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On a time-dependent subdifferential evolution inclusion
with Carathéodory perturbation

by Soumia Saïdi and Mustapha Fateh Yarou (Jijel)

Abstract. On an infinite-dimensional Hilbert space, we establish the existence of
solutions for some evolution problems associated with time-dependent subdifferential op-
erators whose perturbations are Carathéodory single-valued maps.

1. Introduction. We discuss the existence of solutions of an evolution
inclusion governed by subdifferential operators of the form

(Pf(·,·))

{
−ẋ(t) ∈ ∂ϕ(t, x(t)) + f(t, x(t)) a.e. t ∈ I,
x(T0) = x0 ∈ domϕ(T0, ·),

on an interval I := [T0, T ], where for each t ∈ I, ∂ϕ(t, ·) denotes the sub-
differential of a time-dependent proper lower semicontinuous (lsc) convex
function ϕ(t, ·) defined on a Hilbert space H into R∪{∞}, and domϕ(t, ·) is
the effective domain of the function ϕ(t, ·). The perturbation f : I×H → H
is a Carathéodory single-valued mapping that satisfies the natural growth
condition

‖f(t, x)‖ ≤ β(t)(1 + ‖x‖) ∀(t, x) ∈ I ×H,

with a non-negative function β(·) in L2
R(I).

The existence and uniqueness of solutions for the unperturbed problem

(P)

{
−ẋ(t) ∈ ∂ϕ(t, x(t)) a.e. t ∈ I,
x(T0) = x0 ∈ domϕ(T0, ·),

and the perturbed one

(Ph(·))

{
−ẋ(t) ∈ ∂ϕ(t, x(t)) + h(t),

x(T0) = x0 ∈ domϕ(T0, ·),

2010 Mathematics Subject Classification: Primary 34A60; Secondary 49J53.
Key words and phrases: evolution problem, subdifferential, perturbation, Carathéodory,
absolutely continuous, inf-ball-compact.

DOI: 10.4064/ap114-2-4 [133] c© Instytut Matematyczny PAN, 2015



134 S. Saïdi and M. F. Yarou

with h ∈ L2
H(I), were proved in the early work of Peralba [11, 12] under an

assumption expressed in terms of the conjugate function ϕ∗(t, ·) of the convex
function ϕ(t, ·): there exist a non-negative Lipschitz function k : H → R and
an absolutely continuous function a : I → R with ȧ ∈ L2

R(I) such that for
all x ∈ H and s, t ∈ I,

ϕ∗(t, x) ≤ ϕ∗(s, x) + k(x)|a(t)− a(s)|.
Note that several results are also known under various conditions expressed
in terms of ϕ or the Fenchel conjugate function ϕ∗(t, ·) or the Yosida ap-
proximation of ∂ϕ(t, ·); we refer to [3], [10], and [13].

In Saïdi–Thibault–Yarou [13], we consider a single-valued perturbation
f(·, ·) to (P) with a Lipschitz property with respect to the second variable; we
get existence and uniqueness of an absolutely continuous solution of (Pf(·,·)),
and apply this result to a Bolza type optimal control problem.

A particular case of (Pf(·,·)), called the sweeping process, with ϕ(t, ·)
taken as the indicator function of a closed convex or uniformly r-prox-regular
moving set C(t), has been studied by Castaing–Salvadori–Thibault [7] in
the finite-dimensional setting, and by Edmond–Thibault [9] in the infinite-
dimensional setting. Related results can be found in [10] for the class of
primal lower nice functions ϕ : H → R ∪ {∞}.

The case of a multi-valued perturbation

(PF (·,·))

{
−ẋ(t) ∈ ∂ϕ(t, x(t)) + F (t, x(t)) a.e. t ∈ I,
x(T0) = x0 ∈ domϕ(T0, ·),

has been studied in [3], [5], and [6] for a convex compact valued perturbation
F (·, ·) under a compactness assumption on the sublevel sets of ϕ(t, ·). In
our recent paper [14], this condition on ϕ(t, ·) is replaced by a compactness
condition imposed only on F .

In this paper, just as in [13], we adopt a discretization approach. We
weaken the assumption on f(·, ·), namely the perturbation is assumed to be
only Carathéodory, and we prove an existence result for (Pf(·,·)) under the
hypothesis that ϕ(t, ·) is inf-ball-compact. This condition permits us to ob-
tain the convergence of the approximate sequence via Ascoli’s theorem. The
content of this paper is as follows. In Section 2, we give some preliminaries.
In Section 3, we recall some results obtained in [11, 13] for (P) and (Ph(·)). In
Section 4, we establish the main existence theorem for the problem (Pf(·,·))
under consideration.

2. Notation and preliminaries. Throughout the paper, I := [T0, T ]
is an interval of R, and H is a real Hilbert space whose inner product is
denoted by 〈·, ·〉, and the associated norm by ‖ · ‖. Let ϕ be a lsc convex
function from H into R∪ {∞} which is proper in the sense that its effective
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domain defined by

domϕ = {x ∈ H : ϕ(x) <∞}
is non-empty. As usual, its Fenchel conjugate is defined by

ϕ∗(v) := sup
x∈H

[〈v, x〉 − ϕ(x)].

It is often useful to regularize ϕ via its Moreau envelope

ϕλ(x) := inf
y∈H

[
ϕ(y) +

1

2λ
‖x− y‖2

]
for λ > 0. The family (ϕλ)λ increases when λ ↓ 0 to a proper lsc convex func-
tion ϕ, and hence it epi-converges to ϕ (see [1]). This entails, in particular,
that

(2.1) ϕ(x) ≤ lim inf
λ↓0

ϕλ(xλ)

for any net (xλ)λ in H converging to x.
The Moreau envelope ϕλ is also known to have a Lipschitz continuous

derivative ∇ϕλ.
The subdifferential ∂ϕ(x) of ϕ at x ∈ domϕ is defined by

∂ϕ(x) = {v ∈ H : ϕ(y) ≥ 〈v, y − x〉+ ϕ(x) ∀y ∈ domϕ},
and its effective domain is Dom ∂ϕ = {x ∈ H : ∂ϕ(x) 6= ∅}. It is well known
that if ϕ is a proper lsc convex function, then ∂ϕ is a maximal monotone
operator (see [4]).

The function ϕ is said to be inf-ball-compact if for every r > 0, the set
{x ∈ H : ϕ(x) ≤ r} is ball-compact, i.e., its intersection with any closed ball
in H is compact.

A map f : I ×H → H is said to be Carathéodory if f(t, ·) is continuous
for a.e. t ∈ I, and f(·, x) is measurable for each x ∈ H.

For more details concerning the properties of maximal monotone opera-
tors in Hilbert spaces, we refer to [2, 4]. The basic facts of convex analysis
and measurable multifunctions can be found in [8].

3. Single-valued time-dependent perturbation. We recall here the
existence theorems obtained in [11, 12], along with some results of [13].

Theorem 3.1. Let ϕ : I ×H → R+ ∪ {∞} be such that

(H1) for each t ∈ I, the function x 7→ ϕ(t, x) is proper, lsc, and convex;
(H2) there exist a non-negative ρ-Lipschitz function k : H → R+ and

an absolutely continuous function a : I → R, with a non-negative
derivative ȧ ∈ L2

R(I), such that

(3.1) ϕ∗(t, x) ≤ ϕ∗(s, x) + k(x)|a(t)− a(s)|
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for every (t, s, x) ∈ I×I×H, where ϕ∗(t, ·) is the conjugate function
of ϕ(t, ·) (recalled above).

Then for any fixed x0 ∈ domϕ(T0, ·), the problem (P) has a unique absolutely
continuous solution x(·) on [T0, T ] which satisfies

(3.2) |ϕ(t2, x(t2))− ϕ(t1, x(t1))| ≤
t2�

t1

[
(k(0) + ρ‖ẋ(t)‖)ȧ(t) + ‖ẋ(t)‖2

]
dt

for T0 ≤ t1 ≤ t2 ≤ T. Moreover, x(t) ∈ domϕ(t, ·) for all t ∈ I, and
t 7→ ϕ(t, x(t)) is absolutely continuous on I.

Remark 3.2. The requirement ȧ(·) ≥ 0 in (H2) can be omitted. Indeed,
it is enough to replace a(·) by the (absolutely continuous) function t 7→	t
T0
|ȧ(τ)| dτ whose derivative is non-negative.

Peralba’s method associates with (P) the regularized differential equation

(DEλ)

{
−ẋλ(t) = ∇ϕλ(t, xλ(t)) a.e. t ∈ I,
xλ(T0) = x0,

and shows that the net (xλ(·))λ>0 of solutions of (DEλ) converges uniformly
when λ ↓ 0 to a map x(·) which is an absolutely continuous solution of (P),
and (ẋλ(·))λ converges in norm in L2

H(I) to ẋ(·). Moreover,

‖ẋλ‖2L2
H
≤
√
T − T0 k(0)‖ȧ‖L2

R
(3.3)

+ ρ‖ẋλ‖L2
H
‖ȧ‖L2

R
+ ϕλ(T0, x0)− ϕλ(T, xλ(T )).

Thanks to this inequality, a similar estimate for the derivative of the
solution to the problem (P) can be obtained (see [13, Proposition 3.3]).

Proposition 3.3. The unique absolutely continuous solution x(·) of (P)
satisfies

(3.4) ‖ẋ‖L2
H
≤ ρ

2
‖ȧ‖L2

R

+

[√
T − T0k(0)‖ȧ‖L2

R
+
ρ2

4
‖ȧ‖2L2

R
+ ϕ(T0, x0)− ϕ(T, x(T ))

]1/2
.

Proof. Since (xλ(·))λ converges uniformly to x(·), by (2.1) we have

ϕ(T, x(T )) ≤ lim inf
λ↓0

ϕλ(T, xλ(T )).

Further, the pointwise convergence of (ϕλ(t, ·))λ to ϕ(t, ·) leads to

lim
λ↓0

ϕλ(T0, x0) = ϕ(T0, x0).
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Using these two facts along with the convergence in norm in L2
H(I) of (ẋλ(·))λ

to ẋ(·) recalled above, and taking the upper limit in (3.3), we obtain

‖ẋ‖2L2
H
≤
√
T − T0 k(0)‖ȧ‖L2

R+
+ ρ‖ẋ‖L2

H
‖ȧ‖L2

R+
+ ϕ(T0, x0)− ϕ(T, x(T )),

and this is easily seen to yield the desired estimate.

We recall the extension of Theorem 3.1 to the problem with a time-
dependent perturbation, which is obtained in [13, Proposition 3.4] (see also
[3, Remark 3.7]). Define, for any h : I → H, the function |h| of I into R by
|h|(t) := ‖h(t)‖ for all t ∈ I.

Proposition 3.4. Under the assumptions of Theorem 3.1, if h ∈ L2
H(I)

and x0 ∈ domϕ(T0, ·), then the problem (Ph(·)) admits a unique absolutely
continuous solution x(·) that satisfies

(3.5) ‖ẋ‖L2
H
≤ ρ+ 1

2
‖ȧ+ |h| ‖L2

R
+ ‖h‖L2

H

+

[√
T − T0 k(0)‖ȧ+|h| ‖L2

R
+
(ρ+ 1)2

4
‖ȧ+|h| ‖2L2

R
+ϕ(T0, x0)−ϕ(T, x(T ))

]1/2
and

(3.6) |ϕ(t2, x(t2))− ϕ(t1, x(t1))|

≤
t2�

t1

[
k(0) + (ρ+ 1)‖ẋ(t) + h(t)‖

]
[ȧ(t) + |h|(t)] dt+

t2�

t1

‖ẋ(t) + h(t)‖2 dt

for T0 ≤ t1 ≤ t2 ≤ T.

4. Single-valued “Carathéodory” perturbation. In this section, we
are interested in finding solutions for the problem (Pf(·,·)), where f(·, ·) is a
single-valued Carathéodory map, under a compactness assumption on ϕ.

Theorem 4.1. Assume the assumptions of Theorem 3.1 are satisfied,
and ϕt is inf-ball-compact for a.e. t ∈ I. Let f : I×H → H be a Carathéodory
map such that there exists a non-negative function β(·) ∈ L2

R(I) which sat-
isfies

(4.1) ‖f(t, x)‖ ≤ β(t)(1 + ‖x‖) ∀(t, x) ∈ I ×H.

Then, for each x0 ∈ domϕ(T0, ·), the problem{
−ẋ(t) ∈ ∂ϕ(t, x(t)) + f(t, x(t)) a.e. t ∈ I,
x(T0) = x0,

(4.2)

has at least one absolutely continuous solution x(·).
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Proof. We adopt the same steps and techniques as in [13, proof of The-
orem 4.1]. Suppose first

(4.3)
T�

T0

β2(s) ds < m, m =
1

4(T − T0)(k2(0) + 3(ρ+ 1)2 + 4)
> 0.

(A) Construction of the sequence (xn(·)). For every n ∈ N, define a parti-
tion of I = [T0, T ] by

tni = T0 + i
T − T0
n

(0 ≤ i ≤ n).

Consider first the following differential inclusion on the interval [tn0 , tn1 ]:{
−ẋ(t) ∈ ∂ϕ(t, x(t)) + f(t, x0) a.e. t ∈ [tn0 , t

n
1 ],

x(tn0 ) = x0 ∈ domϕ(T0, ·),

and observe that the map f(·, x0) depends only on t and is in L2
H([t

n
0 , t

n
1 ])

(by the assumption (4.1)). By Proposition 3.4, the last problem has a unique
absolutely continuous solution that we denote by xn0 (·) : [tn0 , t

n
1 ] → H. Ac-

cording to (3.5) this solution satisfies

‖ẋn0‖L2
H
≤ ρ+ 1

2
‖ȧ+ |hn0 | ‖L2

R
+ ‖f(·, x0)‖L2

H
+

[√
tn1 − T0 k(0)‖ȧ+ |h

n
0 | ‖L2

R

+
(ρ+ 1)2

4
‖ȧ+ |hn0 | ‖2L2

R
+ ϕ(T0, x0)− ϕ(tn1 , xn0 (tn1 ))

]1/2
,

where |hn0 | : t 7→ ‖f(t, x0)‖ for all t ∈ [tn0 , t
n
1 ].

Likewise, the differential inclusion{
−ẋ(t) ∈ ∂ϕ(t, x(t)) + f(t, xn0 (t

n
1 )) a.e. t ∈ [tn1 , t

n
2 ],

x(tn1 ) = xn0 (t
n
1 ) ∈ domϕ(tn1 , ·)

has a unique absolutely continuous solution that we denote by xn1 (·) : [tn1 , tn2 ]
→ H with xn1 (tn1 ) = xn0 (t

n
1 ), and it satisfies (3.5).

Similarly, for each n, there exists a finite sequence of absolutely con-
tinuous maps xni (·) : [tni , t

n
i+1] → H (0 ≤ i ≤ n − 1) such that, for each

i ∈ {0, . . . , n− 1},{
−ẋni (t) ∈ ∂ϕ(t, xni (t)) + f(t, xni−1(t

n
i )) a.e. t ∈ [tni , t

n
i+1],

xni (t
n
i ) = xni−1(t

n
i ) ∈ domϕ(tni , ·),
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with

(4.4) ‖ẋni ‖L2
H
≤ ρ+ 1

2
‖ȧ+ |hni | ‖L2

R
+ ‖f(·, xni (tni ))‖L2

H

+

[√
tni+1 − tni k(0)‖ȧ+ |h

n
i |‖L2

R
+

(ρ+ 1)2

4
‖ȧ+ |hni | ‖2L2

R

+ ϕ(tni , x
n
i (t

n
i ))− ϕ(tni+1, x

n
i (t

n
i+1))

]1/2
,

where xn0 (T0) = x0, and |hni | : t 7→ ‖f(t, xni (tni ))‖ for all t ∈ [tni , t
n
i+1].

Define xn : [T0, T ]→ H by

xn(t) = xni (t) ∀t ∈ [tni , t
n
i+1], i ∈ {0, . . . , n− 1}.

Obviously xn(·) is absolutely continuous on [T0, T ], and setting{
θn(T0) = T0,

θn(t) = tni if t ∈ ]tni , t
n
i+1], i ∈ {0, . . . , n− 1},

one has {
−ẋn(t) ∈ ∂ϕ(t, xn(t)) + f(t, xn(θn(t))) a.e. t ∈ [T0, T ],

xn(T0) = x0.

Note that the map f(·, xn(θn(·))) defined for t∈ [T0, T ] belongs to L2
H([T0, T ]),

because by the assumption (4.1) for each i ∈ {0, . . . , n − 1} the map
f(·, xni (tni )) belongs to L2

H([t
n
i , t

n
i+1]). Set

hn(t) = f(t, xn(θn(t))), ∀t ∈ [T0, T ],

|hn| : t 7→ ‖hn(t)‖, ∀t ∈ [T0, T ].

Then, for Ii := [tni , t
n
i+1],

‖ẋn‖L2
H(Ii)

≤ ρ+ 1

2
‖ȧ+ |hn| ‖L2

R(Ii)
+ ‖hn‖L2

H(Ii)

+

[√
tni+1−tni k(0)‖ȧ+ |hn| ‖L2

R(Ii)
+

(ρ+1)2

4
‖ȧ+ |hn| ‖2L2

R(Ii)

+ ϕ(tni , xn(t
n
i ))− ϕ(tni+1, xn(t

n
i+1))

]1/2
.

Observing that√
tni+1 − tni k(0)‖ȧ+ |hn| ‖L2

R(Ii)
= 2
√
tni+1 − tni

(
k(0)

2
‖ȧ+ |hn| ‖L2

R(Ii)

)
≤ (tni+1 − tni ) +

k2(0)

4
‖ȧ+ |hn| ‖2L2

R(Ii)
,
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we then obtain

‖ẋn‖L2
H(Ii)

≤ ρ+ 1

2
‖ȧ+ |hn| ‖L2

R(Ii)
+ ‖hn‖L2

H(Ii)
+

[
(tni+1 − tni )

+
k2(0) + (ρ+ 1)2

4
‖ȧ+ |hn| ‖2L2

R(Ii)
+ ϕ(tni , xn(t

n
i ))− ϕ(tni+1, xn(t

n
i+1))

]1/2
,

and hence

‖ẋn‖2L2
H(Ii)

≤ 2

[
ρ+ 1

2
‖ȧ+ |hn| ‖L2

R(Ii)
+ ‖hn‖L2

H(Ii)

]2
+ 2

[
(tni+1 − tni )

+
k2(0) + (ρ+ 1)2

4
‖ȧ+ |hn| ‖2L2

R(Ii)
+ ϕ(tni , xn(t

n
i ))− ϕ(tni+1, xn(t

n
i+1))

]
.

We may also write

‖ẋn‖2L2
H(Ii)

≤ (ρ+ 1)2‖ȧ+ |hn| ‖2L2
R(Ii)

+ 4‖hn‖2L2
H(Ii)

+ 2
[
(tni+1 − tni )

+ ϕ(tni , xn(t
n
i ))− ϕ(tni+1, xn(t

n
i+1))

]
+
k2(0) + (ρ+ 1)2

2
‖ȧ+ |hn| ‖2L2

R(Ii)
.

Setting

b0 =
1
2(k

2(0) + 3(ρ+ 1)2),

ci = 2
[
(tni+1 − tni ) + ϕ(tni , xn(t

n
i ))− ϕ(tni+1, xn(t

n
i+1))

]
,

one has

(4.5) ‖ẋn‖2L2
H(Ii)

≤ b0‖ȧ+ |hn| ‖2L2
R
+ 4‖hn‖2L2

H
+ ci.

As ‖ȧ+ |hn| ‖2L2
R
≤ 2‖ȧ‖2

L2
R
+ 2‖hn‖2L2

H
, defining σ = 2(b0 + 2) we get

‖ẋn‖2L2
H(Ii)

≤ 2b0‖ȧ‖2L2
R(Ii)

+ σ‖hn‖2L2
H(Ii)

+ ci.

Equivalently,

(4.6)
tni+1�

tni

‖ẋn(t)‖2 dt ≤ 2b0

tni+1�

tni

ȧ2(t) dt+ σ

tni+1�

tni

‖hn(t)‖2 dt+ ci.

Since, by assumption, ‖f(t, x)‖ ≤ β(t)(1 + ‖x‖) for a.e. t ∈ I and for all
x ∈ H, it follows that, for any i ∈ {0, . . . , n− 1},
tni+1�

tni

‖ẋn(t)‖2 dt ≤ 2b0

tni+1�

tni

ȧ2(t) dt+ σ(1 + ‖xn(tni )‖)2
tni+1�

tni

β2(t) dt+ ci

≤ 2b0

tni+1�

tni

ȧ2(t) dt+ σ
(
1 + max

t∈[tni ,tni+1]
‖xn(t)‖

)2 tni+1�

tni

β2(t) dt+ ci.
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By summing these inequalities we get

n−1∑
i=0

tni+1�

tni

‖ẋn(t)‖2 dt ≤ 2b0

T�

T0

ȧ2(t) dt+ σ
(
1 + sup

t∈I
‖xn(t)‖

)2 T�

T0

β2(t) dt+ dn,

where

(4.7) dn :=

n−1∑
i=0

ci = 2
[
T − T0 + ϕ(T0, x0)− ϕ(T, xn(T ))

]
.

As −ϕ(T, xn(T )) ≤ 0 because ϕ is non-negative, setting d := 2(T − T0 +
ϕ(T0, x0)), we may write

T�

T0

‖ẋn(t)‖2 dt ≤ 2b0

T�

T0

ȧ2(t) dt+ 2σ(1 + ‖xn(·)‖2∞)

T�

T0

β2(t) dt+ d,

and hence
T�

T0

‖ẋn(t)‖2 dt ≤ b+ c‖xn(·)‖2∞,(4.8)

where

b = 2b0

T�

T0

ȧ2(t) dt+ 2σ

T�

T0

β2(t) dt+ d and c = 2σ

T�

T0

β2(t) dt.

Using the Cauchy–Schwarz inequality and (4.8), for all s ∈ I we obtain

‖xn(s)− x0‖2 ≤ (s− T0)
s�

T0

‖ẋn(t)‖2 dt ≤ (T − T0)(b+ c‖xn(·)‖2∞),

and hence

‖xn(s)‖2 ≤ 2‖x0‖2 + 2‖xn(s)− x0‖2

≤ 2‖x0‖2 + 2(T − T0)(b+ c‖xn(·)‖2∞).

Consequently, for each n, we get

(1− 2(T − T0)c)‖xn(·)‖2∞ ≤ 2(‖x0‖2 + (T − T0)b).
According to (4.3), that is, 2(T − T0)c < 1, one has, for any t and any
integer n,

‖xn(·)‖∞ ≤M,(4.9)
‖hn(t)‖ = ‖f(t, xn(θn(t)))‖ ≤ β(t)(1 +M),(4.10)

where

M =

[
2(‖x0‖2 + (T − T0)b)

1− 2(T − T0)c

]1/2
.
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From (4.8) and (4.9) one has

(4.11) sup
n∈N

T�

T0

‖ẋn(t)‖2 dt ≤ b+ cM2.

It follows from (4.6) that

n−1∑
i=0

tni+1�

tni

‖ẋn(t)‖2 dt ≤ 2b0

n−1∑
i=0

tni+1�

tni

ȧ2(t) dt+ σ

n−1∑
i=0

tni+1�

tni

‖hn(t)‖2 dt+
n−1∑
i=0

ci.

Thus, according to (4.7), for all n we have

(4.12)
T�

T0

‖ẋn(t)‖2 dt ≤ 2b0

T�

T0

ȧ2(t) dt+ σ

T�

T0

‖f(t, xn(θn(t)))‖2 dt+ dn.

(B) Convergence of the sequence (xn(·)). In view of (4.11),

S = sup
n∈N
‖ẋn‖L2

H([T0,T ]) <∞,

that is, (ẋn)n is bounded in L2
H([T0, T ]). Therefore

‖xn(t)− xn(s)‖ =
∥∥∥t�
s

ẋn(τ) dτ
∥∥∥(4.13)

≤ (t− s)1/2
( T�
T0

‖ẋn(τ)‖2 dτ
)1/2

≤ (t− s)1/2S,

so along with (4.9), the set {(xn(·))n} is bounded and equicontinuous in
CH(I). Thanks to the inequality (3.6), for any fixed t ∈ [T0, T ] and any n,
one has

|ϕ(t, xn(t))− ϕ(T0, x0)| ≤ sup
n∈N

t�

T0

[
k(0) + (ρ+ 1)‖ẋn + hn‖

]
[ȧ+ |hn|]

+ sup
n∈N

t�

T0

‖ẋn + hn‖2 <∞.

Since ϕt is inf-ball-compact by assumption, the set {xn(t) : n ∈ N} is rela-
tively compact in H. By Ascoli’s theorem, we can extract a subsequence of
(xn(·)) that converges uniformly on I to some map x(·) ∈ CH(I).

Recall that (by construction) 0 ≤ t − θn(t) ≤ (T − T0)n−1 for any t ∈
[T0, T ] and any n ∈ N. Consequently, for any T0 ≤ t ≤ T , one has θn(t)→ t.
Then for T0 ≤ s ≤ t ≤ T , letting n → ∞ in (4.13), one easily deduces
that x(·) is actually absolutely continuous on [T0, T ]. Hence, ẋ(·) exists for
a.e. t ∈ [T0, T ], and ẋ(·) ∈ L1

H(I) with x(t) = x(s) +
	t
s ẋ(τ) dτ for any
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T0 ≤ s ≤ t ≤ T . Further, observing that

‖xn(θn(t))− x(t)‖ ≤ ‖xn(θn(t))− xn(t)‖+ ‖xn(t)− x(t)‖
≤ (t− θn(t))1/2S + ‖xn(t)− x(t)‖

and so

‖xn(θn(t))− x(t)‖ ≤ ((T − T0)/n)1/2S + ‖xn(t)− x(t)‖,

we conclude that ‖xn(θn(t))− x(t)‖ → 0 as n→∞ for any t ∈ I.
Thus, the continuity of f(·, ·) with respect to its second variable entails

that, for a.e. t ∈ [T0, T ],

lim
n→∞

‖f(t, xn(θn(t)))− f(t, x(t))‖ = 0,

along with

(4.14) lim
n→∞

T�

T0

‖f(t, xn(θn(t)))− f(t, x(t))‖2 dt = 0,

by Lebesgue’s convergence theorem. Then, of course,

(4.15) lim
n→∞

T�

T0

‖f(t, xn(θn(t)))‖2 dt =
T�

T0

‖f(t, x(t))‖2 dt.

Furthermore, in view of (4.11), up to a subsequence that we do not
relabel, (ẋn)n converges weakly in L2

H([T0, T ]) to some element z. Since
weak convergence in L2 implies weak convergence in L1, we conclude that
z(t) = x(t) for a.e. t, and

(4.16) ẋn → ẋ weakly in L2
H([T0, T ]).

Taking the upper limit in (4.12) as n→∞, and using (4.15) and (4.16) we
obtain

T�

T0

‖ẋ(t)‖2 dt ≤ 2b0

T�

T0

ȧ2(t) dt+ σ

T�

T0

‖f(t, x(t))‖2 dt+ lim sup
n

dn.

Since xn(t)→ x(t), by (4.7) and the lower semicontinuity of ϕ(t, ·), we have

lim sup
n

dn = 2
[
T − T0 + ϕ(T0, x0)− lim inf

n
ϕ(T, xn(T ))

]
≤ 2[T − T0 + ϕ(T0, x0)− ϕ(T, x(T ))].
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Hence,

(4.17)
T�

T0

‖ẋ(t)‖2 dt ≤ α+ σ

T�

T0

‖f(t, x(t))‖2 dt,

where

α = (k2(0) + 3(ρ+ 1)2)

T�

T0

ȧ2(t) dt+ 2
[
T − T0 + ϕ(T0, x0)− ϕ(T, x(T ))

]
.

(C) We prove that x(·) is a solution of (4.2). Recall that, for each n ∈ N,{
−ẋn(t) ∈ ∂ϕ(t, xn(t)) + f(t, xn(θn(t))) a.e. t ∈ [T0, T ],

xn(T0) = x0.

To see that

−ẋ(t) ∈ ∂ϕ(t, x(t)) + f(t, x(t)) a.e. t ∈ [T0, T ],

it is enough to follow the corresponding arguments in [9, proof of Theorem 1].
Now, we address the general case when

	T
T0
β2(s) ds ≥ m. We fix some

δ > 0 such that for each subinterval J of I with length(J) < δ one has	
J β

2(s) ds < m, and we also fix some integer N such that (T − T0)/N < δ.
Set Ti := T0 +

i
N (T − T0) for i = 0, . . . , N , and observe that for each i =

1, . . . , N we have
Ti�

Ti−1

β2(s) ds < m <
1

4(Ti − Ti−1)(k2(0) + 3(ρ+ 1)2 + 4)
,

and hence the condition (4.3) is fulfilled in each interval [Ti−1, Ti]. Con-
sequently, we may apply what precedes to the intervals [T0, T1], [T1, T2],
. . . , and [TN−1, T ], and we obtain absolutely continuous solutions y1(·) on
[T0, T1] with y1(T0) = x0, y2(·) on [T1, T2] with y2(T1) = y1(T1), . . . , yN (·) on
[TN−1, T ] with yN (TN−1) = yN−1(TN−1). So the mapping x(·) from I =
[T0, T ] into H defined by x(t) = yi(t) for all t ∈ [Ti−1, Ti], i = 1, . . . , N, is
obviously an absolutely continuous solution on I of (4.2).

As in [13], we have the following property:

Proposition 4.2. Any absolutely continuous solution x(·) of (4.2) sat-
isfies

(4.18)
T�

T0

‖ẋ(t)‖2 dt ≤ α+ σ

T�

T0

‖f(t, x(t))‖2 dt,

where α and σ are the same constants as defined before. Further,

‖f(t, x(t))‖ ≤ β(t)(1 +K) a.e. t ∈ I,
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and

‖x(·)‖∞ ≤ K and

T�

T0

‖ẋ(t)‖2 dt ≤ α+ σ(1 +K)2
T�

T0

β2(t) dt

with K = ‖x0‖ + [ξ(T )]1/2, where ξ(·) is the increasing, continuous, and
non-negative function defined on [T0, T ] by

ξ(s) = (s− T0)
[
α+ 2σ(1 + ‖x0‖)2

s�

T0

β2(τ) dτ
]

+ 2σ(s− T0)
s�

T0

b(τ)β2(τ) exp
(
2σ

s�

τ

θβ2(θ) dθ
)
dτ.
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