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Some remarks on comparison functions

by Antoni Augustynowicz (Gdańsk)

Abstract. We answer some questions concerning Perron and Kamke comparison
functions satisfying the Carathéodory condition. In particular, we show that a Perron
function multiplied by a constant may not be a Perron function, and that not every com-
parison function is bounded by a comparison function with separated variables. Moreover,
we investigate when a sum of Perron functions is a Perron function. We also present a
criterion for comparison functions with separated variables.

The first and most applicable condition that guarantees uniqueness of so-
lutions for a wide class of differential problems was introduced by Lipschitz.
This result and the papers of Perron [5] and Kamke [2] initiated the devel-
opment and applications of so-called comparison functions theory. In this
paper we answer some questions concerning comparison functions satisfying
the Carathéodory condition, in particular ones with separated variables.

This paper stems from conversations with other mathematicians who
suggested that the class of Perron and Kamke functions should have some
“nice” properties. They believed, for instance, that every comparison function
was bounded by a comparison function with separated variables and that a
Perron function multiplied by a constant was also a Perron function. We
disprove these statements. We also study some other properties of the class
of comparison functions, in particular we give a classification of comparison
functions with separated variables and we consider the question whether the
class of Perron functions is closed with respect to adding Lipschitz functions.

1. Preliminaries. We say that a function ω : (0, T ] × [0, a] → R+ =
[0,∞) satisfies the Carathéodory condition if ω(t, ·) : [0, a] → R+ is contin-
uous for almost every t ∈ (0, T ], ω(·, x) : (0, T ] → R+ is measurable for all
x ∈ [0, a], and ω(t, x) ≤ m(t) for a.e. t ∈ (0, T ], all x ∈ [0, a] and some
function m : (0, T ]→ R+ integrable on [τ, T ] for every τ > 0.
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Suppose that ω satisfies the Carathéodory condition and ω(t, 0) = 0. We
say that ω is a Perron function if the zero function is the only absolutely
continuous solution of the problem

(1) x′(t) = ω(t, x(t)) a.e. (0, T ), x(0) = 0.

If the zero function is the only solution of the problem (1) under the ad-
ditional condition D+x(0) = 0, where D+x is the right-hand upper Dini
derivative, then ω is called a Kamke function.

We say that a function ω(t, x) = A(t)B(x) has C-separated variables if
it satisfies the Carathéodory condition (that is, B is continuous and A is
integrable on [τ, T ] for each τ > 0) and for every ε ∈ (0, a] and γ ∈ (0, ε) we
have

(2)
ε�

γ

dx

B(x)
<∞.

Lemma 1. Suppose that ω : (0, T ]× [0, a]→ R+ satisfies the Carathéodo-
ry condition, ϕ : [0, T ]→ R+ is continuous, ϕ(0) = 0 and

(3) ϕ(t) ≤ ϕ(τ) +
t�

τ

ω(s, ϕ(s)) ds for 0 < τ < t < T.

Then for every b ∈ (0, ϕ(T )) there exists an absolutely continuous function
x : [0, T ] → R+ such that x(T ) = b, x(t) ≤ ϕ(t) for t ∈ [0, T ] and x′(t) =
ω(t, x(t)) a.e. in (0, T ) .

Proof. Let b ∈ (0, ϕ(T )). For n ∈ N consider the initial-value problem

z′(t) = ωn(t, z(t)) a.e. (0, T ), z(T ) = b,

where

ωn(t, x) =



ω(t, x), x ≤ (1− 1/n)ϕ(t),

n

(
1− x

ϕ(t)

)
ω

(
t,

(
1− 1

n

)
ϕ(t)

)
+ (n+ 1)

(
x

ϕ(t)
− 1 +

1
n

)
fn(t), 0<(1−1/n)ϕ(t)<x≤ϕ(t),

n+ 1
n

fn(t), x ≥ ϕ(t),

fn(t) = max{ω(t, y) : (1− 1/n)ϕ(t) ≤ y ≤ ϕ(t)}.

It is clear that the above problem has a nondecreasing solution yn defined
on [0, T ], since ωn(t, 0) = 0. We show that yn ≤ ϕ. Let tn = max{t :
yn(t) = ϕ(t)}. Suppose that ϕ(tn) > 0 and take t > tn such that yn(s) ≥(
1 − 1

n(n+1)

)
ϕ(s) for s ∈ [tn, t]. Then ωn(s, yn(s)) ≥ fn(s) ≥ ω(s, ϕ(s)) for
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s ∈ [tn, t]. We get

yn(t) = ϕ(tn) +
t�

tn

ωn(s, yn(s)) ds ≥ ϕ(tn) +
t�

tn

ω(s, ϕ(s)) ds ≥ ϕ(t).

This contradicts the definition of tn. Hence ϕ(tn) = 0, yn(t) = 0 ≤ ϕ(t) for
t < tn and consequently yn ≤ ϕ.

The functions yn are uniformly bounded and equicontinuous, hence there
exists a subsequence {ynk

} uniformly convergent to a continuous function
x : [0, T ] → R+. Since ωnk

(s, ynk
(s)) → ω(s, x(s)) almost everywhere, stan-

dard arguments and the Lebesgue dominated convergence theorem imply the
assertion.

Remark 1. The assumption ϕ(0) = 0 in the above lemma may be omit-
ted. Moreover, the assertion is satisfied if b = ϕ(T ).

It is clear that condition (3) holds if ϕ′(t) ≤ ω(t, ϕ(t)) a.e. (0, T ). This
implies that if ω is a Perron (or Kamke) function, then any function not
greater than ω is also a Perron (resp. Kamke) function.

2. Results. We state a criterion for a function with separated variables
to be a Kamke or Perron function.

Theorem 1. Suppose that ω(t, x) = A(t)B(x) satisfies the Carathéodory
condition. If for every ε ∈ (0, T ] there exists γ ∈ (0, ε) such that (2) is not
valid , then ω is a Perron function.

Assume that ω has C-separated variables. Then

(a) ω is a Perron function iff
	T
0 A(s) ds <∞ and

	a
0 du/B(u) =∞.

(b) If
	T
0 A(s) ds < ∞, then ω is a Kamke function iff it is a Perron

function.
(c) Suppose that

	T
0 A(s) ds =

	a
0 du/B(u) =∞. Define

Imδ,ε(t) =

	δ
t A(s) ds	ε

mt du/B(u)
, Imδ,ε = lim inf

t→0+
Imδ,ε(t)

for m > 0, t, δ ∈ (0, T ], ε ∈ (0, a]. Then Imδ,ε = Im does not depend
on δ, ε, and :
(i) If ω is a Kamke function, then Im ≤ 1 for some m0 > 0 and

every m ∈ (0,m0].
(ii) If Im < 1 for some m > 0, then ω is a Kamke function.

Proof. Suppose that x is a solution of (1) and ε = x(t1) > 0. Take
t2 ∈ (0, t1) such that x(t2) > 0 and (2) is not satisfied for γ = x(t2). We get
∞ =

	ε
γ dx/B(x) =

	t1
t2
A(t)dt < ∞. The contradiction means that (2) has

only the trivial solution.
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Suppose that (2) holds for every 0 < γ < ε ≤ a. Every non-zero solution
of the equation x′(t) = A(t)B(x(t)) is determined by the relation

(4)
ε�

x(t)

du

B(u)
=

δ�

t

A(s) ds

for ε = x(δ) 6= 0 and t ∈ (0, T ] such that x(t) 6= 0. Define tx = max{t :
x(t) = 0}. Suppose that tx < T . Then

(5)
x(t)�

0

du

B(u)
=

t�

tx

A(s) ds for t > tx.

If
	T
0 A(s) ds <∞ and

	a
0 du/B(u) =∞, then (5) cannot be satisfied, hence

the zero function is the only solution of (1). In other cases, (4) defines a
non-zero solution x for δ = T and ε > 0 such that

	ε
0 du/B(u) ≤

	T
0 A(s) ds.

If
	a
0 du/B(u) < ∞ and

	ε
0 du/B(u) <

	T
0 A(s) ds, then tx > 0 for x defined

by (4). The above remarks prove assertions (a) and (b).
To prove (c), suppose

	a
0 du/B(u) =

	T
0 A(s) ds =∞. If δ, δ′ ∈ (0, T ] and

ε, ε′ ∈ (0, a], then

Imδ′,ε′(t) =
(

1 +

	ε′
ε du/B(u)	ε
mt du/B(u)

)−1(
Imδ,ε(t) +

	δ′
δ A(s) ds	ε
mt du/B(u)

)
,

hence Imδ′,ε′ = Imδ,ε = Im.
It follows from (a) that there exists a non-zero solution x of (1). We have

(6)
ε�

x(t)

du

B(u)
= Imδ,ε(t)

ε�

mt

du

B(u)
.

If ω is a Kamke function, then there exists m0 > 0 such that for every t0 > 0
one can find t ∈ (0, t0) such that x(t)/t ≥ m0. Hence

ε�

x(t)

du

B(u)
≤

ε�

m0t

du

B(u)
.

The above and (6) imply Im0
δ,ε (t) ≤ 1. Consequently, Im0 ≤ 1. It is clear that

Im is nondecreasing with respect to m, hence assertion (i) follows.
Assume that Im < 1 for some m > 0. Then for any δ, ε, t0 > 0 there

exists t ∈ (0, t0) such that Imδ,ε(t) ≤ 1. If x is defined by (4), then (6) implies
ε�

x(t)

du

B(u)
≤

ε�

mt

du

B(u)
.

This means that x(t) ≥ mt and D+x(0) ≥ m > 0. Hence, any non-zero
solution of (1) satisfies D+x(0) 6= 0. Consequently, ω is a Kamke function.
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Remark 2. If Im = 1 for every m > 0 small enough, then ω may be a
Kamke function or not. Indeed, it is known that ω(t, x) = x/t is a Kamke
function and it is easy to verify that Im = 1 for every m > 0. On the other
hand, ω(t, x) = (1−1/ln t)x/t is not a Kamke function (problem (1) has the
solution −t/ln t), but for this function we also have Im = 1 for all m > 0.

It is well known that ω(t, x) = λx/t is a Kamke function iff λ ≤ 1. This
example shows that a Kamke function multiplied by a constant may not be
a Kamke function. We prove an analogous result for Perron functions.

Proposition 1. Let ρ : (0, 1]× [0, 1]→ R be defined by the formula

(7) ρ(t, x) = min{
√
x, x/t}.

Then λρ is a Perron function iff λ < 2. If λ ≥ 2 then λρ is not even a
Kamke function.

Proof. Suppose that x′(t) = λρ(t, x(t)) for t ∈ (0, T ] and x(0) = 0. Then
x′(t) ≤ λ

√
x(t), hence x(t) ≤ (λt/2)2. If λ < 2, then x(t) ≤ t2 for t ∈ [0, T ],

so ρ(t, x(t)) = x(t)/t and x′(t) = (λ/t)x(t). Consequently, x(t) = ctλ for
some c ≥ 0. We get c = 0, since x(t) ≤ t2. We conclude that the zero
function is the only solution of (1) for λ < 2 and ω = λρ.

If λ ≥ 2 then x(t) = tλ is a solution of (1) with D+x(0) = 0.

All well known Perron and Kamke functions have separated variables.
We present elementary comparison functions that are not even bounded by
comparison functions with separated variables.

Proposition 2. Suppose that ρ(t, x) ≤ ω(t, x), where ρ is defined by
(7), and the function ω has C-separated variables. Then ω is not a Perron
function.

Proof. Suppose that ω is a Perron function. Then it follows from Theo-
rem 1 that 2ω is a Perron function. Lemma 1 implies that 2ρ is also a Perron
function. This contradicts Proposition 1.

Proposition 3. Define

ρ(t, x) = max
{
x

t
, 1 +

x− t
t2

}
for t ∈ (0, 1], x ∈ [0, 1].

Then ρ is a Kamke function. Suppose that ρ(t, x) ≤ ω(t, x) = A(t)B(x),
where ω has C-separated variables. Then ω is not a Kamke function.

Proof. It is clear that ρ(t, x) = x/t for x ≤ t and ρ(t, x) = 1 + (x− t)/t2
for x ≥ t. Now it is easily seen that if x′(t) = ρ(t, x(t)) for t > 0, then either
x(t) ≥ t on [0, 1] or x(t) = kt for some k ≥ 0. Hence ρ is a Kamke function.

We now prove that ω is not a Kamke function. Since A(t) ≥ (B(1)t)−1

a.e. (0, 1), we get
	1
0A(s) ds = ∞. If

	1
0 du/B(u) < ∞, then by Theorem 1,

ω is not a Kamke function. Suppose that
	1
0 du/B(u) = ∞. There exists a
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constant b > 0 such that B(x) ≥ bx for all x ∈ [0, 1], since A(t)B(x) ≥ x/t.
For all ε ∈ (0, 1) and m > 0 we have

Imε,ε(t) ≥

	ε
t
ω(s,ε)
B(ε) ds	ε
mt

du
bu

≥
b
	ε
t
ε−s
s2
ds

B(ε)
	ε
mt

du
u

=
b

B(ε)
ε− t+ t ln t

ε

t ln ε
mt

→∞ as t→ 0+,

hence Im =∞. The assertion follows from Theorem 1.

The uniqueness of the zero solution of problem (1) is considered either
on the interval [0, T ] or on every interval [0, T ′] for T ′ < T . We show that
both notions mean the same.

Proposition 4. Suppose that ω : (0, T ] × [0, a] → R is a Perron (resp.
Kamke) function. Then ω is a Perron (resp. Kamke) function on [0, T ′] for
every T ′ ≤ T .

Proof. Let y′(t) = ω(t, y(t)) for t ∈ (0, T ′) with T ′ < T and y(0) = 0.
Suppose that y 6≡ 0. Define ϕ(t) = y(t) for t ∈ [0, T ′] and ϕ(t) = y(T ′)
for t > T ′. It is clear that the assumptions of Lemma 1 are satisfied. Since
ϕ(T ) 6= 0, there exists a non-trivial solution x of (1) defined on [0, T ] such
that x ≤ y on [0, T ′]. This implies that D+x(0) = 0 if D+y(0) = 0. The
contradiction gives y ≡ 0.

Remark 3. One can generalize Proposition 4 to functional comparison
functions σ : (0, T ]×C([0, T ]; R)→ R which are continuous and nondecreas-
ing with respect to the second variable. It is enough to apply Theorems 1
and 2 from [1] instead of Lemma 1.

The simplest Perron function is the Lipschitz function L(t)x, where L is
integrable on [0, T ]. We know that a sum of Perron functions may not be a
Perron function (see Proposition 1). Let us check what happens if one of the
summands is a Lipschitz function. Define

(8) B(x) =


n−1/2, x ∈

[
1

n+1 ,
1
n −

3
n3

]
,

n−2, x ∈
[

1
n −

2
n3 ,

1
n −

1
n3

]
,

linear otherwise.
Proposition 5. The function B defined by (8) is a Perron function. The

functions B(x) + x and sup{B(y) : y ≤ x} are not even Kamke functions.

Proof. Since B(x)+x ≥ n−1/2 for x ∈
[

1
n+1 ,

1
n−

3
n3

]
, B(x)+x ≥ (n+1)−1

for x ∈
[

1
n −

3
n3 ,

1
n

]
and supy≤xB(y) ≥ n−1/2 for x ∈

[
1

n+1 ,
1
n

]
, we have

1/N�

0

dx

B(x)
≥
∞∑
n=N

1/n−1/n3�

1/n−2/n3

n2 dx =
∞∑
n=N

1
n

=∞,
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1/N�

0

dx

B(x) + x
≤
∞∑
n=N

( 1/n�

1/n+1

√
ndx+

1/n�

1/n−3/n3

(n+ 1) dx
)
<∞,

1/N�

0

dx

supy≤xB(y)
≤
∞∑
n=N

1/n�

1/(n+1)

√
ndx <∞.

The assertion follows from Theorem 1.

If we assume that a non-Lipschitzian summand is a Perron function with
separated variables and it satisfies some monotonicity condition, then the
sum is still a Perron function.

Proposition 6. Suppose that a Perron function A(t)B(x) has C-sepa-
rated variables, L(t)x is a Lipschitz function and the function B is nonde-
creasing on the set {x : B(x) ≥ Kx} for some K > 1. Then A(t)B(x)+L(t)x
and A(t) supy≤xB(y) are Perron functions.

Proof. Set ω(t, x) = (A(t) + L(t))(B(x) + Kx). Both functions in the
conclusion are not greater than ω. In view of Remark 1 and Theorem 1 it is
enough to prove that

	a
0(B(x)+Kx)−1 dx =∞ assuming

	a
0 B(x)−1 dx =∞.

Suppose that
	a
0(B(x) + Kx)−1 dx < ∞. If B(x) ≥ Kx for all x ∈ (0, a′)

and some a′ ∈ (0, a), then
	a
0(B(x) + Kx)−1 dx ≥ 1

2

	a′

0 B(x)−1 dx = ∞.
Analogously we prove that the condition B(x) ≤ Kx for all x ∈ (0, a′) is also
impossible. This means that there exists a decreasing sequence {αj} ⊂ (0, a)
such that B(αj) = Kαj and limj→∞ αj = 0. We have

(αj+1, αj) = Qj ∪
Nj⋃
p=1

(xjp, yjp),

where B(xjp) = Kxjp, B(yjp) = Kyjp, the function B(x) − Kx does not
change sign on (xjp, yjp) and

	
Qj
dx/x ≤ K 2−j . Let us arrange the set

{xjp, yjp}j,p in a decreasing sequence {ak}∞k=1 and define

I1 = {k : B(x) ≤ Kx for x ∈ (ak+1, ak)},
I2 = {k 6∈ I1 : B(x) ≥ Kx for x ∈ (ak+1, ak)},
I3 = N \ (I1 ∪ I2) = {k : (∃j) (ak+1, ak) ⊂ Qj}\(I1 ∪ I2).

We obtain
a�

0

dx

B(x) +Kx
≥
∑
k∈I1

ak�

ak+1

dx

2Kx
+
∑
k∈I2

ak�

ak+1

dx

2B(x)
+
∑
k∈I3

ak�

ak+1

dx

2Kx
− 1

≥
∑

k∈I1∪I3

ak − ak+1

2Kak
+
∑
k∈I2

ak − ak+1

2B(ak)
− 1 =

1
2K

∞∑
k=1

(
1− ak+1

ak

)
− 1,
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hence
∑∞

k=1(1− ak+1/ak) <∞. Consequently,
∑∞

k=1 ln(ak/ak+1) <∞, but

N∑
k=1

ln
ak
ak+1

= ln
a1

aN+1
→∞ as N →∞.

The contradiction proves the assertion.

If both summands are non-Lipschitzian, then the monotonicity does not
guarantee that the sum is a Perron function, even for summands independent
of the first variable. Let an = 1/n! and bn = nan−2 for n = 3, 4, . . . and define

B1(x) =
{
b2n+1 for x ∈ [a2n+1, a2n−1(1− 1/n)],
linear otherwise,

B2(x) =
{
b2n for x ∈ [a2n, a2n−2(1− 1/n)],
linear otherwise.

Proposition 7. The functions B1, B2 are Perron functions, but B(x) =
max{B1(x), B2(x)} and B1(x) +B2(x) are not even Kamke functions.

Proof. We have
a3�

0

dx

B1(x)
≥
∞∑
n=2

1
b2n+1

(
a2n−1 − a2n+1 −

1
n
a2n−1

)

=
∞∑
n=2

1
2n+ 1

(
1− 1

2n(2n+ 1)
− 1
n

)
=∞,

a4�

0

dx

B2(x)
≥
∞∑
n=3

1
b2n

(
a2n−2 − a2n −

1
n
a2n−2

)

=
∞∑
n=3

1
2n

(
1− 1

2n(2n− 1)
− 1
n

)
=∞.

By Theorem 1, B1 and B2 are Perron functions. Since B(x) ≥ bn for x ∈
[an, an−1], we get

a3�

0

dx

B(x)
≤
∞∑
n=4

1
bn

(an−1 − an) =
∞∑
n=4

1
n2

<∞,

hence B is not a Perron function. The inequality B1(x) + B2(x) ≥ B(x)
completes the proof.

To prove convergence of numerical methods for the equation

∂tz(t, x) =
n∑
j=1

fj(t, x, z(·))∂xjz(t, x) + g(t, x, z(·))
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one can consider the conditions

‖f(t, x, y)− f(t, x, z)‖ ≤ σ1(t, ‖y − z‖t),
|g(t, x, y)− g(t, x, z)| ≤ σ2(t, ‖y − z‖t),

where ‖u‖t = sups≤t |u(s, x)|. It is sometimes assumed that σ1 = σ2 = σ and
cσ is a Perron function for every c > 0 (see, for instance, [3, Theorem 4.1]).
The convergence can be proved under the assumption that kσ1 + σ2 is a
Perron function for every k > 0. We show that the last assumption is weaker.

Proposition 8. For every k > 0 the function ρ(t, x) + kx is a Perron
function, where ρ is defined by (7). The function ω(t, x) = 2max{ρ(t, x), x}
is not a Perron function.

Proof. Since ω(t, x) ≥ 2ρ(t, x) and 2ρ is not a Perron function (see
Proposition 1) the second assertion is proved. Suppose that x′(t) = ρ(t, x(t))
+ kx(t), x(0) = 0. If x(t) = t2 for some t ∈ (0, 1/k), then x′(t) = t + kt2 <
2t = (t2)′. Hence only two cases are possible:

(a) x(t) > t2 for every t ∈ (0, T ) and some T ∈ (0, 1/k).
(b) x(t) < t2 for every t ∈ (0, 1/k).

In case (a), we have x′(t) =
√
x(t) + kx(t), so x(t) = k−2(exp(kt/2)− 1)2 =

t2/4+kt3/16+ · · · < t2 for sufficiently small t. The contradiction shows that
x(t) < t2 for every t ∈ (0, 1/k). This implies that x′(t) = x(t)/t+ kx(t) and
x(t) = Ct exp(kt) < t2 for t ∈ (0, 1/k). It is obvious that C = 0 and x(t) ≡ 0
on [0, 1].

In [4] it is shown that if

(9) |f(t, x)− f(t, y)| ≤ ω(t, |x− y|)
for any Kamke function ω and the function f is continuous, then the function

(10) ωf (t, u) = sup
|x−y|=u

|f(t, x)− f(t, y)|

is a Perron function.
On the other hand, for f discontinuous the condition (9) with some

Kamke function ω does not give uniqueness of solutions of the Cauchy prob-
lem

(11) x′(t) = f(t, x(t)), x(t0) = x0;

take for instance f(t, x) = x/t, t0 = x0 = 0. We obtain uniqueness if we
additionally assume the following condition (the weakest known to the au-
thor):

(12) D+|x− y|(t0) = lim sup
t→t0+

1
t− t0

∣∣∣ t�
t0

[f(s, x(s))− f(s, y(s))] ds
∣∣∣ = 0

for any solutions x, y of (11). In general, if we have no information about
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the properties of f except condition (9), then the only possibility to verify
condition (12) is the assumption that limt→0+

1
t

	t
0 ω(s, u(s)) ds = 0 for every

continuous function u such that u(0) = 0. But this implies that ω is a Perron
function.

The above suggests that Kamke functions are not important from the
practical point of view. However, let us consider the following example.

Example 1. Let f : [0, 1]×R→ R be any function satisfying the Cara-
théodory condition such that

f(t, x) =
|x| −

√
t

t
+ f

(
t,
x

|x|
√
t

)
for |x| >

√
t,

|f(t, x)− f(t, y)| ≤ |x− y|/t for |x|, |y| ≤
√
t,

xf(t, x) ≤ 0 for t2 ≤ |x| ≤
√
t.

For instance, we can take f(t, x) = −x for |x| ≤
√
t. One can verify that

condition (12) is satisfied for t0 = x0 = 0 since there is no solution of (11)
passing through the point (t, η) with |η| ≥ t2. Moreover, ωf (t, u) = u/t for
every a ∈ (0, 1] and t < a2, u ≤ a−

√
t, hence ωf is not a Perron function.

The above example suggests that Kamke functions satisfying the Cara-
théodory condition are still valuable.
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