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Derivation and well-posedness of Boussinesq/Boussinesq
systems for internal waves

by Cung The Anh (Hanoi)

Abstract. We consider the propagation of internal waves at the interface between two
layers of immiscrible fluids of different densities, under the rigid lid assumption, with the
presence of surface tension and with uneven bottoms. We are interested in the case where
the flow has a Boussinesq structure in both the upper and lower fluid domains. Following
the global strategy introduced recently by Bona, Lannes and Saut [J. Math. Pures Appl. 89
(2008)], we derive an asymptotic model in this regime, namely the Boussinesq/Boussinesq
systems. Then using a contraction-mapping argument and energy methods, we prove that
the derived systems which are linearly well-posed are in fact locally nonlinearly well-posed
in suitable Sobolev classes. We recover and extend some known results on asymptotic
models and well-posedness, for both surface waves and internal waves.

1. Introduction

Generalities. As shown in [8, 10], the propagation of small amplitude
long waves on the surface of an ideal fluid (over a horizontal bottom) under
the force of gravity is described by the family of Boussinesq systems

(1.1)


(1− εa2∆)∂tζ +∇.V + ε(∇.(ζV ) + a1∆∇.V ) = 0,

(1− εa4∆)∂tV +∇ζ + ε

(
1
2
∇|V |2 + a3∆∇ζ

)
= 0,

where a1, a2, a3, a4 are defined as follows:

a1 =
(
θ2

2
− 1

6

)
λ, a2 =

(
θ2

2
− 1

6

)
(1− λ),

a3 =
1− θ2

2
µ, a4 =

1− θ2

2
(1− µ),

and where 0 ≤ θ ≤ 1 and λ, µ ∈ R are three parameters. The quantity
ζ(X, t) + h0, X ∈ Rd (d = 1, 2), corresponds to the total depth of the liquid
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at the point X at time t, where h0 is undisturbed water depth. The variable
V (X, t) represents the horizontal velocity at the point (X, z) = (X, θh0)
at time t. The Boussinesq approximation is valid when ε = a/h0 � 1,
λ/h0 � 1 and the Stokes number S = aλ2/h3

0 is of order 1, and we have
taken S = 1 when deriving (1.1); here a is the maximum free elevation above
the undisturbed level of the fluid of depth h0, and λ a typical wavelength.

Boussinesq systems have attracted interest because they are fundamen-
tal systems describing the motion of small amplitude long waves on the
surface of an ideal fluid. Moreover, as seen in [8], one can recover from
(1.1) many systems which have already appeared in the literature, such as
the classical Boussinesq system, Kaup system, Bona–Smith system, cou-
pled BBM-system, coupled KdV system, coupled KdV-BBM system, cou-
pled BBM-KdV system, etc. The local well-posedness of the Cauchy prob-
lem and initial boundary-value problems for Boussinesq type systems has
been studied by many authors, including Schonbek [33], Amick [4], Bona
and Chen [7], Angulo [5], Kita and Segata [26], Bona, Chen and Saut [9],
Fokas and Pelloni [21], and Dougalis, Mitsotakis and Saut [20]. To justify
Boussinesq systems, Bona, Colin and Lannes proved in [10] that the solu-
tions of any of the aforementioned systems yield good approximations to
the full Euler equations on the long time scale 1/ε. This result was recently
extended to the case of nonflat bottoms by Chazel [15]. The justifying of
Boussinesq systems for surface waves has now been fully achieved by com-
bining the results of [10], [15] and the large time existence result for the full
Euler equation proved very recently by Alvarez-Samaniego and Lannes [1].

Parallel to the theory of surface water waves, the mathematical theory
of waves on the interface between two layers of immiscible fluid of differ-
ent densities has also attracted interest because it is the simplest idealiza-
tion of internal wave propagation and because of the challenging modelling,
mathematical and numerical issues that arise in the analysis of this system.
Therefore, in the last decades, it has been studied by many physicists and
mathematicians, with regard to both well-posedness [23, 24, 2, 3, 32] and
asymptotic models [16, 17, 11, 19, 14, 6, 29, 30]. A significant step in the the-
ory of internal waves was made in 2008 by Bona, Lannes and Saut [12]. They
proposed a general method to derive in a systematic way, and for a large class
of scaling regimes, asymptotic models for the propagation of internal waves
at the interface between two layers of immiscible fluids of different densi-
ties, under the following assumptions: the fluids are ideal, incompressible,
irrotational, and under the only influence of gravity, the lids are rigid, the
bottom is flat, and there is no surface tension. They derived several classical
models and also some new models. They also proved that these asymptotic
systems are consistent with the full Euler equations. As they mentioned,
these results could be extended to the case of a seabed with structure.
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On the other hand, it is known that surface tension plays an important
role in well-posedness of internal waves. In fact, the two-layer water wave
system is known to be well-posed in Sobolev spaces in the presence of surface
tension [23, 24]. Therefore, we could take into account an amount of surface
tension at the interface between the two homogeneous layers to put oneself
in a well-posed situation. Such an approach is used in [30] for the Benjamin–
Ono equation. One interesting question is how the surface tension affects the
asymptotic models.

In this paper we are interested in the internal waves problem with non-
flat bottom and with the presence of surface tension when the flow has a
Boussinesq structure in both the upper and lower fluid domains. The ideal-
ized system will be studied, which, when at rest, consists of a homogeneous
fluid of depth d1 and density %1 lying over another homogeneous fluid of
mean depth d2 and density %2 > %1. We restrict our study to the case where
the bottom can be described by the graph of a function X 7→ −d1−d2+b(X)
and the typical amplitude of the bottom has the same order as that of the
interface. Let a be the typical amplitude of the deformation of the interface
and λ the typical wavelength. We introduce the dimensionless parameters

γ :=
%1

%2
, δ :=

d1

d2
, ε :=

a

d1
, µ :=

d2
1

λ2
, ε2 :=

a

d2
= εδ, µ2 :=

d2
2

λ2
=

µ

δ2
,

the surface tension parameter

ν :=
σ

%2λ2
,

and the bottom parameter

β :=
b0
d2
.

Following the global strategy introduced recently by Bona, Lannes and Saut
[12] we will prove, when ε ∼ µ ∼ ε2 ∼ µ2 � 1 and in dimensionless variables
(see Sect. 2 for details), that the full model is consistent with the following
Boussinesq/Boussinesq systems:

(1.2)



(1− µa2∆)∂tζ +
1

γ + δ
∇.vα + ε

δ2 − γ
(γ + δ)2

∇.(ζvα)

− εδ2

(γ + δ)2
∇.(bvα) + µa1∇.∆vα = 0,

(1− µa4∆)∂tvα + (1− γ)∇ζ +
ε

2
δ2 − γ

(γ + δ)2
∇|vα|2

+ µa3(1− γ)∆∇ζ − ε√µ ν∆∇ζ = 0,

where ζ is the surface elevation, vα = (1 − µα∆)−1v with v the “velocity
variable” (see Sect. 2.1 for definition), and the constants a1, a2, a3, a4 are
given by



130 C. T. Anh

a1 =
(1− α1)(1 + γδ)− 3δα(γ + δ)

3δ(γ + δ)2
, a2 =

γα1

3(γ + δ)
,

a3 = αα2, a4 = α(1− α2).

It is worth noticing that when b = 0 and ν = 0 we recover the Boussi-
nesq/Boussinesq systems for internal waves in the case of a flat bottom and
absence of surface tension derived in [12], and that the Boussinesq system
for surface waves in the absence of surface tension is formally recovered by
taking γ = 0, δ = 1, ν = 0 (and b = 0 if the bottom is flat). The dispersion
relation associated to (1.2) is

ω2 = |k|2
(

1
γ+δ − µa1|k|2

)
[(1− γ)(1− µa3|k|2) + ε

√
µ ν|k|2]

(1 + µa2|k|2)(1 + µa4|k|2)
.

It follows that (1.2) is linearly well-posed when a2, a4 ≥ 0 and a1 ≤ 0,
a3 ≤ εν/((1− γ)

√
µ). Following the general lines of the analogous proof

of [9], we will show that the Boussinesq/Boussinesq systems (1.2) which
are linearly well-posed are in fact locally nonlinearly well-posed in suitable
Sobolev classes. When a2, a4 > 0 we will prove well-posedness by realizing
the systems as systems coupled only through nonlinear terms and using
a contraction-mapping argument. The other systems (i.e. when a2 = 0 or
a4 = 0) are analysed using energy methods.

In this paper we shall focus on the case d = 2 (i.e. when X = (x, y))
because it is more complicated. However, the method works for both one and
two dimensions and the results in one dimension are better than the ones
in the case of dimension two as far as the assumed level of regularity of the
initial data is concerned. This is explained in Remarks 3.2 and 3.3 below.
It is worth noticing that when γ = 0, δ = 1, we recover the Boussinesq
systems for surface waves, so we also obtain well-posedness results for them.
In particular, we extend the results of [9] to two dimensions and to the
case with surface tension. It is also noticed that in the presence of surface
tension, the class of Boussinesq/Boussinesq systems that are linearly and/or
nonlinearly well-posed is larger than the corresponding one in the absence of
surface tension. Thus, the surface tension makes the well-posedness results
better, as for the full Euler equation [24].

Notations. Denote by X the d-dimensional horizontal variable (d = 1, 2),
and by z the vertical variable. For µ > 0, we introduce scaled versions
of the gradient and Laplace operators, namely ∇µX,z = (

√
µ∇T , ∂z)T and

∆µ
X,z = ∇µX,z.∇

µ
X,z = µ∆X +∂2

z . We use two Fourier multipliers Tµ and Tµ2

defined as follows:

Tµ = tanh(
√
µ |D|), Tµ2 = tanh(

√
µ2 |D|),

where |D| = (−∆)1/2. The orthogonal projector onto the gradient vector
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fields of L2(Rd)d is written Π and is defined by the formula

Π = −∇∇
T

|D|2
.

The Lp = Lp(R2)-norm will be denoted by | · |p for 1 ≤ p ≤ ∞, and the
Hs = Hs(R2)-norm by ‖ ·‖s or | · |Hs . Note that the L2-norm of a function f
is written both as |f |2 and ‖f‖0. The product space X ×X will sometimes
be abbreviated as X2, and a function f = (f1, f2) in X2 carries the norm

‖f‖X2 = (‖f1‖2 + ‖f2‖2)1/2.

For convenience, we also use the notations ‖ · ‖s and | · |p for a vector
function f . Similarly, 〈·, ·〉 denotes the inner products in both L2(R2) and
L2(R2)2. We use the Bessel potential Λs := (1 − ∆)s/2, s ∈ R. Note that
Hs(R2) = Λ−sL2(R2) and thus ‖u‖s = ‖Λsu‖0 for u ∈ Hs(R2). If f and
u are two functions defined on R2, we use the Fourier multiplier notation
f(D)u which is defined in terms of Fourier transforms:

f̂(D)u = fû.

We denote by [A,B] := AB − BA the commutator of the operators A,B.
Thus, [Λs, f ]g = Λs(fg) − fΛsg, where f is regarded as a multiplication
operator.

We use C to denote various constants whose values may change with
each appearance, and use the generic notation C(λ1, λ2, . . . ) to denote a
nondecreasing function of the parameters λ1, λ2, . . . .

Organization of the paper. The plan of this paper is as follows. In Sec-
tion 2, when the flow has a Boussinesq structure in both the upper and
lower fluid domains, i.e. when ε ∼ µ ∼ ε2 ∼ µ2 � 1, we derive the Boussi-
nesq/Boussinesq systems (1.2) from the full model. To do this, we first derive
asymptotic expansions of the Dirichlet–Neumann operator Gµ[εζ] and the
interface operator Hµ,δ[εζ, βb] in this regime. Then, using the expansions
of these two operators, a change of variables and a suitable “BBM trick”,
we get the Boussinesq/Boussinesq systems depending on three parameters.
We also prove that the systems derived are consistent with the full Euler
system. In Section 3, we study the local well-posedness of the Cauchy prob-
lem for the Boussinesq/Boussinesq systems by using a contraction-mapping
argument and energy methods.

2. Model systems. In this section we derive an asymptotic model
for internal waves when the flow has a Boussinesq structure in both the
upper and lower fluid domains. In order to study the influence of sur-
face tension and bottom topography on the asymptotic model, we intro-
duce two new parameters, one characterizing the shape of the bottom and
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the other characterizing the effect of surface tension. We follow here the
same strategy as in [8, 10, 15] for surface waves, and as in [12] for inter-
nal waves. Namely, we rewrite the full system as a system of two evolu-
tion equations on Rd (d = 1, 2). The reformulated system, which depends
only upon the spatial variable on the interface, involves two nonlocal op-
erators, the Dirichlet–Neumann operator G[ζ] and the interface operator
H[ζ, b] (the latter appears only in the internal waves theory). The asymp-
totic model is obtained by expanding the two nonlocal operators with re-
spect to suitable small parameters that depend variously on the ampli-
tude, wavelengths and depth ratio of the two layers, with order higher
than the orders of the bottom terms and of the term containing the sur-
face tension. Then a family of asymptotic models may be inferred by us-
ing a “BBM trick” and a suitable change of the dependent variables. The
freedom to choose parameters in order to make the corresponding system
linearly well-posed is just one of the advantages of having families of sys-
tems. The consistency of this model with the full Euler equations is also
established.

2.1. The Euler equations and the full model. We consider the internal
waves problem in the case of uneven bottoms and with the presence of sur-
face tension. The idealized system that will be studied here, when at rest,
consists of a homogeneous fluid of depth d1 and density %1 lying over another
homogeneous fluid of mean depth d2 and density %2 > %1. We restrict our
study to the case where the bottom can be described by the graph of a func-
tion X 7→ −d1− d2 + b(X) and the typical amplitude of the bottom has the
same order as that of the interface. Let Ωi

t be the region occupied by fluid i
at time t (i = 1, 2), Γ1 := {z = 0} and Γ2 := {z = −d1 − d2 + b(X)} be two
rigid surfaces, and Γt := {z = −d1 + ζ(t,X)} be the interface between the
fluids. As shown in [12], the motion of the internal wave, under Bernoulli’s
formulation, in terms of two velocity potentials Φ1, Φ2, is described by the
following system of equations:

∆X,zΦi = 0 in Ωi
t,(2.1)

∂tΦi +
1
2
|∇X,zΦi|2 = −Pi

%i
− gz in Ωi

t,(2.2)

∂zΦ1 = 0 on Γ1, ∂n−Φ2 = 0 on Γ2,(2.3)

∂tζ =
√

1 + |∇ζ|2 ∂nΦ1 on Γt,(2.4)

∂n+Φ1 = ∂n+Φ2 on Γt,(2.5)

P1 − P2 = σ∇.
(

∇ζ√
1 + |∇ζ|2

)
,(2.6)
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where P1 and P2 are the pressures inside the upper and lower fluids, g is the
acceleration of gravity, n+ := (−∇ζ, 1)T /

√
1 + |∇ζ|2 denotes the outward

normal vector to the interface, n− := (∇b,−1)T /
√

1 + |∇b|2 the outward
normal vector to the bottom, ∂n := n.∇X,z, and σ = const > 0 is the surface
tension coefficient.

Introduce the trace of the potentials Φ1 and Φ2 at the interface,

ψi(t,X) := Φi(t,X,−d1 + ζ(t,X)), i = 1, 2.

One can evaluate (2.2) at the interface and use (2.4) and (2.5) to obtain
a set of equations coupling ζ to ψi:

(2.7) ∂tζ −
√

1 + |∇ζ|2 ∂nΦi = 0,

(2.8) %i

(
∂tψi + gζ +

1
2
|∇ψi|2 −

(
√

1 + |∇ζ|2(∂nΦi) +∇ζ.∇ψi)2

2(1 + |∇ζ|2)2

)
= −Pi,

where ∂nΦi and Pi are both evaluated at the interface z = −d1 +ζ(t,X). As
in [12], by using two local operators, the Dirichlet–Neumann operator G[ζ]
and the interface operator H[ζ, b], defined by

G[ζ]ψ1 =
√

1 + |∇ζ|2(∂nΦ1)|z=−d1+ζ , H[ζ, b]ψ1 = ∇ψ2,

and using (2.6), we get

∂t(ψ2 − γψ1) + g(1− γ)ζ +
1
2

(|H[ζ, b]ψ1|2 − γ|∇ψ1|2)

+N (ζ, b, ψ1)− σ

%2
K(ζ) = 0,

where γ = %1/%2, K(ζ) = ∇.(∇ζ/
√

1 + |∇ζ|2) and

N (ζ, b, ψ1) :=
γ(G[ζ]ψ1 +∇ζ.∇ψ1)2 − (G[ζ]ψ1 +∇ζ.H[ζ, b]ψ1)2

2(1 + |∇ζ|2)2
.

Taking the gradient of this equation and using (2.7) then gives the system
of equations

(2.9)


∂tζ −G[ζ]ψ1 = 0,
∂t(H[ζ, b]ψ1 − γ∇ψ1) + g(1− γ)∇ζ

+
1
2
∇(|H[ζ, b]ψ1|2 − γ|∇ψ1|2) +∇N (ζ, b, ψ1)− σ

%2
∇K(ζ) = 0,

for ζ and ψ1.
The asymptotic expansion of (2.9) is more transparent when these equa-

tions are written in dimensionless variables. Denoting by a a typical am-
plitude of the deformation of the interface in question, and by λ a typical
wavelength, we introduce the dimensionless indendent variables

X̃ :=
X

λ
, z̃ :=

z

d1
, t̃ :=

t

λ/
√
gd1

.
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Likewise, we define the dimensionless functions

ζ̃ :=
ζ

a
, ψ̃1 :=

ψ1

aλ
√
g/d1

, b̃ =
b

b0
,

as well as the dimensionless parameters

γ :=
%1

%2
, δ :=

d1

d2
, ε :=

a

d1
, µ :=

d2
1

λ2
, β :=

b0
d2
, ν :=

σ

%2λ2
.

Here b0 is the typical amplitude of the bottom and therefore β characterizes
the shape of the bottom, and ν is the surface tension parameter. It is also
notationally convenient to introduce two other (redundant) parameters ε2
and µ2 defined as

ε2 :=
a

d2
= εδ, µ2 :=

d2
2

λ2
=

µ

δ2
.

In dimensionless variables, the upper fluid domain Ω1 and the lower fluid
domain Ω2 have the forms

Ω1 = {(X, z) ∈ Rd+1 : −1 + εζ < z < 0},

Ω2 =
{

(X, z) ∈ Rd+1 : −1− 1
δ

+
1
δ
βb(X) < z < −1 + εζ

}
.

In order to prevent the interface from touching the horizontal boundaries,
we assume that there are strict positive constants H1 and H2 such that

1− εζ ≥ H1 on Rd,(2.10)

1 + εδζ − βb(X) ≥ H2 on Rd.(2.11)

To write (2.9) in dimensionless variables, following [12] we introduce the
definitions of the dimensionless Dirichlet–Neumann operator Gµ[εζ] and the
dimensionless interface operator Hµ,δ[εζ, βb].

Definition 1. Let ζ ∈ W 2,∞(Rd) be such that (2.10) is satisfied and
let ψ1 ∈ H3/2(Rd). If Φ1 is the unique solution in H2(Ω1) of the boundary
value problem

(2.12)

{
µ∆Φ1 + ∂2

zΦ1 = 0 in Ω1,

∂zΦ1|z=0 = 0, Φ1|z=−1+εζ(X) = ψ1,

then Gµ[εζ]ψ1 ∈ H1/2(Rd) is defined by

Gµ[εζ]ψ1 = −µε∇ζ.∇Φ1|z=−1+εζ(X) + ∂zΦ1|z=−1+εζ(X)

=
√

1 + ε2|∇ζ|2 ∂nΦ1|z=−1+εζ(X),

where ∂nΦ1|z=−1+εζ(X) stands for the upper conormal derivative associated
to the elliptic operator µ∆Φ1 + ∂2

zΦ1.
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Definition 2. Let ζ ∈W 2,∞(Rd) and b ∈W 2,∞(Rd) be such that (2.10)
and (2.11) are satisfied and let ψ1 ∈ H3/2(Rd). If Φ2 is the unique solution
in H2(Ω2) (up to a constant) of the boundary value problem

(2.13)


µ∆Φ2 + ∂2

zΦ2 = 0 in Ω2

∂nΦ2|z=−1− 1
δ
+ 1
δ
βb(X) = 0,

∂nΦ2|z=−1+εζ(X) =
1√

1 + ε2|∇ζ|2
Gµ[εζ]ψ1,

then Hµ,δ[εζ, βb]ψ1 ∈ H1/2(Rd) is defined by

Hµ,δ[εζ, βb]ψ1 = ∇(Φ2|z=−1+εζ(X)).

The equation (2.9) can therefore be written in dimensionless variables
as

(2.14)



∂t̃ζ̃ −
1
µ

Gµ[εζ̃]ψ̃1 = 0,

∂t̃(H
µ,δ[εζ̃, βb̃]ψ̃1 − γ∇ψ̃1) + (1− γ)∇ζ̃

+
ε

2
∇(|Hµ,δ[εζ̃, βb̃]ψ̃1|2 − γ|∇ψ̃1|2)

+ ε∇N µ,δ(εζ̃, βb̃, ψ̃1)− σ

%2
∇K(ζ̃) = 0,

where

N µ,δ(ζ, b, ψ1)

:= µ
γ
(

1
µG

µ[ζ]ψ1 +∇ζ.∇ψ1

)2 − ( 1
µG

µ[ζ]ψ1 +∇ζ.Hµ,δ[ζ, b]ψ1

)2
2(1 + µ|∇ζ|2)2

.

The tildes which indicate the nondimensional quantities will be systemati-
cally dropped henceforth.

We will propose a model system of equations for the internal waves in
the Boussinesq/Boussinesq regime ε ∼ µ ∼ ε2 ∼ µ2 � 1 by obtaining
the asymptotic form of the equations (2.14) in this regime. The asymptotic
model is a (1 + d)-dimensional system coupling the surface elevation ζ to
the “velocity variable” v defined to be

v := Hµ,δ[εζ, βb]ψ1 − γ∇ψ1. (2.15)

(For the surface water-wave problem formally recovered by taking γ = 0 and
δ = 1, v is the horizontal velocity evaluated at the free surface). It will be
rigorously established that the internal wave equations (2.14) are consistent
with the asymptotic model for (ζ,v) derived in this paper in the following
precise sense.

Definition 3. The internal wave equations (2.14) are consistent with
a system S of d + 1 equations for ζ and v if for all sufficiently smooth
solutions (ζ, ψ1) of (2.14) such that (2.10) and (2.11) are satisfied, the pair
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(ζ,v = Hµ,δ[εζ, βb]ψ1 − γ∇ψ1) solves S up to a small residual called the
precision of the asymptotic model.

2.2. Asymptotic expansions of the operators. First, from Lemma 1 and
Remark 11 in [12] we have the asymptotic expansion of the Dirichlet–
Neumann operator Gµ[εζ] which we will use in this paper.

Proposition 2.1. Let s > d/2 and ζ ∈ Hs+3/2(Rd) be such that (2.10)
is satisfied. Then for all µ ∈ (0, 1) and ψ such that ∇ψ ∈ Hs+5/2(Rd), one
has∣∣∣∣Gµ[εζ]ψ −

(
µ∇.((1− εζ)∇ψ) +

µ2

3
∇.∆∇ψ

)∣∣∣∣
Hs

≤ µ3C(|ζ|Hs+3/2 , |∇ψ|Hs+5/2),

uniformly with respect to ε ∈ [0, 1].

Attention is now turned to the interface operator Hµ,δ[εζ, βb]. As al-
ready mentioned, in this paper we restrict our study to the case where the
amplitude b0 of the bottom has the same order as the typical amplitude a
of the interface. Noting that ε2 = a/d2 and β = b0/d2, we therefore have
β = O(ε2). Since ε2 � 1 in the Boussinesq/Boussinesq regime, the condi-
tion β = O(ε2) means that we consider bottoms with small variations in the
amplitude. This restriction enables us to use the WKB method to derive
the asymptotic expansion of the interface operator Hµ,δ[εζ, βb]. In order to
improve readability, we will write β = ε2 for this regime.

The boundary value problem (2.13) plays an important role in the anal-
ysis of the operator Hµ,δ[εζ, βb]. We first transform the problem (2.13)
into a variable-coefficient, boundary value problem on the flat strip S =
Rd × (−1, 0) by using the diffeomorphism

σ : S→ Ω2, (X, z) 7→ σ(X, z) =
(
X, (1 + εδζ − βb(X))

z

δ
+ (−1 + εζ)

)
.

By Proposition 2.7 in [27], noticing that β = ε2, one can see that Φ2 solves
(2.13) if and only if Φ2 := Φ2 ◦ σ solves

(2.16)


∇µ2

X,z.Q
µ2 [ε2ζ, ε2b]∇µ2

X,zΦ2 = 0 in S,

∂nΦ2|z=0
=

1
δ

Gµ[εζ]ψ1, ∂nΦ2|z=−1 = 0,

with

Qµ2 [ε2ζ, ε2b]

=

 [1 + ε2(ζ − b)]Id×d −√µ2 ε2[(z + 1)∇ζ − z∇b]

−√µ2 ε2[(z + 1)∇ζ − z∇b]T 1+µ2ε22|(z+1)∇ζ−z∇b|2
1+ε2(ζ−b)

 .
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Then an asymptotic expansion of

Hµ,δ[εζ, βb]ψ1 = ∇(Φ2|z=0)

is obtained by finding an approximation Φapp to the solution of (2.16) and
by using the formal relationship Hµ,δ[εζ, βb]ψ1 ∼ ∇(Φapp|z=0) thanks to
Proposition 3 in [12]. This procedure is justified rigorously in Proposition
2.2 below (see also the proof of Corollary 1 in [12]).

We now find an approximate solution Φapp to (2.16). We decompose the
matrix Qµ2 [ε2ζ, ε2b] as follows:

Qµ2 [ε2ζ, ε2b] = Q0 + ε2Q1 + ε22Q2,

where

Q0 =

(
Id×d 0

0 1

)
,

Q1 =

(
(ζ − b)Id×d −√µ2[(z + 1)∇ζ − z∇b]

−√µ2[(z + 1)∇ζ − z∇b]T −(ζ − b)

)
,

Q2 =

(
0 0

0 (ζ−b)2+µ2|(z+1)∇ζ−z∇b|2
1+ε2(ζ−b)

)
,

and construct Φapp having the form

Φapp = Φ(0) + ε2Φ
(1).

We have

∇µ2

X,z.Q
µ2 [ε2ζ, ε2b]∇µ2

X,zΦapp

= ∇µ2

X,z.(Q0 + ε2Q1 + ε22Q2)∇µ2

X,z(Φ
(0) + ε2Φ

(1))

= ∆µ2

X,zΦ
(0) + ε2(∆µ2

X,zΦ
(1) +∇µ2

X,z.Q1∇µ2

X,zΦ
(0)) +O(ε22),

and at z = 0 and z = −1,

∂nΦapp = ez.Qµ2 [ε2ζ, ε2b]∇µ2

X,zΦapp

= ez.(Q0 + ε2Q1 + ε22Q2)∇µ2

X,z(Φ
(0) + ε2Φ

(1))

= ∂zΦ
(0) + ε2(∂zΦ(1) + ez.Q1∇µ2

X,zΦ
(0)) +O(ε22).

Since it is known from Proposition 2.1 that

1
δ

Gµ[εζ]ψ1 =
µ

δ
∇.(h1∇ψ1)+

µ2

3δ
∇.(∆∇ψ1)+O

(
µ3

δ

)
, where h1 = 1−εζ,

one deduces that Φapp solves (2.16) up to order O(ε22 + µ3/δ) provided that
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Φ(0) and Φ(1) solve the following boundary value problems:{
∆µ2

X,zΦ
(0) = 0,

∂zΦ
(0)|z=0 =

µ

δ
∇.(h1∇ψ1), ∂zΦ

(0)|z=−1 = 0,
∆µ2

X,zΦ
(1) = −∇µ2

X,z.Q1∇µ2

X,zΦ
(0),

∂zΦ
(1)|z=0 =

µ2

3δ
∇.(∆∇ψ1)− ez.Q1∇µ2

X,zΦ
(0)|z=0,

∂zΦ
(1)|z=−1 = −ez.Q1∇µ2

X,zΦ
(0)
|z=−1

.

First, it is easy to find that

Φ(0)(X, z) =
√
µ

cosh(
√
µ2(z + 1)|D|)

cosh(
√
µ2|D|)

1
|D| tanh(

√
µ2|D|)

∇.(h1∇ψ1).

Then, noting that Q1 = Q̃1 + ˜̃Q1 with

Q̃1 =

(
ζId×d −√µ2(z + 1)∇ζ

−√µ2(z + 1)∇ζT −ζ

)
,

˜̃Q1 =

(
−bId×d

√
µ2 z∇b

√
µ2 z∇bT b

)
,

and because

−∇µ2

X,z.Q̃1∇µ2

X,zΦ
(0) = ∆µ2

X,z[(z + 1)ζ∂zΦ(0)],

−ez.Q̃1∇µ2

X,zΦ
(0)|z=0 = [µ2∇.(ζ∇Φ(0)) + ∂z((z + 1)ζ∂zΦ(0))]|z=0,

−ez.Q̃1∇µ2

X,zΦ
(0)|z=−1 = 0,

it follows that Φ(1) = (z + 1)ζ∂zΦ(0) + u + v, where u solves the boundary
value problem

∆µ2

X,zu = 0,

∂zu|z=0 =
µ2

3δε2
∇.(∆∇ψ1) + µ2∇.(ζ∇Φ(0)), ∂zu|z=−1 = 0,

and v solves the boundary value problem{
∆µ2

X,zv = −∇µ2

X,z.
˜̃Q1∇µ2

X,zΦ
(0),

∂zv|z=0 = −ez.
˜̃Q1∇µ2

X,zΦ
(0)|z=0, ∂zv|z=−1 = −ez.

˜̃Q1∇µ2

X,zΦ
(0)|z=−1.

The problem for u is obviously solved by

u(X, z) =
cosh(

√
µ2(z + 1)|D|)

cosh(
√
µ2|D|)

1
|D| tanh(

√
µ2|D|)

×
[

µ2

3δε2
√
µ2
∇.(∆∇ψ1) +

√
µ2∇.(ζ∇Φ(0))

]
.
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We now solve the boundary value problem for v. Since

−∇µ2

X,z.
˜̃Q1∇µ2

X,zΦ
(0) = ∆µ2

X,z(−bz∂zΦ
(0))

and

−ez.
˜̃Q1∇µ2

X,zΦ
(0) + ∂z(b∂zΦ(0)) = −µ2z∇b.∇Φ(0) + zb∂2

zΦ
(0),

we deduce that v = v1 − b∂zΦ(0), where v1 solves
∆µ2

X,zv1 = 0,

∂zv1|z=0 = 0,

∂zv1|z=−1 =
µ2
√
µ|D|

sinh(
√
µ2|D|)

b∇.(h1∇ψ1),

which can be easily solved to obtain

v1(X, z) =
√
µµ2

sinh(
√
µ2|D|)

cosh(
√
µ2|D|z)

cosh(
√
µ2|D|)

1
tanh(

√
µ2|D|)

× [∇b.Π(h1∇ψ1) + b∇.(h1∇ψ1)].

Noting that in the Boussinesq/Boussinesq regime µ ∼ ε ∼ µ2 ∼ ε2 � 1,
we have

1
tanh(

√
µ2|D|)

∼ 1
√
µ2|D|

1
1− 1

3µ2|D|2
∼

1 + 1
3µ2|D|2√
µ2|D|

,

1
sinh(2

√
µ2|D|)

∼ 1
2
√
µ2|D|

1
1 + 2

3µ2|D|2
∼

1− 2
3µ2|D|2

2
√
µ2|D|

.

Substituting those into the expression for ∇(Φapp|z=0),

∇(Φapp|z=0) = [∇Φ(0) + (z + 1)∇(ζ∂zΦ(0)) +∇u+∇v1 −∇(b∂zΦ(0))]|z=0,

we obtain

∇(Φapp|z=0) = −δ∇ψ1 −
1
3
µδ

(
1− 1

δ2

)
∆∇ψ1 + ε2(1 + δ)Π(ζ∇ψ1)

+ ε2δ
1
|D|2

(∇(∇b.∇ψ1) +∇(b∆ψ1)) +O(ε2).

We thus have the following

Proposition 2.2. Let t0 > d/2, s ≥ t0 + 1/2, and ζ, b ∈ Hs+3/2(Rd) be
such that (2.10) and (2.11) are satisfied. Then, for all ψ1 such that ∇ψ1 ∈
Hs+5/2(Rd),



140 C. T. Anh∣∣∣∣Hµ,δ[εζ, βb]ψ1 −
[
−δ∇ψ1 −

1
3
µδ

(
1− 1

δ2

)
∆∇ψ1 + ε2(1 + δ)Π(ζ∇ψ1)

+ ε2δ
1
|D|2

(∇(∇b.∇ψ1) +∇(b∆ψ1))
]∣∣∣∣
Hs

≤
µ5/2 + ε22

√
µ

√
µ2

C

(
1
H1

,
1
H2

, δmax, µmax
2 , |ζ|Hs+3/2 , |b|Hs+3/2

)
|∇ψ1|Hs+5/2 .

This estimate is uniform with respect to ε ∈ [0, 1], µ ∈ (0, 1) and δ ∈
(0, δmax) such that µ2 = µ/δ2 ∈ (0, µmax

2 ).

Proof. The proof is similar to the proof of Corollary 1 in [12], so it
is omitted here. Note that

√
µ appears in the term ε22

√
µ because of the

expression for Φ(0). This enables us to improve the precision of the expression
for the operator Hµ,δ[εζ, βb].

Remark 2.1. It is interesting that if b = 0 we get the same expression
for Hµ,δ[εζ] as in the case of a flat bottom [12], but with a higher precision
(O(ε2) instead of O(ε3/2) as in [12]).

2.3. Derivation of the Boussinesq/Boussinesq systems. In this subsec-
tion we give the asymptotic form of the equation (2.14) in the Boussi-
nesq/Boussinesq regime. The asymptotic model is derived from (2.14) by
replacing the operators Gµ[εζ], Hµ,δ[εζ, βb] and the term (σ/%2)∇K(ζ) by
their asymptotic expansions and using a suitable “BBM trick” and a change
of variable. First, we prove the following lemma which gives the asymptotic
expansion of the term (σ/%2)∇K(ζ) containing the surface tension. Noting
that we have ε

√
µ� 1 in the present regime.

Lemma 2.1. Let ζ ∈ Hs+3(Rd) with s > d/2. Then∣∣∣∣ σ%2
∇K(ζ)− ε√µ ν∆∇ζ

∣∣∣∣
Hs

≤ (ε
√
µ)3C(µmax, νmax, |ζ|Hs+3).

This estimate is uniform with respect to ε ∈ [0, 1], µ ∈ (0, µmax) and ν ∈
[0, νmax].

Proof. If d = 1, by a simple calculation and noticing that we are working
with dimensionless variables and dimensionless unknowns, we get

σ

%2
∇K(ζ) =

a

λ

σ

%2λ2

ζxxx(
1 + a2

λ2 ζ2
x

)3/2 − 3
a3

λ3

σ

%2λ2

ζxζ
2
xx(

1 + a2

λ2 ζ2
x

)5/2 .
Noting that

a2

λ2
=
a2

d2
1

d2
1

λ2
= ε2µ, ν =

σ

%2λ2

and Hs(Rd) is an algebra for s > d/2, using the Taylor formula we obtain
the conclusion in the case d = 1. The case d = 2 is proved similarly.
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We now show that in the present regime, the internal waves equations
(2.14) are consistent with the three-parameter family of Boussinesq/Boussi-
nesq systems

(2.17)



(1− µa2∆)∂tζ +
1

γ + δ
∇.vα + ε

δ2 − γ
(γ + δ)2

∇.(ζvα)

− εδ2

(γ + δ)2
∇.(bvα) + µa1∇.∆vα = 0,

(1− µa4∆)∂tvα + (1− γ)∇ζ +
ε

2
δ2 − γ

(γ + δ)2
∇|vα|2

+ µa3(1− γ)∆∇ζ − ε√µ ν∆∇ζ = 0,

where vα = (1 − µα∆)−1v and the constants a1, a2, a3 and a4 are defined
below.

Theorem 2.1. Let 0 < cmin < cmax, 0 < µmin
2 < µmax

2 , and set

a1 =
(1− α1)(1 + γδ)− 3δα(γ + δ)

3δ(γ + δ)2
, a2 =

γα1

3(γ + δ)
,

a3 = αα2, a4 = α(1− α2),

with α1, α ≥ 0 and α2 ≤ 1. With these choices of parameters, the internal
waves equations (2.14) are consistent with the Boussinesq/Boussinesq equa-
tions (2.17) in the sense of Definition 3, with O(ε2) precision, and uniformly
with respect to ε ∈ [0, 1], µ, δ ∈ (0, 1) satisfying the conditions

cmin ≤ ε

µ
≤ cmax, µmin

2 ≤ µ

δ2
≤ µmax

2 ,

and ν ∈ [0, νmax].

Remark 2.2. One can give a more precise estimate of the precision, as in
Proposition 2.2 for instance. It simplifies the exposition to use the notation
O(ε2) and the associated rough estimate of the precision. We follow this
policy throughout the discussion.

Remark 2.3. When b = 0 and ν = 0, we recover of course the Boussi-
nesq/Boussinesq systems derived in [12] for internal waves in the case of
a flat bottom and absence of surface tension. It is interesting that the pre-
cision of (2.17) is higher than the corresponding one in [12] (O(ε2) instead
of O(ε3/2)).

Remark 2.4. Taking γ = 0, δ = 1 and ν = 0 in the Boussinesq/Boussi-
nesq equations (2.17), we reduce them to the system

(
1− µ α1

3
∆

)
∂tζ +∇.v + ε∇.((ζ − b)v) + µ

1− α1 − 3α
3

∆∇.v = 0,

(1− µα(1− α2)∆)∂tv +∇ζ +
ε

2
∇|v|2 + µαα2∆∇ζ = 0,
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which is exactly the family of formally equivalent Boussinesq systems derived
in [15] for the surface waves in the case of nonflat bottoms and absence of
surface tension. In particular, when b = 0 we recover the Boussinesq systems
(1.1) upon noting that we have taken the Stokes number S = aλ2/d3

1 = 1,
i.e. ε = µ, when deriving (1.1).

Remark 2.5. The dispersion relation associated to (2.17) is

ω2 = |k|2
(

1
γ+δ − µa1|k|2

)
[(1− γ)(1− µa3|k|2) + ε

√
µ ν|k|2]

(1 + µa2|k|2)(1 + µa4|k|2)
.

It follows that (2.17) is linearly well-posed when a1≤0, a3≤εν/((1− γ)
√
µ)

and a2, a4 ≥ 0. Recall that in the absence of surface tension, the Boussi-
nesq/Boussinesq system is linearly well-posed when a1, a3 ≤ 0 and a2, a4 ≥ 0
(see [12]). Thus, the surface tension makes the well-posedness results better.

Proof. The proof is in several steps, corresponding to particular as-
sumptions about the parameters α1, α2 and α. In this regime, we have
ε ∼ µ ∼ ε2 ∼ µ2 as ε→ 0.

Step 1: α1 = α = α2 = 0. From the expansion of the Dirichlet–
Neumann operator and Lemma 2.1, it follows that

∂tζ −∇.((1− εζ)∇ψ1)− µ

3
∇.(∆∇ψ1) = O(ε2),

∂tv + (1− γ)∇ζ
+
ε

2
∇(|Hµ,δ[εζ, βb]ψ1|2 − γ|∇ψ1|2)− ε√µ ν∆∇ζ = O(ε2),

where the fact that O(µ) = O(ε) has been used. From the relation
Hµ,δ[εζ, βb]ψ1 = v + γ∇ψ1 and Proposition 2.2, it is seen that

∇ψ1 = − 1
γ + δ

[
1 + µ

1
3δ

1− δ2

(γ + δ)
∆+ ε2

1 + δ

γ + δ
Π[ζ.]

]
v

− ε2δ

(γ + δ)2

[
∇
|D|2

(∇b.v) +
∇
|D|2

(b∇.v)
]

+O(ε2).

Substituting this into the above system yields the result.

Step 2: α1 ≥ 0, α = α2 = 0. Here we use the classical BBM trick. It is
clear from the first equation that

∇.v = (1− α1)∇.v − α1(γ + δ)∂tζ +O(ε).

Replacing ∇.v by this expression in the third-derivative term of the first
equation of the system derived in Step 1 leads to the desired result.

Step 3: α1, α ≥ 0, α2 = 0. Replacing v by (1− µα∆)vα in the system
derived in Step 2, and neglecting the O(ε2) terms, is all that is required in
this case.
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Step 4: α1, α ≥ 0, α2 ≤ 1. We again use the BBM trick. From the
second equation in the system derived in Step 3, one finds that for all α2 ≤ 1,

∂tvα = (1− α2)∂tvα − α2(1− γ)∇ζ +O(ε).

If this is substituted into the system derived in Step 3, the result follows.

3. Well-posedness of the Boussinesq/Boussinesq systems. For
clarity, we will write V instead of vα := (1 − µα∆)−1v. Then the system
(2.17) has the following form:

(3.1)



(1− µa2∆)∂tζ +
1

γ + δ
∇.V + ε

δ2 − γ
(γ + δ)2

∇.(ζV )

− εδ2

(γ + δ)2
∇.(bV ) + µa1∆∇.V = 0,

(1− µa4∆)∂tV + (1− γ)∇ζ +
ε

2
δ2 − γ

(γ + δ)2
∇|V |2

+ µa3(1− γ)∆∇ζ − ε√µν∆∇ζ = 0.

The well-posedness results will be formulated for two unknowns ζ and V .
Recall (see Remark 2.5) that the system (3.1) is linearly well-posed when

a2, a4 ≥ 0, a1 ≤ 0, a3 ≤
εν

(1− γ)
√
µ
.

It is reasonable to argue that linear well-posedness is a natural necessary
requirement for nonlinear well-posedness. In this section, following the gen-
eral lines of the analogous proof of [9], we will show that the systems (3.1)
which are linearly well-posed are in fact locally nonlinearly well-posed in
suitable Sobolev classes.

3.1. The weakly dispersive Boussinesq/Boussinesq systems. We call the
Boussinesq/Boussinesq systems (3.1) weakly dispersive when

a2 > 0 and a4 > 0.

First, we consider the cases where

a2, a4 > 0, a1 = 0, a3 =
εν

(1− γ)
√
µ
.

In these cases the system (3.1) can be written in the form

(3.2)



∂tζ + (I − µa2∆)−1

[
1

γ + δ
∇.V + ε

δ2 − γ
(γ + δ)2

∇.(ζV )

− εδ2

(γ + δ)2
∇.(bV )

]
= 0,

∂tV + (I − µa4∆)−1

[
(1− γ)∇ζ +

ε

2
δ2 − γ

(γ + δ)2
∇|V |2

]
= 0.

Using a contraction-mapping argument, we prove the following theorem.
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Theorem 3.1. Let s > 0 and b ∈ Hs(R2), (ζ0, V0) ∈ Hs(R2)3. Then
there exist T > 0 and a unique solution

(ζ, V ) ∈ XT = C([0, T ];Hs(R2))3

of (3.2) with initial condition (ζ0, V0).

Proof. Let (ζ̃, Ṽ ) ∈ XT define the operator F by(
ζ

V

)
= F(ζ̃, Ṽ ) =

(
ζ0

V0

)
−

(	t
0(I − µa2∆)−1∇.

[
1

γ+δV + ε δ2−γ
(γ+δ)2

(ζ̃Ṽ )− εδ2

(γ+δ)2
(bṼ )

]
(X, s) ds

	t
0

[
(I − µa4∆)−1∇[(1− γ)ζ + ε

2
δ2−γ

(γ+δ)2
|V |2]

]
(X, s) ds

)
.

In order to estimate the integrands appearing in the definition of F , we will
use the following lemma, proved by Grisvard [22].

Lemma 3.1. Let s1, s2, s3 ∈ R be such that s1, s2 ≥ s3, s1 + s2 ≥ 0,
s1 + s2− s3 > d/2. Then (f, g) 7→ fg is bilinear continuous from Hs1(Rd)×
Hs2(Rd) into Hs3(Rd).

This lemma implies that for f, g ∈ Hs(R2), s > 0, we have

‖fg‖s−1 ≤ C‖f‖s‖g‖s, (3.3)

where ‖ · ‖s denotes the norm of Hs(R2).
Thus, there are constants C1, C2 depending only on a2, µ, and constants

C3, C4 depending only on a4, µ such that for i = 1, 2,

‖(I − µa2∆)−1∂i(fg)‖s ≤ C1‖fg‖s−1 ≤ C2‖f‖s‖g‖s,(3.4)

‖(I − µa4∆)−1∂i(fg)‖s ≤ C3‖fg‖s−1 ≤ C4‖f‖s‖g‖s,(3.5)

where ∂1 = ∂x, ∂2 = ∂y. It thus follows that there is a constant C depending
only on a2, a4, µ, γ, δ, ε and ‖b‖s such that

sup
0≤t≤T

‖F(ζ1, V1)−F(ζ2, V2)‖s

≤ TC(1 + ‖(ζ1, V1)‖XT + ‖(ζ2, V2)‖XT )‖(ζ1, V1)− (ζ2, V2)‖XT
≤ TC(1 + 2R)‖(ζ1, V1)− (ζ2, V2)‖XT

provided that (ζ1, V1) and (ζ2, V2) are in the closed ball B̄R of radius R
centred at 0 in XT . Choosing R = 2‖(ζ0, V0)‖XT and T = 1/(2C(1 + 2R)),
it is clear that

‖F(ζ1, V1)−F(ζ2, V2)‖XT ≤
1
2
‖(ζ1, V1)− (ζ2, V2)‖XT
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and

‖F(ζ1, V1)‖XT = ‖F(ζ1, V1)−F(0, 0) + (ζ0, V0)‖XT
≤ TC(1 + 2R)R+ ‖(ζ0, V0)‖XT ≤ R.

Therefore F is a contraction maping from B̄R to B̄R in XT , and the theorem
follows.

We now turn to other cases wherein a2, a4 > 0. Realizing (3.1) as sys-
tems coupled only through nonlinear terms and using a contraction-mapping
argument, we will prove the following theorem.

Theorem 3.2. Let s > 0 and b ∈ Hs(R2).

(i) Assume a2, a4 > 0, a1 < 0, a3 < εν/((1− γ)
√
µ). Let (ζ0, V0) ∈

Hs(R2)3. Then there exist T > 0 and a unique solution

(ζ, V ) ∈ XT = C([0, T ];Hs(R2))3

of (3.1) with initial condition (ζ0, V0).
(ii) Assume a2, a4 > 0, a1 = 0, a3 < εν/((1− γ)

√
µ). Let (ζ0, V0) ∈

Hs+1(R2)×Hs(R2)2. Then there exist T > 0 and a unique solution

(ζ, V ) ∈ XT = C([0, T ];Hs+1(R2))× C([0, T ];Hs(R2))2

of (3.1) with initial condition (ζ0, V0).
(iii) Assume a2, a4 > 0, a1 < 0, a3 = εν/((1− γ)

√
µ). Let (ζ0, V0) ∈

Hs−1(R2)×Hs(R2)2. Then there exist T > 0 and a unique solution

(ζ, V ) ∈ XT = C([0, T ];Hs−1(R2))× C([0, T ];Hs(R2))2

of (3.1) with initial condition (ζ0, V0).

Proof. Taking the Fourier transform with respect to X, we can write
(3.1) in the form

d

dt

 ζ̂

v̂1

v̂2

+ i|k|A(k)

 ζ̂

v̂1

v̂2



+ i



ε δ2−γ
(γ+δ)2

(k1ζ̂v1 + k2ζ̂v2)− εδ2

(γ+δ)2
(k1b̂v1 + k2b̂v2)

1 + µa2|k|2

ε
2
δ2−γ

(γ+δ)2

1 + µa4|k|2
k1 |̂V |2

ε
2
δ2−γ

(γ+δ)2

1 + µa4|k|2
k2 |̂V |2


= 0,
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where V = (v1, v2), k = (k1, k2), and

A(k) =


0 k1

|k|

1
γ+δ
−µa1|k|2

1+µa2|k|2
k2
|k|

1
γ+δ
−µa1|k|2

1+µa2|k|2

k1
|k|

(1−γ)(1−µa3|k|2)+ε
√
µν|k|2

1+µa4|k|2 0 0

k2
|k|

(1−γ)(1−µa3|k|2)+ε
√
µν|k|2

1+µa4|k|2 0 0

 .

The eigenvalues of A(k) are {0,±σ(k)}, where

σ(k) =
[( 1

γ+δ − µa1|k|2
)
[(1− γ)(1− µa3|k|2) + ε

√
µ ν|k|2]

(1 + µa2|k|2)(1 + µa4|k|2)

]1/2

.

Diagonalize the above system:

P−1(k)A(k)P (k) =

0 0 0
0 σ(k) 0
0 0 −σ(k)

 ,

with

P (k) =


0 α(k) −α(k)

− k2
|k|

k1
|k|

k1
|k|

k1
|k|

k2
|k|

k2
|k|

 ,

P−1(k) =
1

2α(k)


0 −2α(k) k2|k| 2α(k) k1|k|
1 α(k) k1|k| α(k) k2|k|
−1 α(k) k1|k| α(k) k2|k|

 ,

where

α(k) =
[ (

1
γ+δ − µa1|k|2

)
(1 + µa4|k|2)

[(1− γ)(1− µa3|k|2) + ε
√
µ ν|k|2](1 + µa2|k|2)

]1/2

.

Performing the change of variables µ̂

ν̂1

ν̂2

 = P−1

 ζ̂

v̂1

v̂2

 ,

we have
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(3.6)
d

dt

 µ̂

ν̂1

ν̂2

+ i|k|

0 0 0
0 σ(k) 0
0 0 −σ(k)


 µ̂

ν̂1

ν̂2



= −iP−1(k)



ε δ2−γ
(γ+δ)2

(k1ζ̂v1 + k2ζ̂v2)− δ2

(γ+δ)2
(k1b̂v1 + k2b̂v2)

1 + µa2|k|2
ε
2
δ2−γ

(γ+δ)2

1 + µa4|k|2
k1 |̂V |2

ε
2
δ2−γ

(γ+δ)2

1 + µa4|k|2
k2 |̂V |2


.

We get

µ̂(k) = − k2

|k|
v̂1(k) +

k1

|k|
v̂2(k),

ν̂1(k) =
1

2α(k)
ζ̂(k) +

1
2
k1

|k|
v̂1(k) +

1
2
k2

|k|
v̂2(k),

ν̂2(k) = − 1
2α(k)

ζ̂(k) +
1
2
k1

|k|
v̂1(k) +

1
2
k2

|k|
v̂2(k).

Thus, with Hs = Hs(R2), we have:

• If α(k) is of order 0, i.e. a2, a4 > 0, a1 < 0, a3 < εν/((1− γ)
√
µ), then

(ζ, v1, v2) ∈ Hs ×Hs ×Hs ⇔ (µ, ν1, ν2) ∈ Hs ×Hs ×Hs.

• If α(k) is of order −1, i.e. a2, a4 > 0, a1 = 0, a3 < εν/((1− γ)
√
µ),

then

(ζ, v1, v2) ∈ Hs+1 ×Hs ×Hs ⇔ (µ, ν1, ν2) ∈ Hs ×Hs ×Hs.

• If α(k) is of order +1, i.e. a2, a4 > 0, a1 < 0, a3 = εν/((1− γ)
√
µ),

then

(ζ, v1, v2) ∈ Hs−1 ×Hs ×Hs ⇔ (µ, ν1, ν2) ∈ Hs ×Hs ×Hs.

Below we give the details in the case where α(k) is of order 0. The other
cases follow analogously.

Taking the inverse Fourier transform, we can write (3.6) in the form

(3.7)
d

dt

µ

ν1

ν2

+ B

µ

ν1

ν2

 = F

µ

ν1

ν2

 ,



148 C. T. Anh

where B is the skew-adjoint matrix operator with symbol

i|k|

0 0 0
0 σ(k) 0
0 0 −σ(k)


and F is the nonlinear term with Fourier transform given by the right-hand
side of (3.6). In order to write an explicit expression of the nonlinear term
F , we note that in terms of (µ̂, ν̂1, ν̂2), ζ̂

v̂1

v̂2

 =


α(k)ν̂1(k)− α(k)ν̂2(k)

− k2
|k| µ̂(k) + k1

|k| ν̂1(k) + k1
|k| ν̂2(k)

k1
|k| µ̂(k) + k2

|k| ν̂1(k) + k2
|k| ν̂2(k)

 .

Hence

(3.8)

 ζ

v1

v2

 =

 α(D)ν1 − α(D)ν2

−R2µ+R1ν1 +R1ν2

R1µ+R2ν1 +R2ν2

 ,

where α(D) is the multiplier defined as follows:

α̂(D)f(k) = α(k)f̂(k),

and R1, R2 are the Riesz transforms defined by

R̂1f(k) =
k1

|k|
f̂(k), R̂2f(k) =

k2

|k|
f̂(k).

It is clear that α(D) and Ri (i = 1, 2) are bounded operators from Hs to
Hs for all s ∈ R. We now get the expression of F as follows:

F

µ

ν1

ν2

 =

−P−1


(1− µa2∆)−1

[
ε δ2−γ

(γ+δ)2
(∂x(ζv1) + ∂y(ζv2))− δ2

(γ+δ)2
(∂x(bv1) + ∂y(bv2))

]
ε
2
δ2−γ

(γ+δ)2
(1− µa4∆)−1∂x(v2

1 + v2
2)

ε
2
δ2−γ

(γ+δ)2
(1− µa4∆)−1∂y(v2

1 + v2
2)

 ,

where (ζ, v1, v2) are related to (µ, ν1, ν2) by (3.8), and P−1 is the pseudo-dif-
ferential operator with symbol P−1. If α(k) is of order 0, all the pseudo-dif-
ferential operators involved are of order 0. So is P−1(k). Using (3.4), (3.5)
and the boundedness of P−1, α(D), R1, R2, one can see that F is bilinear
continuous from Hs ×Hs ×Hs into itself for s > 0. Denoting by S(t) the
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semigroup generated by B, it is clear that S(t) is a unitary group on Hs(R2)3

for all s ∈ R. Set

U =

µ

ν1

ν2

 .

Let U0 be related to the initial data (ζ0, V0) by (3.8). By Duhamel’s formula,
(3.7) completed with initial value U0 is equivalent to

U(t) = S(t)U0 +
t�

0

S(t− τ)F(U) dτ.

A function U ∈ C([0, T ];Hs(R2)3) satisfying this integral equation is called
an integral solution (or a mild solution) of (3.7). Since F is locally Lipschitz
continuous (see below), by a result in [31, p. 190], it is known that if U0 ∈
D(B) (for example, when s ≥ 3), a mild solution will be in fact a classical
one.

Using (3.4), (3.5), and the boundedness of P−1, α(D), R1, R2 again, one
can check that F(0) = 0 and that there is a constant C for which ‖F(U)−
F(Ũ)‖s ≤ CR‖U − Ũ‖s whenever U = (µ1, ν1, ν2)T and Ũ = (µ̃1, ν̃1, ν̃2)T

are selected from the closed ball B̄R of radius R centred at 0 in Xs
T . For

fixed U0 ∈ Hs(R2)3, as in the proof of Theorem 3.1, one can show that the
mapping Ũ 7→ U , where

U(t) = S(t)U0 +
t�

0

S(t− τ)F(Ũ) dτ,

is a contraction of B̄R into itself for R sufficiently large and T sufficiently
small. Theorem 3.2 then follows immediately if we transform back to the
original variable (ζ, v1, v2).

Remark 3.1. Because the solution is given as the fixed point of a con-
traction mapping, one can prove that the correspondence (ζ0, V0) 7→ (ζ, V ),
between the initial data and the associated solution, is locally Lipschitz
continuous.

Remark 3.2. It is clear that the well-posedness results in Section 3.1
are also true in the case of one dimension because the method of the proof
works for both one and two dimensions. It is worth noticing that if instead
of (3.3), we use the inequality

‖fg‖s−1 ≤ ‖f‖s‖g‖s, s ≥ 0,

which is only valid in one dimension (see e.g. [9] for a proof), then one can
take s ≥ 0 in Theorems 3.1 and 3.2 in the case of one dimension. Thus, the
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well-posedness results in the one-dimensional case are slightly better than
in two dimensions.

3.2. Other admissible Boussinesq/Boussinesq systems. In this section,
we investigate the admissible cases not covered in Section 3.1, i.e. when

a2 = 0 or a4 = 0.

They are classified according to the order of α(k) defined in Section 3.1.
Recall that

α(k) =
[ (

1
γ+δ − µa1|k|2

)
(1 + µa4|k|2)

[(1− γ)(1− µa3|k|2) + ε
√
µ ν|k|2](1 + µa2|k|2)

]1/2

.

Thus,

• α(k) is of order 2 when a2 = 0, a4 > 0, a1 < 0, a3 = εν/((1− γ)
√
µ).

• α(k) is of order 1 when a2 = 0, a4 > 0, a1 < 0, a3 < εν/((1− γ)
√
µ).

• α(k) is of order 0 when a2 > 0, a4 = 0, a1 < 0, a3 = εν/((1− γ)
√
µ)

or a2 = 0, a4 > 0, a1 = 0, a3 < εν/((1− γ)
√
µ).

• α(k) is of order −1 when a2 > 0, a4 = 0, a1 < 0, a3 < εν/((1− γ)
√
µ)

or a2 > 0, a4 = a1 = 0, a3 = εν/((1− γ)
√
µ).

In these cases, we will use energy methods to study the local well-
posedness of the Cauchy problem for the Boussinesq/Boussinesq systems
(3.1). In order to estimate the nonlinear terms, we need the following esti-
mates.

Lemma 3.2. Let s ≥ 0.

(i) We have

(3.9) ‖Λs(fg)‖0 ≤ C(|f |∞‖g‖s + ‖f‖s|g|∞).

(ii) ‖[Λs, f ]g‖0 ≤ C(|∇f |∞‖g‖s−1 + ‖f‖s|g|∞). In particular ,

(3.10) ‖[Λs, u]∇u‖0 ≤ C|∇u|∞‖u‖s.

(iii) We have

(3.11) ‖[Λs, f ].∇g‖0 ≤ C(|∇f |∞‖g‖s + ‖f‖s+1|g|∞).

Here f and g are assumed to be such that the right-hand side of the corre-
sponding estimate is finite.

Proof. The first point is a classical estimate (see e.g. [18]). The second
point is the classical Kato–Ponce estimate [25]. To prove the third point, we
note that

[Λs, f ].∇g = Λs(f.∇g)− f.Λs∇g = Λs∇.(fg)− f.Λs∇g − Λs(∇.fg)
= [Λs∇, f ]g − Λs(∇.fg).
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Using the Kato–Ponce estimate, we have

‖[Λs∇, f ]g‖0 ≤ C(|∇f |∞‖g‖s + ‖f‖s+1|g|∞).

On the other hand,

‖Λs(∇.fg)‖0 ≤ C(|∇.f |∞‖g‖s + ‖∇.f‖s|g|∞).

Combining the above two estimates yields the result.

3.2.1. Boussinesq/Boussinesq systems when α(k) has order 2. This sub-
section is concerned with cases where

a2 = 0, a4 > 0, a1 < 0, a3 =
εν

(1− γ)
√
µ
.

The system then has the form

(3.12)



∂tζ +
1

γ + δ
∇.V + ε

δ2 − γ
(γ + δ)2

∇.(ζV )

− εδ2

(γ + δ)2
∇.(bV ) + µa1∆∇.V = 0,

(1− µa4∆)∂tV + (1− γ)∇ζ +
ε

2
δ2 − γ

(γ + δ)2
∇|V |2 = 0.

Define

Xs+2(Rd) = {V ∈ Hs(Rd) :

‖V ‖2Xs+2 = ‖ΛsV ‖20 + ‖Λs∇V ‖20 + ‖Λs∆V ‖0 <∞}.

Note that Xs+2(Rd) = Hs+2(Rd) when d = 1.
We now prove the following theorem.

Theorem 3.3. Let s > 1 and b ∈ Hs+1(R2), (ζ0, V0) ∈ Hs(R2) ×
Xs+2(R2)2. Then there exist T > 0 and a unique solution

(ζ, V ) ∈ XT = C([0, T ];Hs(R2))× C([0, T ];Xs+2(R2))2

of (3.12) with initial condition (ζ0, V0).

Proof. (i) Existence. The first step is to derive formally a priori esti-
mates on solutions of (3.12). Apply Λs := (1 −∆)s/2 to the two equations
in the above system, then multiply the first equation by (1 − γ)Λsζ, the
second equation by 1

γ+δΛ
sV + µa1Λ

s∆V and integrate over R2. By adding
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the resulting two equations, we obtain

1
2
d

dt

�

R2

[
(1− γ)|Λsζ|2 +

1
γ + δ

|ΛsV |2 +
1

γ + δ
µa4|Λs∇V |2

− µ2a1a4|Λs∆V |2
]
dX

= −
�

R2

[
(1− γ)ε

δ2 − γ
(γ + δ)2

ΛsζΛs∇.(ζV )− (1− γ)
εδ2

(γ + δ)2
ΛsζΛs∇.(bV )

+
ε

2
δ2 − γ

(γ + δ)3
ΛsV Λs∇|V |2 +

ε

2
δ2 − γ

(γ + δ)2
µa1Λ

s∆V Λs∇|V |2
]
dX.

We now estimate the terms on the right-hand side of the above equality. For
the first term, we have

|〈Λsζ, Λs∇.(ζV )〉| = |〈Λs(V.∇ζ), Λsζ〉+ 〈Λs(ζ∇.V ), Λsζ〉|
= |〈[Λs, V ].∇ζ, Λsζ〉+ 〈V.Λs∇ζ, Λsζ〉+ 〈Λs(ζ∇.V ), Λsζ〉|

=
∣∣∣∣[Λs, V ].∇ζ, Λsζ − 1

2
〈∇.V, |Λsζ|2〉+ 〈Λs(ζ∇.V ), Λsζ〉

∣∣∣∣
≤ ‖[Λs, V ].∇ζ‖0‖Λsζ‖0 +

1
2
|∇.V |∞‖Λsζ‖20 + ‖Λs(ζ∇.V )‖0‖Λsζ‖0

≤ C
(
(|∇V |∞‖ζ‖s + ‖V ‖s+1|ζ|∞)‖ζ‖s + |∇.V |∞‖ζ‖2s

+ (|ζ|∞‖∇.V ‖s + ‖ζ‖s|∇.V |∞)‖ζ‖s
)

≤ C(‖ζ‖3s + ‖V ‖3Xs+2),

where we have used (3.11), (3.9), the fact that Hs(R2) ↪→ L∞(R2) for s > 1,
and Young’s inequality (ab ≤ ap/p + aq/q, 1/p + 1/q = 1). Similarly, we
estimate the second term:

|〈Λsζ, Λs∇.(bV )〉| ≤ C(‖ζ‖2s + ‖V ‖2Xs+2),

where the constant C depends on ‖b‖s+1. In order to estimate the third and
fourth terms, note that for a real-valued function u, we have the following
estimates thanks to (3.9):

|〈Λsu,Λs∂x(u2)〉| ≤ 2‖Λsu‖0‖Λs(uux)‖0
≤ C‖u‖s(|u|∞‖ux‖s + ‖u‖s|ux|∞),

|〈Λsuxx, Λs∂x(u2)〉| ≤ 2‖Λsuxx‖0‖Λs(uux)‖0
≤ C‖u‖s+2(|u|∞‖ux‖s + ‖u‖s|ux|∞).

Similar estimates hold for |〈Λsu,Λs∂y(u2)〉| and |〈Λsuyy, Λs∂y(u2)〉|. There-
fore, we have

|〈ΛsV,Λs∇|V |2〉| ≤ C‖V ‖3s+1, |〈Λs∆V,Λs∇|V |2〉| ≤ C‖V ‖3Xs+2 .
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Putting

Y (t) =
�

R2

[
(1− γ)|Λsζ|2 +

1
γ + δ

|ΛsV |2

+
1

γ + δ
µa4|Λs∇V |2 − µ2a1a4|Λs∆V |2

]
dX.

Combining the above estimates, we get

Y ′(t) ≤ C1Y (t)3/2 + C2Y (t),

which yields the bound of Y (t) on [0, T ] for T sufficiently small. Since a1 < 0,
a4 > 0, we thus obtain the desired bound of (ζ, V ) in L∞(0, T ;Hs(R2)) ×
L∞(0, T ;Xs+2(R2))2.

The next step is to justify the a priori estimate by regularizing the first
equation in (3.12) with the dispersive regularizing term −ε∆∂tζ. The ex-
istence of a sequence of smooth approximate solutions (ζε, Vε) is already
obtained in Theorem 3.2. By exactly the same procedure, one obtains a lo-
cal bound on (ζε, Vε) in the space L∞(0, T ;Hs(R2))×L∞(0, T ;Xs+2(R2))2,
where T > 0 does not depend on ε > 0 (see [9, p. 936] for a similar
and more detailed argument). A standard application of the compactness
method (see [28, Chapter 1]) yields the existence of a solution (ζ, V ) in the
space L∞(0, T ;Hs(R2))×L∞(0, T ;Xs+2(R2))2. If, instead, one passes to the
strong limit by using the Bona–Smith technique [13], one deduces that, in
fact, the solution (ζ, V ) lies in C([0, T ];Hs(R2))× C([0, T ];Xs+2(R2))2.

(ii) Uniqueness. Let (ζ1, V1), (ζ2, V2) be two solutions of (3.12) in the
space C([0, T ];Hs(R2))×C([0, T ];Xs+2(R2))2 with the same value at t = 0.
Put ζ = ζ1 − ζ2 and V = V1 − V2. Then (ζ, V ) satisfies the system

∂tζ +
1

γ + δ
∇.V + ε

δ2 − γ
(γ + δ)2

[∇.(ζ1V1)−∇.(ζ2V2)]

− εδ2

(γ + δ)2
∇.(bV ) + µa1∆∇.V = 0,

(1− µa4∆)∂tV + (1− γ)∇ζ +
ε

2
δ2 − γ

(γ + δ)2
(∇|V1|2 −∇|V2|2) = 0,

with zero initial data. Repeating the argument used in part (i), we obtain

1
2
d

dt

�

R2

[
(1− γ)|Λsζ|2 +

1
γ + δ

|ΛsV |2

+
1

γ + δ
µa4|Λs∇V |2 − µ2a1a4|Λs∆V |2

]
dX
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= −
�

R2

[
(1− γ)ε

δ2 − γ
(γ + δ)2

ΛsζΛs[∇.(ζ1V1)−∇.(ζ2V2)]

− (1− γ)
εδ2

(γ + δ)2
ΛsζΛs∇.(bV )

+
ε

2
δ2 − γ

(γ + δ)3
ΛsV Λs(∇|V1|2 −∇|V2|2)

+
ε

2
δ2 − γ

(γ + δ)2
µa1Λ

s∆V Λs(∇|V1|2 −∇|V2|2)
]
dX.

Observe that
∇.(ζ1V1)−∇.(ζ2V2) = ∇ζ.V1 + ζ∇.V1 +∇ζ2.V + ζ2∇.V,
∇|V1|2 −∇|V2|2 = ∇(V.V1) +∇(V.V2).

By calculations similar to those appearing in the derivation of the a priori
estimate, we find that

Y ′(t) ≤ CY (t),

where the constant C depends on ε, γ, δ, ‖b‖s+1, ‖ζi‖s, ‖Vi‖Xs+2 (i = 1, 2),
and Y (t) is defined in part (i). Since Y (0) = 0, the uniqueness follows
immediately from Gronwall’s inequality.

Remark 3.3. In the proof of the theorems below, we will only establish
a priori estimates of solutions. Then the existence and uniqueness of solu-
tions can be obtained by adding a suitable dispersive regularizing term, and
proceeding as in the proof of Theorem 3.3.

3.2.2. Boussinesq/Boussinesq systems when α(k) has order 1. This sub-
section is concerned with cases where

a2 = 0, a4 > 0, a1 < 0, a3 <
εν

(1− γ)
√
µ
.

The system then has the form

(3.13)



∂tζ +
1

γ + δ
∇.V + ε

δ2 − γ
(γ + δ)2

∇.(ζV )

− εδ2

(γ + δ)2
∇.(bV ) + µa1∆∇.V = 0,

(1− µa4∆)∂tV + (1− γ)∇ζ +
ε

2
δ2 − γ

(γ + δ)2
∇|V |2

+ µa3(1− γ)∆∇ζ − ε√µ ν∆∇ζ = 0.
We now prove the following theorem.

Theorem 3.4. Let s > 1 and b ∈ Hs+1(R2), (ζ0, V0) ∈ Hs(R2) ×
Hs+1(R2)2. Then there exist T > 0 and a unique solution

(ζ, V ) ∈ XT = C([0, T ];Hs(R2))× C([0, T ];Hs+1(R2))2

of (3.13) with initial condition (ζ0, V0).
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Proof. We content ourselves with providing the proof of an a priori es-
timate that may be justified just as in Section 3.2.1 by regularizing the first
equation in (3.13) with the term −ε∆∂tζ. As we already have a theory in
this case given by Theorem 3.2, it is simply a matter of allowing ε tend to
zero using the Bona–Smith technique [13].

Applying Λs to the two equations in the above system, then taking the
L2 scalar product of the first equation with [−µa3(1− γ) + ε

√
µ ν]Λsζ, the

second equation with −µa1Λ
sV , and adding the resulting two equations, we

obtain

1
2
d

dt

�

R2

[
[−µa3(1− γ) + ε

√
µ ν]|Λsζ|2 − µa1|ΛsV |2 − µ2a1a4|Λs∇V |2

]
dX

=
�

R2

[
1

γ + δ
[µa3(1− γ)− ε√µ ν]ΛsζΛs∇.V

+ ε
δ2 − γ

(γ + δ)2
[µa3(1− γ)− ε√µ ν]ΛsζΛs∇.(ζV )

− εδ2

(γ + δ)2
[µa3(1− γ)− ε√µ ν]ΛsζΛs∇.(bV ) + (1− γ)µa1Λ

sV Λs∇ζ

+
ε

2
δ2 − γ

(γ + δ)2
µa1Λ

sV Λs∇|V |2
]
dX.

We estimate the first and second terms on the right-hand side of the above
equality as follows:

|〈Λsζ, Λs∇.V 〉| ≤ ‖Λsζ‖0‖Λs∇.V ‖0 = ‖ζ‖s‖∇.V ‖s ≤ ‖ζ‖s‖V ‖s+1,

|〈ΛsV,Λs∇ζ〉| = |−〈Λs∇.V, Λsζ〉| ≤ ‖Λs∇.V ‖0‖Λsζ‖0 ≤ ‖V ‖s+1‖ζ‖s.
Other terms can be estimated exactly as in the proof of Theorem 3.3:

|〈Λsζ, Λs∇.(ζV )〉| ≤ C(‖ζ‖3s + ‖V ‖3s+1),

|〈Λsζ, Λs∇.(bV )〉| ≤ C(‖ζ‖2s + ‖V ‖2s+1),

|〈ΛsV,Λs∇|V |2〉| ≤ C‖V ‖3s+1.

Setting

Y (t) =
�

R2

[
[−µa3(1− γ) + ε

√
µ ν]|Λsζ|2 − µa1|ΛsV |2 − µ2a1a4|Λs∇V |2

]
dX,

we deduce from the above estimates that

Y ′(t) ≤ C1Y (t)3/2 + C2Y (t),

which provides a bound of Y (t) on [0, T ] for T sufficiently small. Since
a1 < 0, a4 > 0, a3 < εν/((1− γ)

√
µ), we get the desired bound of (ζ, V ) in

L∞(0, T ;Hs(R2))× L∞(0, T ;Hs+1(R2))2.
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3.2.3. Boussinesq/Boussinesq systems when α(k) has order 0. In this
subsection, we consider systems in (3.1) with

a2 > 0, a4 = 0, a1 < 0, a3 =
εν

(1− γ)
√
µ
,

and those with

a2 = 0, a4 > 0, a1 = 0, a3 <
εν

(1− γ)
√
µ
.

These two cases can both be studied using the techniques presented
below. Therefore, the proof is only given for the first case. Then the system
has the form

(3.14)



(1− µa2∆)∂tζ +
1

γ + δ
∇.V + ε

δ2 − γ
(γ + δ)2

∇.(ζV )

− εδ2

(γ + δ)2
∇.(bV ) + µa1∆∇.V = 0,

∂tV + (1− γ)∇ζ +
ε

2
δ2 − γ

(γ + δ)2
∇|V |2 = 0.

Theorem 3.5. Let s > 2 and b ∈ Hs−1(R2), (ζ0, V0) ∈ Hs(R2)3. Then
there exist T > 0 and a unique solution

(ζ, V ) ∈ XT = C([0, T ];Hs(R2))3

of (3.14) with initial condition (ζ0, V0).

Proof. We only prove an a priori estimate; that may be justified just as
in Section 3.2.1 by regularizing the second equation in (3.14) with the term
−ε∆∂tV .

First, consider the case a1 = − 1
γ+δa2. Then (3.14) may be given in the

form
∂tζ +

1
γ + δ

∇.V + (1− µa2∆)−1

[
ε
δ2 − γ
(γ+δ)2

∇.(ζV )− εδ2

(γ+δ)2
∇.(bV )

]
=0,

∂tV + (1− γ)∇ζ +
ε

2
δ2 − γ

(γ + δ)2
∇|V |2 = 0.

Apply Λs to the two equations in the above system, then multiply the first
equation by (1 − γ)Λsζ and the second by 1

γ+δΛ
sV and integrate over R2.

By adding the resulting two equations, we obtain



Boussinesq/Boussinesq systems 157

1
2
d

dt

�

R2

[
(1− γ)|Λsζ|2 +

1
γ + δ

|ΛsV |2
]
dX

= −
�

R2

[
(1− γ)ε

δ2 − γ
(γ + δ)2

Λsζ(1− µa2∆)−1∇.Λs(ζV )

− (1− γ)
εδ2

(γ + δ)2
(1− µa2∆)−1∇.Λs(bV )

+
1

γ + δ

ε

2
δ2 − γ

(γ + δ)2
ΛsV Λs∇|V |2

]
dX.

We now estimate the terms on the right-hand side of the above equality.
First, we have

|〈Λsζ, (1− µa2∆)−1∇.Λs(ζV )〉| ≤ ‖Λsζ‖0‖(1− µa2∆)−1∇.(ζV )‖s
≤ C‖ζ‖s‖ζV ‖s−1 ≤ C‖ζ‖s‖ζ‖s‖V ‖s ≤ C(‖ζ‖3s + ‖V ‖3s),

where we have used (3.4), (3.3) and Young’s inequality. Similarly, we have

|〈Λsζ, (1− µa2∆)−1∇.Λs(bV )〉| ≤ C(‖ζ‖2s + ‖V ‖2s),
with C depending on ‖b‖s−1. We now estimate the remaining term. Note
that for a real-valued function u,

Λs∂x(u2) = 2Λs(uux) = 2[Λs, u]ux + 2uΛsux.

Thus, using the Kato–Ponce estimate (3.10), we have

|〈Λsu,Λs∂x(u2)〉| = |2〈Λsu, [Λs, u]ux〉+ 2〈Λsu, uΛsux〉|
= |2〈Λsu, [Λs, u]ux〉+ 〈u, ∂x(Λsu)2〉| = |2〈Λsu, [Λs, u]ux〉 − 〈ux, (Λsu)2〉|
≤ 2‖Λsu‖0‖[Λs, u]ux‖0 + |ux|∞‖Λsu‖20 ≤ C|ux|∞‖u‖2s.

A similar estimate holds for the term |〈Λsu,Λs∂y(u2)〉|. Thus, we have

|〈ΛsV,Λs∇|V |2〉| ≤ C|∇V |∞‖V ‖2s ≤ ‖V ‖3s.
Put

Y (t) =
�

R2

[
(1− γ)|Λsζ|2 +

1
γ + δ

|ΛsV |2
]
dX.

From the above estimates, we get

Y ′(t) ≤ C1Y (t)3/2 + C2Y (t),

which provides a bound of Y (t) on [0, T ] for T sufficiently small, and implies
the desired bound of (ζ, V ) in L∞(0, T ;Hs(R2))3.

In the general case, that is, (3.14) with a1 < 0, a2 > 0 and a1 6= − 1
γ+δa2,

observe that
1

γ+δ − µa1|k|2

1 + µa2|k|2
= −a1

a2
+

1
γ+δ + a1

a2

1 + µa2|k|2
,
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so that (3.14) is equivalent to

∂tζ −
a1

a2
∇.V +

(
1

γ + δ
+
a1

a2

)
(1− µa2∆)−1∇.V

+ (1− µa2∆)−1

[
ε
δ2 − γ

(γ + δ)2
∇.(ζV )− εδ2

(γ + δ)2
∇.(bV )

]
= 0,

∂tV + (1− γ)∇ζ +
ε

2
δ2 − γ

(γ + δ)2
∇|V |2 = 0.

For this system, without any difficulty, we can repeat the above arguments
to obtain an a priori estimate of (ζ, V ) in L∞(0, T ;Hs(R2))3.

3.2.4. Boussinesq/Boussinesq systems when α(k) has order −1. This
corresponds to the cases where

a2 > 0, a4 = 0, a1 < 0, a3 <
εν

(1− γ)
√
µ

or

a2 > 0, a4 = 0, a1 = 0, a3 =
εν

(1− γ)
√
µ
.

These two cases can both be studied using the techniques presented
below. We thus give the proof for the first case only. Then the system has
the form

(3.15)



(1− µa2∆)∂tζ +
1

γ + δ
∇.V + ε

δ2 − γ
(γ + δ)2

∇.(ζV )

− εδ2

(γ + δ)2
∇.(bV ) + µa1∆∇.V = 0,

∂tV + (1− γ)∇ζ +
ε

2
δ2 − γ

(γ + δ)2
∇|V |2

+ µa3(1− γ)∆∇ζ − ε√µ ν∆∇ζ = 0.

Theorem 3.6. Let s > 2 and b ∈ Hs(R2), (ζ0, V0) ∈ Hs+1(R2) ×
Hs(R2)2. Then there exist T > 0 and a unique solution

(ζ, V ) ∈ XT = C([0, T ];Hs+1(R2))× C([0, T ];Hs(R2))2

of (3.15) with initial condition (ζ0, V0).

Proof. We only prove an a priori estimate. Apply Λs to both equa-
tions in the above system, then multiply the first equation by [−µa3(1− γ)
+ε
√
µ ν]Λsζ, the second by −µa1Λ

sV , and integrate over R2. By adding the
resulting two equations and integrating by parts, we obtain
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1
2
d

dt

�

R2

[
[−µa3(1− γ) + ε

√
µ ν]|Λsζ|2

+ µa2[−µa3(1− γ) + ε
√
µ ν]|Λs∇ζ|2 − µa1|ΛsV |2

]
dX

=
�

R2

[
1

γ + δ
[−µa3(1− γ) + ε

√
µ ν]Λs∇ζ.ΛsV

+ ε
δ2 − γ

(γ + δ)2
[−µa3(1− γ) + ε

√
µ ν]Λs∇ζ.Λs(ζV )

− εδ2

(γ + δ)2
[−µa3(1− γ) + ε

√
µ ν]Λs∇ζ.Λs(bV )− (1− γ)µa1Λ

sV Λs∇ζ

− ε

2
δ2 − γ

(γ + δ)2
µa1Λ

sV Λs∇|V |2
]
dX.

The term |〈ΛsV,Λs∇|V |2〉| is estimated exactly as in the proof of Theo-
rem 3.5. The other terms on the right-hand side can be estimated directly
using Hölder’s inequality and (3.9). As a result, one gets

Y ′(t) ≤ C1Y (t)3/2 + C2Y (t),

where

Y (t) =
�

R2

[
[−µa3(1− γ) + ε

√
µ ν]|Λsζ|2

+ µa2[−µa3(1− γ) + ε
√
µν]|Λs∇ζ|2 − µa1|ΛsV |2

]
dX.

This inequality implies a bound of Y (t) on [0, T ] for T sufficiently small.
Since a1 < 0, a2 > 0, a3 < εν/((1− γ)

√
µ), it implies the desired bound of

(ζ, V ) in L∞(0, T ;Hs+1(R2))× L∞(0, T ;Hs(R2))2.

Remark 3.4. It is clear that the energy methods, which are used to
prove Theorems 3.3–3.6, also work in the case of one dimension. Moreover,
noting that Ht(R) ↪→ L∞(R) for t > 1/2, we can take s > 1/2 in Theo-
rems 3.3 and 3.4, and s > 3/2 in Theorems 3.5 and 3.6, in the case of one
dimension. Thus, the well-posedness results in the one-dimensional case are
better than in two dimensions as far as the assumed level of regularity of
the initial data is concerned.

Remark 3.5. When γ = 0, δ = 1, we formally recover the Boussinesq
systems for surface waves from the Boussinesq/Boussinesq systems (3.1).
Thus, from the above theorems, we also obtain the well-posedness results
to the Boussinesq systems (1.1). We leave the formulations of these results
to the readers. In particular, the results of [9] extend to the case of two
dimensions and to the case with surface tension. It is worth noticing that
even in the case of one dimension, the results here (given by Remark 3.4)
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are better than the ones in [9], as far as the assumed level of regularity of
the initial data is concerned (cf. Remark 3.13 in [9]).
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Dunod, Paris, 1969.

[29] H. Y. Nguyen and F. Dias, A Boussinesq system for two-wave propagation of inter-
facial waves, Phys. D 237 (2008), 2365–2389.

[30] K. Ohi and T. Iguchi, A two-phase problem for capillary-gravity waves and the
Benjamin–Ono equation, Discrete Contin. Dynam. Systems 23 (2009), 1205–1240.

[31] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential
Equations, Springer, 1983.

[32] J. Shatah and C. Zeng, A priori estimates for the fluid interface problem, Comm.
Pure Appl. Math. 61 (2008), 848–876.

[33] M. E. Schonbek, Existence of solutions for the Boussinesq system of equations,
J. Differential Equations 42 (1981), 325–352.

Department of Mathematics
Hanoi University of Education
136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
E-mail: anhctmath@hnue.edu.vn

Received 15.9.2008
and in final form 23.11.2008 (1920)




