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Blow-up for a localized singular parabolic equation
with weighted nonlocal nonlinear boundary conditions

by Youpeng Chen (Yancheng) and Baozhu Zheng (Xining)

Abstract. This paper deals with the blow-up properties of positive solutions to a lo-
calized singular parabolic equation with weighted nonlocal nonlinear boundary conditions.
Under certain conditions, criteria of global existence and finite time blow-up are estab-
lished. Furthermore, when q = 1, the global blow-up behavior and the uniform blow-up
profile of the blow-up solution are described; we find that the blow-up set is the whole
domain [0, a], including the boundary, in contrast to the case of parabolic equations with
local sources or with homogeneous Dirichlet boundary conditions.

1. Introduction. In this paper we consider the following localized sin-
gular parabolic equation with weighted nonlocal nonlinear boundary condi-
tions:

(1.1)

ut = (xαux)x + up(x0, t), x ∈ (0, a), t > 0,

u(0, t) =

a�

0

f(x)uq(x, t) dx, u(a, t) =

a�

0

g(x)uq(x, t) dx, t > 0,

u(x, 0) = u0(x), x ∈ [0, a],

where 0 ≤ α < 1, a, p and q are positive constants, x0 ∈ (0, a) is a fixed
point, and f(x) and g(x) are continuous, nonnegative and not identically
zero on [0, a].

The equation in (1.1) arises in a large number of physical phenomena.
For example, it can be used to describe the heat conduction related to the
geometric shape of the body with an internal localized source (see [CC] and
the references therein for more details of the physical background). Note
that problem (1.1) is singular and degenerate because the coefficients of ux
and uxx tend respectively to ∞ and 0 as x→ 0.
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Blow-up singularity, as one of the most remarkable properties that dis-
tinguish nonlinear parabolic problems from linear ones, attracted extensive
attention of mathematicians in the past few decades. There are many works
on global existence and blow-up properties of various degenerate and singu-
lar parabolic equations (or systems) with homogeneous Dirichlet boundary
conditions (see [BGC, CLX1, CLX2, LCX, Zh] and the references therein).

On the other hand, parabolic equations with nonlocal (or nonlocal non-
linear) boundary conditions come from applied sciences; for instance, in
the study of heat conduction with thermoelasticity, Day [Da1, Da2] de-
rived a class of heat equations with nonlocal boundary conditions in one-
dimensional space. In this model, the solution u(x, t) describes the en-
tropy of per volume material. Motivated by the work of Day, many math-
ematicians have recently studied the blow-up behavior of different kinds of
parabolic equations with nonlocal boundary conditions. The problem of non-
local boundary conditions in a multidimensional space for linear parabolic
equations of the type

(1.2)

ut −Au = c(x)u, x ∈ Ω, t > 0,

u(x, t) =
�

Ω

K(x, y)u(y, t) dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

with a uniformly elliptic operator A =
∑n

i,j=1 aij(x) ∂2

∂xi∂xj
−
∑n

i=1 bi(x) ∂
∂xi

and c(x) ≤ 0 was studied by Friedman [Fr1]. The global existence and
monotonic decay of the solution of problem (1.2) were obtained under the
condition that

	
Ω |k(x, y)| dy < 1 for all x ∈ ∂Ω. Later, problem (1.2) with

Au replaced by ∆u and the linear term c(x)u replaced by a nonlinear term
g(x, u) was discussed by Deng [De]. A comparison principle and local exis-
tence were established. On the basis of Deng’s work, Seo [Se] investigated the
above problem with g(x, u) = g(u); by using the upper and lower solutions
technique; he obtained a blow-up criterion for positive solutions, and in the
special case g(u) = up or g(u) = eu he also derived blow-up rate estimates.

Parabolic equations with both nonlocal sources and nonlocal boundary
conditions have been studied as well. For example, the problem

(1.3)

ut −∆u =
�

Ω

g(u) dx, x ∈ Ω, t > 0,

u(x, t) =
�

Ω

K(x, y)u(y, t) dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
was studied by Lin and Liu [LL]. They established local existence, global
existence and nonexistence results, and discussed the blow-up properties of
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solutions. For other works on this topic, we refer the readers to [Pa1, Pa2,
WMX, CY, GG1, CL] and the references therein.

However, as far as we know, there are only a few articles concerning the
blow-up behavior of solutions of parabolic equations with nonlocal nonlinear
boundary conditions. Gladkov and Kim [GK1, GK2] considered

(1.4)

ut = ∆u+ c(x, t)up, x ∈ Ω, t > 0,

u(x, t) =
�

Ω

K(x, y, t)ul(y, t) dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where p, l > 0 and Ω is a bounded domain in RN . First, they obtained
uniqueness and nonuniqueness results for local solutions (see [GK2]), then
according to the different behavior of the coefficient function c(x, t) and the
weight function K(x, y, t) as t tends to infinity, they gave some criteria for
solutions of (1.4) to exist globally or to blow up in finite time (see [GK1]).
Recently, Gladkov and Guedda studied problem (1.4) with c(x, t)up replaced
by −c(x, t)up. They proved existence, uniqueness and nonuniqueness results
for local solutions (see [GG3]). What is more, they gave the critical blow-up
exponent (see [GG2]).

The main goal of this paper is to investigate the influence of α, p, q and
the weight functions f(x) and g(x) on the global existence and blow-up
singularity of solutions to problem (1.1). Compared with [GK1] and [LL],
we need more techniques to solve the difficulties, which are produced by the
degeneracy and singularity of problem (1.1) and the appearance of nonlocal
nonlinear boundary conditions. Throughout this paper, we denote

(1.5) B = max
{a�
0

f(x) dx,

a�

0

g(x) dx
}
,

and let λ1 be the first eigenvalue and ξ(x) be the corresponding eigenfunction
of the eigenvalue problem

(1.6) −(xαξx)x = λξ, 0 < x < a; ξ(0) = ξ(a) = 0.

From [CLX1, Mc], we know that the principal eigenvalue λ1 of (1.6) is the

first root of J 1−α
2−α

(
2
√
λ

2−αa
2−α
2

)
, where J 1−α

2−α
is the Bessel function of the first

kind of order 1−α
2−α . In addition, ξ(x) is a positive smooth function in (0, a),

and can be expressed in explicit form as

(1.7) ξ(x) = kx(1−α)/2J 1−α
2−α

(
2
√
λ

2− α
x(2−α)/2

)
,

where k is an arbitrary positive parameter. Here, for the sake of convenience,
we choose k such that

	a
0 ξ(x) dx = 1.
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Before stating our results, we make some assumptions on the weight
functions f(x), g(x) and the initial datum u0.

(H1) f(x), g(x) are continuous and nonnegative on [0, a] with
	a
0 f(x) dx

> 0 and
	a
0 g(x) dx > 0.

(H2) u0 ∈ C2+γ(0, a) ∩ C[0, a] for some γ ∈ (0, 1), u0(x) > 0 in (0, a),
u0(0) =

	a
0 f(x)u0(x) dx and u0(a) =

	a
0 g(x)u0(x) dx.

(H3) (xαu0x)x ≤M in (0, a) for some positive constant M .

Our main results read as follows:

Theorem 1.1. Suppose that f(x), g(x) and u0(x) satisfy (H1) and (H2),
and that max{p, q} ≤ 1; if q = 1, we further assume that B < 1. Then there
exists a global solution u(x, t) of problem (1.1).

Theorem 1.2. Let hypotheses (H1) and (H2) hold and let B < 1. If
min{p, q} > 1 or p > 1, q = 1, and u0(x) is sufficiently small, then there
exists a global solution u(x, t) of problem (1.1).

Remark 1.3. In the case p > 1 and q < 1 (or q > 1 and p ≤ 1), we
guess that there exists a global solution of problem (1.1) for small initial
data, but we cannot prove this with the method of this paper. We hope to
address this question in the future.

Theorem 1.4. Let hypotheses (H1) and (H2) hold, and assume that
max{p, q} > 1.

(i) If q = max{p, q} and g(x) > 0 on [0, a], then the solution of problem
(1.1) blows up in finite time provided that u0(x) is sufficiently large.

(ii) If p = max{p, q} and q ≥ 1, then the solution of problem (1.1) blows
up in finite time provided that u0(x) is sufficiently large.

Theorem 1.5. Let hypotheses (H1), (H2) and (H3) hold, and let p > 1,
q = 1 and B ≤ 1. If the solution u(x, t) of problem (1.1) blows up in finite
time, then the blow-up set of u(x, t) is the whole domain [0, a]. Furthermore,
if we denote the blow-up time of the solution u(x, t) of (1.1) by T ∗, then in
the interior of (0, a),

(1.8) lim
t→T ∗

(T ∗ − t)1/(p−1)u(x, t) = (p− 1)−1/(p−1)

uniformly on any compact subset of (0, a); and on the boundary, we have

(1.9)

lim
t→T ∗

(T ∗ − t)1/(p−1)u(0, t) = (p− 1)−1/(p−1)
a�

0

f(x) dx,

lim
t→T ∗

(T ∗ − t)1/(p−1)u(a, t) = (p− 1)−1/(p−1)
a�

0

g(x) dx.



Blow-up for a localized singular parabolic equation 183

This paper is organized as follows. In Section 2, we show a comparison
principle and local existence. In Section 3, some criteria for a positive so-
lution to exist globally or to blow up in finite time are given. In Section 4,
a global blow-up result and the asymptotic behavior of the blow-up solution
for the special case of p > 1, q = 1, B ≤ 1 are obtained.

2. The comparison principle and local existence. In this section
we first establish a suitable comparison principle, and then state the exis-
tence and uniqueness results for local solutions of problem (1.1). For conve-
nience, we set QT = (0, a) × (0, T ] and QT = [0, a] × [0, T ]. We start with
the definitions of supersolution and subsolution of problem (1.1).

Definition 2.1. A function û(x, t) is called a subsolution of problem
(1.1) in QT if û ∈ C2,1(QT ) ∩ C(QT ) and satisfies

(2.1)

ût ≤ (xαûx)x + ûp(x0, t), (x, t) ∈ QT ,

û(0, t) ≤
a�

0

f(x)û(x, t) dx, t ∈ (0, T ],

û(a, t) ≤
a�

0

g(x)û(x, t) dx, t ∈ (0, T ],

û(x, 0) ≤ u0(x), x ∈ [0, a].

Similarly, ũ ∈ C2,1(QT ) ∩ C(QT ) is called a supersolution of problem (1.1)
if it satisfies all the reversed inequalities in (2.1). We say that u(x, t) is a
solution of problem (1.1) if it is both a subsolution and a supersolution of
problem (1.1).

Before studying our problem, we give the following maximum principle.

Lemma 2.2. Assume that w ∈ C2,1(QT ) ∩ C(QT ) and satisfies

(2.2)

wt − (xαwx)x ≥ c1(x, t)w(x0, t), (x, t) ∈ QT ,

w(0, t) ≥
a�

0

c2(x, t)w(x, t) dx, t ∈ (0, T ],

w(a, t) ≥
a�

0

c3(x, t)w(x, t) dx, t ∈ (0, T ],

w(x, 0) > 0, x ∈ [0, a],

where ci(x, t) (i = 1, 2, 3) is nonnegative and bounded in QT , and ci(x, t) (i =
2, 3) is not identically zero. Then w(x, t) > 0 in QT .

Proof. This can be proved in the same way as [ZK, Lemma 2.1]; we give
the proof for completeness. Since w(x, 0) > 0 and w ∈ C(QT ), there exists
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a constant δ > 0 such that w(x, t) > 0 for (x, t) ∈ [0, a]× [0, δ]. Set

t = sup{t′ ∈ (0, T ] : w(x, t) > 0 for (x, t) ∈ [0, a]× [0, t′]}.
Then t ≥ δ > 0. We claim that t = T . In fact, suppose for contradiction that
t < T ; then w(x, t) > 0 for (x, t) ∈ [0, a]×[0, t) and w(x, t) ≥ 0 for (x, t) ∈ Qt.
Hence there exists some x ∈ [0, a] such that w(x, t) = 0 = inf(x,t)∈Qt

w(x, t).

If (x, t) ∈ Qt, then by the first inequality in (2.2) and the nonnegativity of
c1(x, t) and w(x, t) on Qt, we find that

wt − (xαwx)x ≥ c1(x, t)w(x0, t) ≥ 0, (x, t) ∈ Qt.
Then by the strong maximum principle for parabolic equations (see [Fr2,
Chapter 2, Theorems 1 and 5]), we have w(x, t) ≡ 0 for (x, t) ∈ Qt,
a contradiction. If x = 0 or a, this also leads to a contradiction that

0 = w(0, t) ≥
a�

0

c2(x, t)w(x, t) dx > 0

or

0 = w(a, t) ≥
a�

0

c3(x, t)w(x, t) dx > 0,

due to c2(x, t) and c3(x, t) being nonnegative and not identically zero. This
proves w(x, t) > 0 in QT .

Remark 2.3. If one of the following conditions holds:

(i) c2(x, t) = c3(x, t) ≡ 0 for x ∈ (0, a), t > 0,
(ii) ci(x, t) ≥ 0, x ∈ (0, a), t > 0, i = 2, 3, and max{

	a
0 c2(x, t) dx,	a

0 c3 (x, t) dx} ≤ 1, t > 0,

and w(x, t) satisfies all the inequalities in (2.2) except the third one, which
is replaced by w(x, 0) ≥ 0 on [0, a], then we also have w(x, t) ≥ 0 in QT .

In order to get global existence and finite time blow-up results for prob-
lem (1.1), we still need the following comparison principle which is a direct
consequence of Lemma 2.2 and Remark 2.3.

Lemma 2.4. Assume that ũ ∈ C2,1(QT ) ∩ C(QT ) is a nonnegative su-
persolution of problem (1.1) and û ∈ C2,1(QT ) ∩ C(QT ) is a nonnegative
subsolution of problem (1.1). If min{p, q} ≤ 1, suppose moreover that there
exists a small positive constant η such that ũ(x, t) ≥ η on QT or û(x, t) ≥ η
on QT . And assume that ũ(x, 0) > û(x, 0) on [0, a] or ũ(x, 0) ≥ û(x, 0) on
[0, a] if max{

	a
0 f(x) dx,

	a
0 f(x) dx} ≤ 1. Then ũ(x, t) ≥ û(x, t) on QT .

Local in time existence of a positive classical solution of problem (1.1) can
be obtained by using the regularization method, the representation formula
and the fixed point theorem as in [CLX2, Yi]. By the above comparison
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principle, we can get the uniqueness of the solution to problem (1.1), and
then we have

Theorem 2.5. Let hypotheses (H1) and (H2) hold. Then there exist
T ∗ (0 < T ∗ ≤ ∞) and u ∈ C([0, a]× [0, T ∗))∩C2,1((0, a)× (0, T ∗)) such that
u(x, t) is the unique maximal solution of problem (1.1). If T ∗ <∞, then

lim sup
t→T ∗

max
x∈[0,a]

u(x, t) =∞.

The proof is more or less standard, and is therefore omitted here.

3. Global existence and finite time blow-up criteria. In this sec-
tion, first of all, by constructing some appropriate global supersolutions and
using the comparison principle, we obtain the existence of global solutions
for problem (1.1), and give the proofs of Theorems 1.1 and 1.2, respectively.

Proof of Theorem 1.1. Consider the following boundary value problem
for an ordinary differential equation:

(3.1)

−(xαφ′(x))′ = η0, x ∈ (0, a),

φ(0) =

a�

0

f(x) dx, φ(a) =

a�

0

g(x) dx,

where η0 is a fixed positive constant, and if B = max{
	a
0 f(x) dx,

	a
0 g(x) dx}

< 1, it is small enough so that the solution of problem (3.1) satisfies φ(x) ≤ 1
on [0, a]. We can easily solve this problem and obtain its solution

φ(x) = − η0
2− α

x2−α(3.2)

+

[
aη0

2− α
+

1

a1−α

a�

0

(g(x)− f(x)) dx

]
x1−α +

a�

0

f(x) dx.

According to the elliptic maximum principle (see [Ev, Chapter 2]), we know
that the solution φ(x) of problem (3.1) is positive on [0, a]. Let A1 =
maxx∈[0,a] φ(x) and A2 = minx∈[0,a] φ(x). Then A1 > A2 > 0, and A1 ≤ 1
when B < 1. Set σ = φ(x0)/A2 and choose M sufficiently large such
that M ≥ (A1)

q/(1−q) if q < 1 and Mφ(x) > u0(x) + 1. Set v1(x, t) =
Mφ(x) exp(σt). Then it follows from the choice of M that v1(x, t) ≥ 1 for
all x ∈ [0, a], t ≥ 0 and

(3.3) v1(x, 0) = Mφ(x) > u0(x), x ∈ [0, a].

Noticing that p ≤ 1 and that v1(x, t) ≥ 1 on [0, a] × [0,∞), it follows from
(3.1) and the choice of σ that

(3.4) v1t − (xαv1x)x − vp1(x0, t) = σv1 +Mη0 exp(σt)−Mpφp(x0) exp(pσt)

≥ σv1 − v1φ(x0)A
−1
2 ≥ 0, x ∈ (0, a), t > 0.



186 Y. P. Chen and B. Z. Zheng

On the other hand, again utilizing (3.1) and the fact that v1(x, t) ≥ 1 on
[0, a]× [0,∞), noting the choice of M for q < 1, and noting that B < 1 and
φ(x) ≤ 1 on [0, a] for q = 1, we obtain

(3.5)

v1(0, t) = Mφ(0) exp(σt) = M

a�

0

f(x) dx exp(σt)

≥


M qAq1

a�

0

f(x) dx exp(qσt) if q < 1,

M

a�

0

f(x)φ(x) dx exp(σt) if q = 1

≥
a�

0

f(x)vq1(x, t) dx, t > 0.

Similarly, we can also obtain

(3.6) v1(a, t) ≥
a�

0

g(x)vq1(x, t) dx, t > 0.

From (3.3)–(3.6), we know that v1(x, t) is a global supersolution of problem
(1.1). Noticing v1(x, t) ≥ 1 on [0, a] × [0,∞) and (3.3), by the comparison
principle (Lemma 2.4), we get the global existence result for problem (1.1).

In order to prove Theorem 1.2, we first give the following lemma.

Lemma 3.1. Let hypothesis (H1) hold, and assume that

(3.7)

a�

0

f(x)x1−α dx
[ a�
0

g(x) dx− 1
]

6=
[ a�
0

g(x)x1−α dx− a1−α
][ a�

0

f(x) dx− 1
]
.

Then there exists a unique solution to the elliptic problem

(3.8)

−(xαψ′(x))′ = 1, x ∈ (0, a),

ψ(0) =

a�

0

f(x)ψ(x) dx, ψ(a) =

a�

0

g(x)ψ(x) dx.

Moreover, if max{
	a
0 f(x) dx,

	a
0 g(x) dx} < 1, then ψ(x) is positive.

Proof. It is easy to verify that

ψ(x) = − 1

2− α
x2−α + c1x

1−α + c2

is the general solution of the equation in (3.8). Substituting this expression
into the boundary conditions in (3.8), and noting condition (3.7), we can
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determine the constants c1 and c2 uniquely, and therefore under condition
(3.7), there exists a unique solution ψ(x) to problem (3.8). Furthermore, if
max{

	a
0 f(x) dx,

	a
0 g(x) dx} < 1, then condition (3.7) holds, so according to

the elliptic maximum principle (see [Ev, Chapter 2]), the solution ψ(x) of
problem (3.8) is unique and positive on [0, a].

Proof of Theorem 1.2. Let ψ(x) be a solution of problem (3.8). From
Lemma 3.1 we know that under the hypothesis

B = max
{a�
0

f(x) dx,

a�

0

g(x) dx
}
< 1

in the theorem, ψ(x) is unique and positive on [0, a]. Let K1=maxx∈[0,a] ψ(x)
and K2 = minx∈[0,a] ψ(x). Then K1 > K2 > 0. Let

M = min{ψ(x0)
−p/(p−1),K−11 },

and set

(3.9) v2(x, t) = Mψ(x).

Noting that M ≤ ψ(x0)
−p/(p−1), for x ∈ Ω and t > 0 we have

(3.10) v2t − (xαv2x)x − vp2(x0, t) = M −Mpψp(x0) ≥ 0.

On the other hand, since ψ(x) is the solution of problem (3.8) and Mψ(x)
≤ 1, we have

(3.11)

v2(0, t) = Mψ(0) = M

a�

0

f(x)ψ(x) dx ≥
a�

0

f(x)vq2(x, t) dx,

v2(a, t) = Mψ(a) = M

a�

0

g(x)ψ(x) dx ≥
a�

0

g(x)vq2(x, t) dx.

Then from (3.10) and (3.11) we deduce that v2(x, t) is a supersolution of
problem (1.1) provided that u0(x) ≤ Mψ(x). Since v2(x, t) ≥ MK2 > 0,
v2(x, 0) ≥ u0(x), B < 1, and v2(x, t) exists globally, from Lemma 2.4 we
find that u(x, t) ≤ v2(x, t). Thus u(x, t) exists globally.

Next, by using a slight variant of the eigenfunction method (Kaplan’s
method), introduced by Kaplan [Ka], we will discuss the blow-up in finite
time for problem (1.1) with max{p, q} > 1 and sufficiently large initial data.

Proof of Theorem 1.4. Let ξ(x) be the first eigenfunction of the eigen-
value problem (1.6) whose expression is given by (1.7).

Case (i): q = max{p, q} > 1 and g(x) > 0 on [0, a]. Set U(t) =	a
0 u(x, t)ξ(x) dx. Multiplying both sides of the equation in problem (1.1)

by ξ(x), and integrating the resulting equation over [0, a] with respect to x,
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we get

U ′(t) =

a�

0

[(xαux)x + up(x0, t)]ξ(x) dx

≥ −λ1U(t) + up(x0, t)− aαξx(a)

a�

0

g(x)uq(x, t) dx, t > 0,

where λ1 is the first eigenvalue of (1.6). As ξx(a) < 0, using Jensen’s in-
equality, from the above inequality we get

U ′(t) ≥ −λ1U(t)−
aαξx(a) minx∈[0,a] g(x)

maxx∈[0,a] ξ(x)

a�

0

uq(x, t)ξ(x) dx(3.12)

≥ −λ1U(t)−
aαξx(a) minx∈[0,a] g(x)

maxx∈[0,a] ξ(x)
U q(t).

Denote C0 = −aαξx(a) minx∈[0,a] g(x)/maxx∈[0,a] ξ(x). Then C0 > 0. Solving
inequality (3.12), we obtain

(3.13) U(t) ≥
{

λ1

C0 − [C0 − λ1U1−q(0)]eλ1(q−1)t

}1/(q−1)
.

From (3.13), we see that if

(3.14) U(0) =

a�

0

u0(x)ξ(x) dx >

(
λ1
C0

)1/(q−1)
,

then limt→T ∗
U
U(t) =∞, where

(3.15) T ∗U ≤
1

λ1(q − 1)
ln

C0U
q−1(0)

C0U q−1(0)− λ1
.

Therefore the solution u(x, t) of problem (1.1) blows up in finite time in the
case q = max{p, q} > 1 provided the initial data u0(x) is sufficiently large
so that (3.14) holds.

Case (ii): p = max{p, q}>1 and q≥1. Let C1 = ξp(x0)/maxx∈[0,a] ξ(x).
Then C1 > 0. Let h(t) be the solution of the ordinary differential equation

(3.16)
h′(t) + λ1h(t)− C1h

p(t) = 0, t > 0,

h(0) = (2λ1/C1)
1/(p−1).

By solving this problem, we can easily get the expression of h(t):

(3.17) h(t) =

[
C1

λ1
−
(
C1

λ1
− h1−p(0)

)
eλ1(p−1)t

]−1/(p−1)
.

Since h(0) = (2λ1/C1)
1/(p−1), C1/λ1 − h1−p(0) = C1/λ1 − C1/(2λ1) =

C1/(2λ1) > 0, we know that h(t) is increasing in t and blows up in finite
time T ∗h = ln 2

λ1(p−1) .
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Let v3(x, t) = ξ(x)h(t). Then

(3.18)

v3t(x, t)− (xαv3x(x, t))x − vp3(x0, t)

= ξ(x)h′(t) + λ1ξ(x)h(t)− ξp(x0)hp(t)
≤ max

x∈[0,a]
ξ(x)(h′(t) + λ1h(t))− ξp(x0)hp(t)

= 0, x ∈ (0, a), t > 0,

v3(0, t) = 0 ≤
a�

0

f(x)vq3(x, t) dx, t > 0,

v3(a, t) = 0 ≤
a�

0

g(x)vq3(x, t) dx, t > 0.

We see from the above inequalities that if u0(x) > h(0)ξ(x) on [0, a], then
v3(x, t) is a subsolution of problem (1.1). Utilizing the comparison principle
(Lemma 2.4), we know that the solution u(x, t) of problem (1.1) satisfies
u(x, t) ≥ v3(x, t) for x ∈ [0, a], t > 0. Hence u(x, t) blows up in finite time.
This completes the proof of Theorem 1.4.

4. The blow-up set and the uniform blow-up profile. In this sec-
tion we discuss the blow-up set and the uniform blow-up profile of the blow-
up solution of problem (1.1), and give the proof of Theorem 1.5. Throughout
this section we assume that p > 1, q = 1 and

B = max
{a�
0

f(x) dx,

a�

0

g(x) dx
}
≤ 1.

From Theorem 1.4, we see that the solution u(x, t) of problem (1.1) blows
up in finite time for large initial data. We denote by T ∗ the blow-up time of
the blow-up solution u(x, t) of problem (1.1) and write v ∼ w for

lim
t→T ∗

v(t)

w(t)
= 1.

First, we give the following two preliminary lemmas.

Lemma 4.1. Let hypotheses (H1), (H2) and (H3) hold, assume that p > 1,
q = 1, B ≤ 1 and that u(x, t) is the blow-up solution of problem (1.1). Then
(xαux)x ≤ M in (0, a) × (0, T ∗), where M is the positive constant given in
hypothesis (H3).

Proof. Set v(x, t) = (xαux(x, t))x−M . Then the equation in (1.1) yields

(4.1) vt − (xαvx)x = 0, (x, t) ∈ (0, a)× (0, T ∗).
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On the other hand, by using the assumption B ≤ 1, we have

lim
x→0

v(x, t) = ut(0, t)− up(x0, t)−M =

a�

0

f(x)ut(x, t) dx− up(x0, t)−M

=

a�

0

f(x)v(x, t) dx+
( a�

0

f(x) dx− 1
)

[up(x0, t) +M ]

≤
a�

0

f(x)v(x, t) dx

and

v(a, t) =

a�

0

g(x)ut(x, t) dx− up(x0, t)−M

=

a�

0

g(x)v(x, t) dx+
( a�

0

g(x) dx− 1
)

[up(x0, t) +M ]

≤
a�

0

g(x)v(x, t) dx.

Since v(x, 0) = (xαu0x(x))x −M ≤ 0 in (0, a), by the maximum principle,
v(x, t) ≤ 0 in (0, a) × (0, T ∗). (Notice that equations (4.1) and (1.1) are
degenerate and singular at x = 0. However, we can always approximate them
with regular parabolic equations, and then apply the maximum principle;
see [GH, Lemma 2.1 and its proof].) That is, (xαux(x, t))x ≤ M in (0, a)×
(0, T ∗).

Set

(4.2) h(t) = up(x0, t), H(t) =

t�

0

h(s) ds.

Then we have

Lemma 4.2. Under the assumptions of Lemma 4.1, we have

lim
t→T ∗

h(t) = lim
t→T ∗

H(t) =∞,

and there exists a positive constant C2 such that

(4.3) u(x0, t) ≥ C2(T
∗ − t)−1/(p−1), t ∈ (0, T ∗).

That is, x0 is a blow-up point of the blow-up solution u(x, t) of problem (1.1).

Proof. Noting (4.2) and integrating the equation in (1.1) over (0, t), we
get

u(x, t) = u0(x) +

t�

0

(xαux(x, t))x dt+H(t), (x, t) ∈ (0, a)× (0, T ∗).
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In view of Lemma 4.1, we have

(4.4) u(x, t) ≤ C3 +H(t), (x, t) ∈ (0, a)× (0, T ∗),

where C3 = maxx∈[0,a] u0(x) +MT ∗. As lim supt→T ∗ maxx∈[0,a] u(x, t) =∞,
the above inequality ensures that limt→T ∗ H(t) = ∞. Since T ∗ < ∞, from
the definition of H(t) in (4.2) we find that limt→T ∗ h(t) =∞.

To show the second conclusion, by applying Lemma 4.1 to equation (1.1)
we get

(4.5) ut(x0, t) ≤M + up(x0, t), (x, t) ∈ (0, a)× (0, T ∗).

From the definition of h(t) and limt→T ∗ h(t) = ∞ we infer that
limt→T ∗ u(x0, t) = ∞. Utilizing hypotheses (H1) and (H2), we find that
u0(x) > 0 on [0, a], and therefore there exists a positive constant K such that
M ≤ Kup(x0, t). Integrating (4.5) over (t, T ∗) and noting limt→T ∗ u(x0, t)
=∞, we get

u(x0, t) ≥ C2(T
∗ − t)−1/(p−1), t ∈ (0, T ∗),

where C2 = [(K + 1)(p− 1)]−1/(p−1).

In order to get the global blow-up result, we transfer problem (1.1) via

(4.6) u(x, t) = w(z, t), x = [(1− α)z]1/(1−α)

to a new problem

(4.7)

wt − d0z−γwzz = h(t), (z, t) ∈ (0, l)× (0, T ∗),

w(0, t) =

l�

0

f1(z)w(z, t) dz, w(l, t) =

l�

0

g1(z)w(z, t) dz, t ∈ (0, T ∗),

w(z, 0) = w0(z), z ∈ [0, l],

where d0 = (1−α)−γ , γ = α
1−α , l = 1

1−αa
1−α, w0(z) = u0(((1−α)z)1/(1−α)),

f1(z)=f(((1−α)z)1/(1−α))[(1−α)z]γ , g1(z)=g(((1−α)z)1/(1−α))[(1−α)z]γ

and h(t) is given by (4.2). It is obvious that
	l
0 f1(z) dz =

	a
0 f(x) dx and	l

0 g1(z) dz =
	a
0 g(x) dx. Consider the following eigenvalue problem:

(4.8) −(z−γϕ(z))′′ = µϕ(z), z ∈ (0, l); ϕ(0) = ϕ(l) = 0.

On setting ϕ(z) = zγ+1/2η(y), z = y2/(2+γ), the above problem becomes

(4.9)
y2η′′(y) + yη′(y) +

[
4µy2

(2 + γ)2
− 1

(2 + γ)2

]
η(y) = 0, y ∈ (0, b),

η(0) = η(b) = 0,

where b = l(2+γ)/2. Equation (4.9) is a Bessel equation, its general solution
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is given by

η(y) = AJ1/(2+γ)

(
2
√
µ

2 + γ
y

)
+BJ−1/(2+γ)

(
2
√
µ

2 + γ
y

)
.

Let µ1 be the first root of J1/(2+γ)
(2√µ
2+γ b

)
= 0; by McLachlan [Mc, pp. 29

and 75], it is positive. It is obvious that µ1 is the first eigenvalue of problem
(4.8); also we can easily obtain the corresponding eigenfunction

(4.10) ϕ1(z) = kzγ+1/2J1/(2+γ)

(
2
√
µ1

2 + γ
z(2+γ)/2

)
which is positive for z ∈ (0, l), where k > 0 is chosen so that

	l
0 ϕ1(z) dz = 1.

Now we can give the proof of Theorem 1.5.

Proof of Theorem 1.5. Define I(t) =
	t
0H(s) ds, v(z, t) = H(t)− w(z, t)

and

(4.11) β(t) =

l�

0

v(z, t)ϕ1(z) dz, t ∈ (0, T ∗),

where w(z, t) is given by (4.6) and it satisfies (4.7), µ1 and ϕ1(z) are the first
eigenvalue and the corresponding eigenfunction of the eigenvalue problem

(4.8), and ϕ1(x) is given by (4.10) and satisfies
	l
0 ϕ1(z) dz = 1. Then by

(4.7) and (4.8), and using the known facts that w(z, t) ≥ 0 on [0, a]× [0, T ∗),
(z−γϕ1(z))

′|z=0 ≥ 0 and (z−γϕ1(z))
′|z=l ≤ 0, we obtain

β′(t) =

l�

0

(h(t)− wt(z, t))ϕ1(z) dz =

l�

0

−d0z−γwzz(z, t)ϕ1(z) dz

= −d0
l�

0

w(z, t)(z−γϕ1(z))
′′ dz + d0w(z, t)(z−γϕ1(z))

′|l0

≤ d0µ1
l�

0

w(z, t)ϕ1(z) dz = −d0µ1β(t) + d0µ1H(t), t ∈ (0, T ∗).

Integrating the above inequality over (0, t) and noting that

β(0) =

l�

0

v(z, 0)ϕ1(z) dz = −
l�

0

w0(z)ϕ1(z) dz ≤ 0,

we get

β(t) ≤ β(0)e−d0µ1t + d0µ1

t�

0

ed0µ1(s−t)H(s) ds(4.12)

≤ d0µ1I(t), t ∈ (0, T ∗).



Blow-up for a localized singular parabolic equation 193

On the other hand, (4.4) implies that

inf
z∈(0,l)

v(z, t) = inf
z∈(0,l)

(H(t)− w(z, t)) = inf
x∈(0,a)

(H(t)− u(x, t))(4.13)

≥ −C3, t ∈ (0, T ∗).

Combining (4.12) and (4.13), we obtain

(4.14)

l�

0

|v(z, t)|ϕ(z) dz ≤ C4(1 + I(t)), t ∈ (0, T ∗),

where C4 = max{2C3, d0µ1} is a positive constant.

In view of Lemma 4.1, we have

(xαux(x, t))x ≤M in (0, a)× (0, T ∗).

Then it follows from the transformation (4.6) that

d0z
−γwzz(z, t) ≤M, (z, t) ∈ (0, l)× (0, T ∗).

Therefore

(4.15) vzz(z, t) = −wzz(z, t) ≥ −C5, (z, t) ∈ (0, l)× (0, T ∗),

where C5 = (M/d0)l
γ . For any subset [c, d] ⊂ (0, a), let l1 = 1

1−αc
1−α and

l2 = 1
1−αd

1−α; then [l1, l2] ⊂ (0, l). Let r = 1
2 min{l1, l− l2}; then r > 0. For

any fixed x ∈ [c, d], let z = 1
1−αx

1−α; then z ∈ [l1, l2]. We define

(4.16) ζ(y, t) = v(y, t) +
C5

2
(y − z)2, (y, t) ∈ (z − r, z + r)× (0, T ∗).

Then by (4.15), we get

ζyy(y, t) ≥ 0, (y, t) ∈ (z − r, z + r)× (0, T ∗).

The mean-value inequality for subharmonic functions yields

v(z, t) = ζ(z, t) ≤ 1

2r

z+r�

z−r
ζ(y, t) dy.

Then

(4.17) v(z, t) ≤ 1

2r

( z+r�

z−r
v(y, t) dy +

C5

3
r3
)
, t ∈ (0, T ∗).

From (4.10), there exists a positive constant C6 such that

inf
y∈[l1−r,l2+r]

ϕ1(y) ≥ C6r
γ+1.



194 Y. P. Chen and B. Z. Zheng

This together with (4.17) and (4.14) implies that

v(z, t) ≤ 1

2r

( z+r�

z−r
|v(y, t)| dy +

C5

3
r3
)

(4.18)

≤ 1

2r

(
1

C6
r−γ−1

z+r�

z−r
|v(y, t)|ϕ1(y) dy +

C5

3
l3
)

≤ C7r
−γ−2

( l�

0

|v(y, t)|ϕ1(y) dy + 1
)

≤ C8r
−γ−2(1 + I(t)), t ∈ (0, T ∗),

where C7 = max
{

1
2C6

, C5
6 l

γ+4
}

and C8 = C7(C4 + 1).

Since I(t) > 0 for t ∈ (0, T ∗), combining (4.4) with (4.18) we obtain

− C3

H(t)
≤ 1− u(x, t)

H(t)
= 1− w(z, t)

H(t)
≤ C8r

−γ−2 1 + I(t)

H(t)

for t ∈ (0, T ∗). Using the conclusion H(t) → ∞ as t → T ∗ of Lemma 4.2
and the fact that T ∗ < ∞, we get limt→T ∗ I(t)/H(t) = 0. Then by the
arbitrariness of x ∈ [c, d], we deduce that

lim
t→T ∗

u(x, t)

H(t)
= 1

uniformly on any compact subset [c, d] of (0, a). Then we have

H ′(t) = h(t) = up(x0, t) ∼ Hp(t) as t→ T ∗.

Therefore

lim
t→T ∗

u(x, t)(T ∗−t)1/(p−1) = lim
t→T ∗

‖u(·, t)‖∞(T ∗−t)−1/(p−1) = (p−1)−1/(p−1)

uniformly on any compact subset [c, d] of (0, a). Utilizing hypothesis (H1),
the above equality and Lebesgue’s convergence theorem, we also obtain

lim
t→T ∗

(T ∗ − t)1/(p−1)u(0, t) =

a�

0

f(x) lim
t→T ∗

(T ∗ − t)1/(p−1)u(x, t) dx

= (p− 1)−1/(p−1)
a�

0

f(x) dx,

lim
t→T ∗

(T ∗ − t)1/(p−1)u(a, t) =

a�

0

g(x) lim
t→T ∗

(T ∗ − t)1/(p−1)u(x, t) dx

= (p− 1)−1/(p−1)
a�

0

g(x) dx.
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All these show that the blow-up set of the blow-up solution u(x, t) is the
whole domain [0, a], including the boundaries. This differs from the case
of parabolic equations with local sources or with homogeneous Dirichlet
boundary conditions. The proof of Theorem 1.5 is complete.
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