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A counterexample to the Γ -interpolation conjecture

by Adama S. Kamara (Québec)

Abstract. Agler, Lykova and Young introduced a sequence Cν , where ν ≥ 0, of
necessary conditions for the solvability of the finite interpolation problem for analytic
functions from the open unit disc D into the symmetrized bidisc Γ . They conjectured that
condition Cn−2 is necessary and sufficient for the solvability of an n-point interpolation
problem. The aim of this article is to give a counterexample to that conjecture.

1. Introduction. In this paper we will denote by D the open unit disc,
by ∆ its closure, and by T the unit circle. We also denote by S the Schur
class, i.e. the set of holomorphic functions f : D → ∆. For λ1 and λ2 in D,
we denote

[λ1, λ2] :=
λ2 − λ1
1− λ2λ1

and ρ(λ1, λ2) := |[λ1, λ2]|.

The function ρ is called the pseudo-hyperbolic distance.
We denote by Mm the set of all m×m complex matrices.
For W ∈ Mm, we write σ(W ) for the spectrum of W . If σ(W ) =

{w1, . . . , wk}, and if mj is the multiplicity of wj as a root of the minimal
polynomial of W , we shall call the product

b1(w) :=

k∏
j=1

(
w − wj
1− wwj

)mj
the minimal Blaschke product of W.

The spectral unit ball Ωm is the set of all matrices W ∈ Mm whose
spectral radius is less than 1. In this paper, Ω will refer to Ω2.

Given n distinct points λ1, . . . , λn in the open unit disc and n points
W1, . . . ,Wn in the spectral unit ball Ωm, the spectral Nevanlinna–Pick prob-
lem with data

λj 7→Wj , j = 1, . . . , n,
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consists in finding necessary and sufficient conditions for the existence of an
analytic map F : D→ Ωm such that F (λj) =Wj for j = 1, . . . , n.

A method for determining if such a function F exists, with the additional
condition supz∈D r(F (z)) < 1, where r(W ) denotes the spectral radius of
the matrix W , was obtained by Bercovici, Foias and Tannenbaum [7]. But
this method provides criteria which are in practice hard to implement and
therefore some other approaches to solve the problem have been made by
several authors.

One of these approaches is to consider, as was done by Agler and Young,
an interpolation problem involving the elementary symmetric functions of
the eigenvalues of the matrices concerned. With this new approach, the study
of the 2× 2 spectral Nevanlinna–Pick problem led them to the introduction
of the symmetrized bidisc G which is defined as:

G := {(s, p) = (z + w, zw) : z, w ∈ D}.
We will denote by

Γ := {(z + w, zw) : z, w ∈ ∆},
the closure of G.

There is a close relationship between the interpolation with target data
in Ω and the interpolation problem with data in G, as stated in the following
theorem:

Theorem 1.1 ([3, Theorem 1.1]). Let λ1, . . . , λn ∈ D be distinct and let
W1, . . . ,Wn ∈ Ω. Suppose that either all or none of W1, . . . ,Wn are scalar
matrices. The following statements are equivalent:

(1) there exists an analytic function F : D→ Ω such that

F (λj) =Wj , j = 1, . . . , n;

(2) there exists an analytic function f : D→ G such that

f(λj) = (tr(Wj), det(Wj)), j = 1, . . . , n.

The study of the hyperbolic geometry of the symmetrized bidisc allows
us to give a full answer to the 2× 2 spectral Nevanlinna–Pick problem with
two interpolating points (see [4], [9] and [11]).

Similarly, Nikolov, Pflug and Thomas have shown in [10] that the inter-
polation problem in Ω3 can be reduced to an interpolating problem on the
symmetrized three-disc.

For the general case, although the solution is not known, some necessary
conditions for the solvability of the spectral Nevanlinna–Pick problem have
been given: see for example [5] and [8].

From now on we consider the case where m = 2. In a recent paper Agler,
Lykova, and Young [2] introduced the class of n-extremal holomorphic maps
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for the interpolation problem into the symmetrized bidisc. Furthermore, they
introduced a sequence of necessary conditions of increasing strength Cν for
the solvability of a given interpolation problem into Γ . In the same paper
they conjectured that Cn−2 is necessary and sufficient for a problem with n
interpolating points to be solvable.

Condition C0 is sufficient for n = 2 and even for some special cases
with n ≥ 2 (see [2, Theorem 4.4]). Some examples where C1 is sufficient
when n = 3 are given in [1]. Our aim is to give a counterexample to the
Γ -interpolation conjecture.

2. The Γ -interpolation conjecture. Let λ1, . . . , λn be n distinct
points in D, let (s1, p1), . . . , (sn, pn) ∈ Γ , and let ν ≥ 0.

The n-Γ -interpolation problem with data (λ, z) where λ = (λ1, . . . , λn),
z = (z1, . . . , zn) and zj = (sj , pj), consists in finding, if possible, an analytic
function h : D → Γ such that h(λj) = (sj , pj) for j = 1, . . . , n, and to give
a criterion that guarantees that such a function exists.

The Cν(λ, z) condition, introduced in [2], is the following: for every
Blaschke product v of degree at most ν, the classical Nevanlinna–Pick data

(2.1) λj 7→ Φ(v(λj), sj , pj), j = 1, . . . , n,

are solvable, where

Φ(z, s, p) :=
2zp− s
2− zs

.

These conditions are necessary for the Γ -interpolation problem.

Theorem 2.1 ([2, Theorem 4.3]). Let λ1, . . . , λn be distinct points in D
and let zj ∈ G for j = 1, . . . , n. If there exists an analytic function h : D→ Γ
such that h(λj) = zj for j = 1, . . . , n, then, for any function v in the Schur
class S, the Nevanlinna–Pick data (2.1) are solvable. In particular, the con-
dition Cν(λ, z) holds for every non-negative integer ν.

The Γ -interpolation conjecture is stated in [2] as follows: condition Cn−2
is necessary and sufficient for the solvability of the n-Γ -interpolation prob-
lem.

We are going to give shortly a counterexample to the 3-Γ -interpolation
conjecture. For this, we need to recall a few results from [5]. Let F : D→ Ω
be holomorphic, fix z0 ∈ D, and denote by b1 the minimal Blaschke product
of F (z0). It is shown in [5, Theorem 1.3] that σ(b1(F (z))/[z, z0]) is a subset
of D for all z ∈ D, and that if it intersects D for some z ∈ D, then it does for
all z ∈ D. In this case we have the following estimate:

(2.2) ∆ρ

(
σ

(
b1(F (z1))

[z1, z0]

)
∩ D, σ

(
b1(F (z2))

[z2, z0]

)
∩ D

)
≤ ρ(z1, z2)1/2
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for any z1, z2 ∈ D\{z0}, where

∆ρ(K1,K2) := max
(
max
z∈K1

min
w∈K2

ρ(z, w),max
z∈K2

min
w∈K1

ρ(z, w)
)

is the Hausdorff distance on compact sets corresponding to ρ (see [5, Corol-
lary 3.1]). By Schur’s algorithm, condition C1 can be translated into a set of
inequalities to be satisfied by the interpolation data. By comparing this to
the necessary condition provided by (2.2), we found the following example
of a 3-Γ -interpolation problem for which C1 holds, but which is not solvable.

Example 2.2. Let

λ0 = 0, λ1 = −0.12 + 0.5i and λ2 = −0.874,

and let
α = −0.32 + 0.15i, β = 0.5 + 0.77i, γ = −0.38;

set s = β + γ and p = βγ. Then the Γ -interpolation problem

(2.3)


0 = λ0 7→ (0, 0),

λ1 7→ (−2α, α2),

λ2 7→ (s, p)

satisfies C1, whereas it is not solvable.

Proof. C1 holds for the Γ -interpolating data (2.3) if and only if for all
z ∈ D the Nevanlinna–Pick interpolating data

(2.4)


λ0 7→ 0,

λ1 7→ α,

λ2 7→ Φ(z, s, p) =
2zp− s
2− zs

are solvable.
First note that |α| < |λ1|. Recall that the Möbius transformation T (z) =

(az+b)/(cz+d)maps the unit disc into the disc with center C = T (−c/d) and
radius R = |ad−bc|/(|d|2−|c|2). Applying this to our Möbius transformation
z 7→ Φ(z, s, p), we find that

sup
|z|=1
|Φ(z, s, p)| = |C|+R = 0.8479 < 0.874 = |λ2|.

In particular, we infer that, for all z ∈ D, we have Φ(z, s, p)/λ2 ∈ D. Thus
applying Schur reduction and the maximum modulus principle we deduce
that (2.4) is solvable for all z ∈ D if and only if

sup
|z|=1

ρ

(
α

λ1
,
Φ(z, s, p)

λ2

)
≤ ρ(λ1, λ2).
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The supremum on the left is sup|z|=1 |T (z)|, where

T (z) :=

[
Φ(z, s, p)

λ2
,
α

λ1

]
=
az + b

cz + d

with a = (−sαλ2−2pλ1)λ1/λ1, b = (2λ2α+sλ1)λ1/λ1, c = −sλ2λ1−2αp and
d = 2λ1λ2 + αs. Again sup|z|=1 |T (z)| for the latter Möbius transformation
is given by

sup
|z|=1
|T (z)| = |C|+R = 0.8792.

This implies that

sup
|z|=1

ρ

(
α

λ1
,
Φ(z, s, p)

λ2

)
= 0.8792 < 0.90 < ρ(λ1, λ2).

Therefore C1 holds for the data (2.3).
It remains to show that the Γ -interpolating problem (2.3) is not solv-

able. By Theorem 1.1, problem (2.3) is equivalent to the following spectral
Nevanlinna–Pick problem:

(2.5)



λ0 7→

(
0 1

0 0

)
=:W0,

λ1 7→

(
−α 1

0 −α

)
=:W1,

λ2 7→

(
β 1

0 γ

)
=:W2.

Note that a necessary and sufficient condition for the solvability of (2.5)
is obtained in [6] by Bercovici. This condition implies a search over four
parameters for the problem (2.5). But for our purpose it is enough to show
that the necessary condition given by (2.2) is not satisfied.

The minimal polynomial of W0 is b1(w) = w2. Suppose (2.5) is solvable.
We observe that σ(W 2

j /−λj) ⊆ D for j = 1, 2, and therefore we must have,
by (2.2), the inequality

∆ρ

(
σ

(
W 2

1

−λ1

)
, σ

(
W 2

2

−λ2

))
≤ ρ(λ1, λ2)1/2.

But direct calculations give

∆ρ

(
σ

(
W 2

1

−λ1

)
, σ

(
W 2

2

−λ2

))
= ∆ρ

({
α2

λ1

}
,

{
β2

λ2
,
γ2

λ2

})
= ρ

(
α2

λ1
,
β2

λ2

)
> 0.9678 > 0.9531 > ρ(λ1, λ2)

1/2.
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3. Concluding remarks

Remark 3.1. The example we give shows that none of the Cn conditions
is sufficient for the solvability of the problem (2.3).

Remark 3.2. As the numbers in Example 2.2 might suggest, this exam-
ple was not easy to find, as the region where the inequalities were incom-
patible was very narrow. This could be an indication that condition C1 is
not far from a sufficient condition. It would be interesting to use the nec-
essary and sufficient criterion of Bercovici to try to identify the extreme
counterexamples.
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