0(t, x) = −100(2 + sin t)x with b−0 = 100 > 2(1−B) = 29/15, one can ob-
serve that the conditions (A0) and (A0)(1) in [1-2] are not satisfied. Hence,
the results obtained in [LH1, LH2] and the references cited therein are not
applicable to Example 4.1.

Example 4.2. The first order NFDE

(x(t)− 100x(t− π/2))′ = − 1
300e

sin t cosx(t)− x(t− 3π/2)(4.2)

+ 1
100

∣∣sinx(t− 1
2 sin t

)∣∣+ cos t

has a unique 2π-periodic solution.

Proof. From (4.2), we obtain

B = −100, g0(t, x) = − 1
300e

sin t cosx,

g1(t, x) = −x, g2(t, x) = 1
100 |sinx|

and

p(t) = cos t, δ = π/2, τ1(t) ≡= 3π/2,

τ2(t) = 1
2 sin t, 1− τ ′2(t) ≥ 1/2.
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Then

Λ = {1}⊂ I = {1, 2}, b−1 |B|= 100, b+0 ≤ 1/100, b+1 = 1, b+2 ≤ 1/100

and

|B|b−1 = 100

>
1

100
+100× 1

100
+1× 1+

1

100

(
1

1−1/2

)1/2
+ 100× 1

100

(
1

1−1/2

)1/2
≥ b+0 + |B|b+0 + b+1 max

t∈R

(
1

1− τ ′1(t)

)1/2

+ b+2 max
t∈R

(
1

1− τ ′2(t)

)1/2

+|B|b+2 max
t∈R

(
1

1− τ ′2(t)

)1/2

.

This implies that (4.2) satisfies the conditions (A1)(2) and (A2). Therefore,
by Theorem 3.1, (4.2) has a unique 2π-periodic solution.

Remark 4.2. Obviously, g0(t, x) = − 1
300e

sin t cosx and g2(t, x) =
1

100 |sinx| do not satisfy the condition (A0). Since the results in [LH1, LH2]
were established for first order NFDE with only one deviating argument,
they also cannot be applied to (4.2) to obtain the existence and uniqueness
of 2π-periodic solutions.
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