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Strict plurisubharmonicity of Bergman kernels on
generalized annuli

by Yanyan Wang (Shanghai)

Abstract. Let Aζ = Ω− ρ(ζ) ·Ω be a family of generalized annuli over a domain U .
We show that the logarithm of the Bergman kernel Kζ(z) of Aζ is plurisubharmonic
provided ρ ∈ PSH(U). It is remarkable that Aζ is non-pseudoconvex when the dimension
of Aζ is larger than one. For standard annuli in C, we obtain an interesting formula for
∂2 logKζ/∂ζ∂ζ̄, as well as its boundary behavior.

1. Introduction and results. In 2004, F. Maitani and H. Yamaguchi
[MY] brought a new viewpoint by studying the variation of the Bergman
metrics on the Riemann surfaces. Let us briefly recall their results.

Let B be a disk in the complex ζ-plane, D be a domain in the product
space B × Cz, and π be the first projection from B × Cz to B, which is
proper and smooth. Let Dζ = π−1(ζ) be a domain in Cz. Let Kζ denote the
Bergman kernel of Dζ . Set ∂D =

⋃
ζ∈B(ζ, ∂Dζ).

Theorem 1.1 ([MY]). If D is a pseudoconvex domain over B×Cz with
smooth boundary, then logKζ(z) is plurisubharmonic on D.

Theorem 1.2 ([MY]). If D is a pseudoconvex domain over B × Cz
with smooth boundary, and for each ζ ∈ B, ∂D has at least one strictly
pseudoconvex point, then logKζ(z) is strictly plurisubharmonic on D.

In 2006, B. Berndtsson [B] made a striking generalization of Theorem 1.1
to higher-dimensional case, by using Hörmander’s L2-estimates for ∂̄:

Theorem 1.3 ([B]). Let D be a pseudoconvex domain in Ckζ ×Cnz and φ
a plurisubharmonic function on D. For each ζ, let Dζ denote the n-dimen-
sional slice Dζ := {z ∈ Cn : (ζ, z) ∈ D} and φζ the restriction of φ to Dζ .

Let Kζ(z) be the Bergman kernel of the Bergman space H2(Dζ , e
−φζ ). Then

logKζ(z) is plurisubharmonic or identically equal to −∞ on D.
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The above mentioned works rely heavily upon the pseudoconvexity of the
total space D. In this paper, we obtain the plurisubharmonicity of logKζ(z)
for certain non-pseudoconvex domains.

We consider the following family of generalized annuli:

Aζ = Ω −Ωζ ,

where Ω ⊂ Cn is a bounded complete circular domain and

Ωζ = ρ(ζ) ·Ω := {ρ(ζ)z : z ∈ Ω}

with 0 < ρ < 1 being an upper semicontinuous function on a domain U
in Cm. Let Kζ(z) denote the Bergman kernel of Aζ .

Main Theorem 1.4. If n ≥ 2 and ρ ∈ PSH(U), then logKζ(z) is a
plurisubharmonic function on U ×Ω. Furthermore, if ρ is strictly plurisub-
harmonic on U , then logKζ(z) is strictly plurisubharmonic on U ×Ω.

The plurisubharmonicity of logKζ(z) does not imply the pseudoconvex-
ity of the total space even when the slices are planar domains. A simple
example may be constructed as follows: let D = D2 − Γf , where f is a
non-holomorphic continuous self-map of the unit disc D and Γf is the graph
of f . Since logKζ(z) = logKD(z), it is naturally plurisubharmonic, yet D is
not pseudoconvex, in view of the theorem of Hartogs on holomorphicity of
pseudoconcave continuous graphs. Nevertheless, it is still worthwhile to ask
the following question:

Question 1.5. Suppose D is a bounded domain over U × C where U is a
domain in C. Let Kζ denote the Bergman kernel of the slice Dζ , and suppose
logKζ(z) is a plurisubharmonic function on D. Under which conditions is
D pseudoconvex?

It is the case when Kζ(z) → ∞ as z → ∂Dζ (note that logKζ(z) is
plurisubharmonic, in particular, upper semicontinuous on D). We remind
the readers that Zwonek [Z] gave a complete characterization of Bergman
exhaustiveness of bounded planar domains in terms of log capacities.

For standard annuli, i.e., Ω is the unit disc D, U is the punctured disc D∗,
and ρ(ζ) = |ζ|, we have an interesting formula for ∂2 logKζ/∂ζ∂ζ̄:

Main Theorem 1.6.

∂2 logKζ(z)

∂ζ∂ζ
= e2ω1

(2P(u)− P(ω1) + c)(P(ω1) + c)

4ω2
1(P(u) + c)2

,

where u = −2 log |z|, ω1 = − log |ζ|, c(ω1) = ζ(ω1)/ω1, P(·) is the Weier-
strass elliptic function with periods 2ω1 and 2πi, and ζ(·) is the Weierstrass
zeta function.
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As a consequence, we obtain

Corollary 1.7. ∂2 logKζ(z)/∂ζ∂ζ → 0 as D 3 (ζ, z) → ∂D in a
non-trivial way, that is, at first ζ → ζ0, then z → ∂Aζ0.

2. Proof of Main Theorem 1.4. It is well-known that every holomor-
phic function f on a bounded complete circular domain Ω admits a power
series expansion as follows:

f(z) =
∑
j≥0

pj(z),

where pj(z) is a holomorphic polynomial of degree j, in the sense of lo-
cally uniform convergence. Thus the Bergman space H2(Ω) of Ω admits a
complete orthogonal basis

pj1 , . . . , pjmj ∈ Lj , j = 0, 1, . . . ,

where Lj is the linear space spanned by homogeneous polynomials of de-
gree j, and mj = dimC Lj . Since

�

Ωζ

pj,rpk,s = ρ(ζ)2j+2k+2n
�

Ω

pj,rpk,s = 0

for any pair (j, r) 6= (k, s), it follows that
�

Aζ

pj,rpk,s =
�

Ω

pj,rpk,s −
�

Ωζ

pj,rpk,s = 0.

By Hartogs’ extension theorem, every holomorphic function on Aζ can be
extended to a holomorphic function on Ω. Thus

(2.1) Kζ(z) =
∞∑
j=0

mj∑
r=1

cj,r|pj,r(z)|2,

where

c−1j,r =
�

Aζ

|pj,r(z)|2 =
�

Ω

|pj,r(z)|2 −
�

Ωζ

|pj,r(z)|2 = 1− ρ(ζ)2j+2n.

That is,

(2.2) Kζ(z) =
∞∑
j=0

mj∑
r=1

|pj,r(z)|2

1− ρ(ζ)2j+2n

for any z ∈ Aζ . Set

Kk
ζ (z) =

k∑
j=0

mj∑
r=1

|pj,r(z)|2

1− ρ(ζ)2j+2n
.
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Since Kk
ζ ∈ PSH(Ω), we infer from the maximum principle that

max
z∈M

Kk
ζ (z) ≤ max

z∈∂G
Kk
ζ (z) ≤ max

z∈∂G
Kζ(z),

where M is a compact set whose interior contains Ωζ and G is a domain
such that M ⊂ G ⊂⊂ Ω. It follows immediately that the power series (2.2)
converges uniformly on compact subsets of Ω, so that Kζ can be extended
to a smooth real function on U ×Ω. It is easy to verify that

uj(ζ, z) = log

mj∑
r=1

|pj,r(z)|2 − log(1− ρ(ζ)2j+2n)

is a plurisubharmonic function on Ω. Since

(2.3) Kk
ζ (z) =

k∑
j=0

euj(ζ,z)

and

χ(t0, . . . , tk) := log(et0 + · · ·+ etk)

is a convex function which is non-decreasing in each tj , we conclude that
logKk

ζ (z) is plurisubharmonic on U × Ω (see [D, Theorem 4.16]). Since

{logKk
ζ (z)}∞k=0 is an increasing sequence of plurisubharmonic functions on

U × Ω whose limit is the continuous function logKζ(z), it follows that
logKζ(z) has to be plurisubharmonic on U ×Ω.

Now suppose ρ is strictly plurisubharmonic on U . Without loss of gen-
erality, we may assume that the volume of Ω equals 1. Then

u0(ζ, z) = u0(ζ) = − log(1− ρ(ζ)2n)

is also strictly plurisubharmonic on U . Since χ is convex and non-decreasing
in each tj ,

∂∂̄ logKk
ζ (z) ≥ eu0

Kk
ζ (z)

∂∂̄u0(ζ).

Letting k →∞ we get

∂∂̄ logKζ(z) ≥
eu0

Kζ(z)
∂∂̄u0(ζ),

so that for every ξ = (ξ1, . . . , ξm, ξm+1, . . . , ξm+n) with (ξ1, . . . , ξm) 6= 0, the
Levi form satisfies L(logKζ(z); ξ) > 0. Moreover, for every non-zero vector
ξ = (0, . . . , 0, ξm+1, . . . , ξm+n), we have

L(logKζ(z); ξ) =
n∑

α,β=1

∂2 logKζ(z)

∂zj∂z̄k
ξm+αξm+β > 0.

Thus logKζ(z) is strictly plurisubharmonic on U ×Ω.
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Remark. Since logKζ(0) = u0(ζ), we conclude that logKζ(z) will not
be plurisubharmonic on U ×Ω if u0(ζ) is not plurisubharmonic.

3. Proof of Main Theorem 1.6 and Corollary 1.7

Proof of Theorem 1.2. It is known from [S] that

(3.1) πKζ(z) =
P(−2 log |z|) + η/(− log |ζ|)

|z|2
,

where

(3.2) 2η = ζ(u− 2 log |ζ|)− ζ(u),

u = −2 log |z|, P(·) is the Weierstrass elliptic function with periods −2 log |ζ|
and 2πi, and ζ(·) is the Weierstrass zeta function. If we let ω1 = − log |ζ|,
then (3.1) changes to

(3.3) πKζ(z) =
P(u) + η/ω1

|z|2
.

Since ζ ′(·) = −P(·), we have

ζ ′(·+ 2ω1) = ζ ′(·),
so that

ζ(·+ 2ω1) = ζ(·) + C.

Take u = −ω1. Then we get C = 2ζ(ω1) and

(3.4) ζ(·+ 2ω1) = ζ(·) + 2ζ(ω1).

By (3.2) and (3.4), we obtain η = ζ(ω1). Hence, (3.3) changes to

(3.5) Kζ(z) =
P(u) + c(ω1)

π|z|2
,

where u = (0, 2ω1) and c(ω1) = ζ(ω1)/ω1.
Now we turn to calculating ∂2 logKζ(z)/∂ζ∂ζ. A straightforward calcu-

lation yields

∂c(ω1)

∂ζ
=
∂c(ω1)

∂ω1

∂ω1

∂ζ
=

1

2ζ

P(ω1) + c(ω1)

ω1
,

∂c(ω1)

∂ζ
=
∂c(ω1)

∂ω1

∂ω1

∂ζ
=

1

2ζ

P(ω1) + c(ω1)

ω1
,

∂2c(ω1)

∂ζ∂ζ
=
∂2c(ω1)

∂ω2
1

∂ω1

∂ζ

∂ω1

∂ζ
+
∂c(ω1)

∂ω1

∂2ω1

∂ζ∂ζ

=
1

4|ζ|2
P(ω1) + c(ω1)− ω1(P ′(ω1) + c′(ω1))

ω2
1

.

We claim that P ′(ω1) = 0. To see this, simply note that P is an even
function, hence P ′(−ω1) = −P ′(ω1). Since P ′(ω1) = P ′(−ω1) by periodicity,
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we have P(ω1) = 0. It follows that

∂2c(ω1)

∂ζ∂ζ
=

1

4|ζ|2
2(P(ω1) + c(ω1))

ω2
1

.

So
∂2 logKζ(z)

∂ζ∂ζ
= e2ω1

(2P(u)− P(ω1) + c)(P(ω1) + c)

4ω2
1(P(u) + c)2

.

Proof of Corollary 1.7. It is easy to see that P(0) = ∞ and P(u) de-
creases in (0, ω1). We also know that P(2ω1 − u) = P(u) and ω2

1P(ω1)
= π2/6. So P(u) > 0 in (0, 2ω1). Note that

P(u) = u−2(1 +O(u2))

as u→ 0. Thus,

2P(u)− P(ω1) + c = 2u−2(1 +O(u2)), (P(u) + c)2 = u−4(1 +O(u2)).

If |z| → 1, then u→ 0. Hence,

lim
|z|→1

∂2 logKζ(z)

∂ζ∂ζ
= 0.

Using the periodicity of P(u), we conclude that

lim
|z|→|ζ|

∂2 logKζ(z)

∂ζ∂ζ
= 0.

Remark. The proof of Main Theorem 1.6 implies that although the Levi
form of logKζ(z) with respect to ζ approaches 0 when (ζ, z) tends to the
boundary of the domain, logKζ(z) is a strictly plurisubharmonic function
on D. So, in Theorem 1.2, the condition that for each ζ ∈ B, ∂D has at least
one strictly pseudoconvex point is only a sufficient condition for logKζ(z, z)
to be strictly plurisubharmonic on D.

Remark. The proof of Main Theorem 1.6 also yields the equation

∂2Kζ(z)

∂ζ∂ζ
=
∂Kζ(z)

∂ζ

∂Kζ(z)

∂ζ
.
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