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Existence and uniqueness of periodic solutions for

a kind of Duffing equation with two deviating arguments

by Bingwen Liu (Jiaxing)

Abstract. We use the coincidence degree to establish new results on the existence
and uniqueness of T -periodic solutions for a kind of Duffing equation with two deviating
arguments of the form

x
′′ + Cx′(t) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = p(t).

1. Introduction. Consider the Duffing equation with two deviating
arguments of the form

(1.1) x′′ + Cx′(t) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = p(t),
where τ1, τ2, p : R → R and g1, g2 : R × R → R are continuous functions,
C is a constant, τ1, τ2 and p are T -periodic, g1 and g2 are T -periodic in
the first argument, and T > 0. In recent years, the problem of the existence
of periodic solutions of (1.1) has been extensively studied. We refer the
reader to [2, 4–9] and the references cited therein. However, to the best of
our knowledge, there exist no results on uniqueness of periodic solutions
of (1.1).

The main purpose of this paper is to establish sufficient conditions for
the existence and uniqueness of T -periodic solutions of (1.1). The results of
this paper are new and they complement previously known results.

For ease of exposition, throughout this paper we will adopt the following
notations:

|x|k =
(T\
0

|x(t)|k dt
)1/k
, |x|∞ = max

t∈[0,T ]
|x(t)|.
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Let
X = {x ∈ C1(R,R) | x(t+ T ) = x(t) for all t ∈ R}

and
Y = {x ∈ C(R,R) | x(t+ T ) = x(t) for all t ∈ R}

be two Banach spaces with the norms

‖x‖X = max{|x|∞, |x′|∞}, ‖x‖Y = |x|∞.
Define a linear operator L : D(L) ⊂ X → Y by setting

D(L) = {x ∈ X | x′′ ∈ C(R,R)}
and for x ∈ D(L),
(1.2) Lx = x′′.

We also define a nonlinear operator N : X → Y by setting
(1.3) Nx = −Cx′(t)− g1(t, x(t− τ1(t)))− g2(t, x(t− τ2(t))) + p(t).
It is easy to see that

KerL = R, ImL =
{
x ∈ Y

∣∣∣
T\
0

x(s) ds = 0
}
.

Thus L is a Fredholm operator with index zero.
Define the continuous projectors P : X → KerL and Q : Y → Y by

setting

Px(t) = x(0) = x(T ), Qx(t) =
1

T

T\
0

x(s) ds.

Hence, according to [6, 7], we have ImP = KerL and KerQ = ImL. De-
noting by L−1P : ImL→ D(L) ∩KerP the inverse of L|D(L)∩KerP , we have

(1.4) L−1P y(t) = −
t

T

T\
0

(t− s)y(s) ds+
t\
0

(t− s)y(s) ds.

We also assume that the following condition (H) holds.

(H) For i = 1, 2, there exist a constant µi and an integer Ki such that

µi = sup
t∈[0,T ]

|τi(t)−KiT | ≤ T.

2. Preliminary results. In view of (1.2) and (1.3), the operator equa-
tion Lx = λNx is equivalent to the equation

(2.1)λ x′′ + λ[Cx′(t) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))] = λp(t),
where λ ∈ (0, 1).
For convenience, we recall the continuation theorem of [4].
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Lemma 2.1. Let X and Y be two Banach spaces. Suppose that L : D(L)
⊂ X → Y is a Fredholm operator with index zero and N : X → Y is
L-compact on Ω, where Ω is an open bounded subset of X. Moreover , assume
that the following conditions are satisfied :

(1) Lx 6= λNx for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(2) Nx 6∈ ImL for all x ∈ ∂Ω ∩KerL;
(3) the Brouwer degree

deg{QN,Ω ∩KerL, 0} 6= 0.
Then the equation Lx = Nx has at least one T -periodic solution on Ω.

The following lemmas will be useful to prove our main results in Sec-
tion 3.

Lemma 2.2. If x ∈ C2(R,R) with x(t+ T ) = x(t), then

(2.2) |x′(t)|22 ≤
(
T

2π

)2
|x′′(t)|22.

Proof. Lemma 2.2 is known as Wirtinger’s inequality; see [3, 8] for its
proof.

Lemma 2.3. Assume that

(A1) one of the following conditions holds:

(1) (gi(t, u1) − gi(t, u2))(u1 − u2) > 0 for i = 1, 2, ui ∈ R, t ∈ R

and u1 6= u2,
(2) (gi(t, u1) − gi(t, u2))(u1 − u2) < 0 for i = 1, 2, ui ∈ R, t ∈ R

and u1 6= u2;
(A2) there exists a constant d > 0 such that one of the following condi-

tions holds:

(1) x(g1(t, x) + g2(t, x)− p(t)) > 0 for all t ∈ R, |x| ≥ d,
(2) x(g1(t, x) + g2(t, x)− p(t)) < 0 for all t ∈ R, |x| ≥ d.

If x(t) is a T -periodic solution of (2.1)λ, then

(2.3) |x|∞ ≤ d+
√
T |x′|2.

Proof. Let x(t) be a T -periodic solution of (2.1)λ. Set

x(tmax) = max
t∈R

x(t), x(tmin) = min
t∈R

x(t), tmax, tmin ∈ R.

Then

(2.4) x′(tmax) = 0, x′′(tmax) ≤ 0, x′(tmin) = 0, x′′(tmin) ≥ 0.
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In view of (2.1)λ, (2.4) implies that

(2.5) g1(tmax, x(tmax − τ1(tmax))) + g2(tmax, x(tmax − τ2(tmax)))− p(tmax)
= −x′′(tmax)/λ ≥ 0,

and

(2.6) g1(tmin, x(tmin − τ1(tmin))) + g2(tmin, x(tmin − τ2(tmin)))− p(tmin)
= −x′′(tmin)/λ ≤ 0.

Since g1(t, x(t − τ1(t))) + g2(t, x(t − τ2(t))) − p(t) is a continuous function
on R, it follows from (2.5) and (2.6) that there exists a constant t1 ∈ R such
that

(2.7) g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1) = 0.
Now we prove

Claim. If x(t) is a T -periodic solution of (2.1)λ, then there exists a
constant t2 ∈ R such that

(2.8) |x(t2)| ≤ d.
Assume, by way of contradiction, that (2.8) does not hold. Then

(2.9) |x(t)| > d for all t ∈ R,

which, together with (A2) and (2.7), implies that one of the following rela-
tions holds:

x(t1 − τ1(t1)) > x(t1 − τ2(t1)) > d;(2.10)

x(t1 − τ2(t1)) > x(t1 − τ1(t1)) > d;(2.11)

x(t1 − τ1(t1)) < x(t1 − τ2(t1)) < −d;(2.12)

x(t1 − τ2(t1)) < x(t1 − τ1(t1)) < −d.(2.13)

Suppose that (2.10) holds. In view of (A1) and (A2), we shall consider four
cases as follows.

Case (i). If (A2)(1) and (A1)(1) hold, then (2.10) implies

0 < g1(t1, x(t1 − τ2(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1)
< g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1),

which contradicts (2.7).

Case (ii). If (A2)(1) and (A1)(2) hold, then (2.10) implies

0 < g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ1(t1)))− p(t1)
< g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1),

which contradicts (2.7).
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Case (iii). If (A2)(2) and (A1)(1) hold, then (2.10) implies

0 > g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ1(t1)))− p(t1)
> g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1),

which contradicts (2.7).

Case (iv). If (A2)(2) and (A1)(2) hold, then (2.10) implies

0 > g1(t1, x(t1 − τ2(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1)
> g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1),

which contradicts (2.7).

If (2.11), (2.12), or (2.13) holds, the reasoning is similar. This completes
the proof of the Claim.

Let t2 = mT + t0, where t0 ∈ [0, T ] and m is an integer. Then, using the
Schwarz inequality and the relation

|x(t)| =
∣∣∣x(t0) +

t\
t0

x′(s) ds
∣∣∣ ≤ d+

T\
0

|x′(s)| ds, t ∈ [0, T ],

we obtain
|x|∞ = max

t∈[0,T ]
|x(t)| ≤ d+

√
T |x′|2.

This completes the proof of Lemma 2.3.

Lemma 2.4. Let (H) and (A1) hold. Assume that one of the following
conditions is satisfied :

(A3) there exist constants b1 and b2 such that

0 ≤ b1(
√
2µ1 + T/π) + b2(

√
2µ2 + T/π) <

2π

T
,

|gi(t, x1)− gi(t, x2)| ≤ bi|x1 − x2|,
for all t, xi ∈ R, i = 1, 2;

(A4) there exist constants b1 and b2 such that

0 ≤ b1(
√
2µ1 + T/π) + b2(

√
2µ2 + T/π) < |C|,

|gi(t, x1)− gi(t, x2)| ≤ bi|x1 − x2|,
for all t, xi ∈ R, i = 1, 2.

Then (1.1) has at most one T -periodic solution.

Proof. Suppose that x1(t) and x2(t) are two T -periodic solutions of (1.1).
Set Z(t) = x1(t)− x2(t). Then
(2.14) Z ′′(t) + CZ ′(t) + (g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t))))

+ (g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t)))) = 0.
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Integrating (2.14) from 0 to T, we get

T\
0

[(g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t))))

+ (g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t))))] dt = 0.
Thus, in view of the integral mean value theorem, there exists a constant
γ ∈ [0, T ] such that
(2.15) g1(γ, x1(γ − τ1(γ)))− g1(γ, x2(γ − τ1(γ))))

+ g2(γ, x1(γ − τ2(γ)))− g2(γ, x2(γ − τ2(γ)))) = 0.
From (A1), (2.15) implies that

Z(γ − τ1(γ))Z(γ − τ2(γ))

= (x1(γ − τ1(γ))− x2(γ − τ1(γ)))(x1(γ − τ2(γ))− x2(γ − τ2(γ))) ≤ 0.
Since Z(t) = x1(t) − x2(t) is a continuous function on R, there exists a
constant ξ ∈ R such that

(2.16) Z(ξ) = 0.

Let ξ = nT + γ̃, where γ̃ ∈ [0, T ] and n is an integer. Then (2.16) implies
that there exists a constant γ̃ ∈ [0, T ] such that
(2.17) Z(γ̃) = Z(ξ) = 0.

Let x(t) ∈ X. Suppose that there exists a constant D ≥ 0 such that
|x(τ0)| ≤ D, τ0 ∈ [0, T ].

Then, from Lemma 2.5 in [5], we obtain

(2.18) |x|2 ≤
T

π
|x′|2 +

√
T D.

Let µ ∈ [0, T ] be a constant, δ ∈ C(R,R) be periodic with period T , and
supt∈[0,T ] |δ(t)| ≤ µ. Then, for any h ∈ X, from Lemma 1 in [6], we get

(2.19)

T\
0

|h(s)− h(s− δ(s))|2 ds ≤ 2µ2
T\
0

|h′(s)|2 ds.

Hence, in view of (2.3) and (2.18), we have

(2.20) |Z|∞ ≤
√
T |Z ′|2, |Z|2 ≤

T

π
|Z ′|2.

Now we consider two cases as follows.
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Case (i). If (A3) holds, multiplying (2.14) by Z
′′(t) and then integrating

from 0 to T , from (2.2), (2.19), (2.20) and the Schwarz inequality, we have

(2.21) |Z ′′|22 =
T\
0

|Z ′′(t)|2 dt

= −
T\
0

[(g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t)))) + (g2(t, x1(t− τ2(t)))

− g2(t, x2(t− τ2(t))))]Z ′′(t) dt

≤
T\
0

[b1|Z(t− τ1(t))|+ b2|Z(t− τ2(t))|]|Z ′′(t)| dt

≤
T\
0

[b1(|Z(t− τ1(t) +K1T )− Z(t)|+ |Z(t)|)

+ b2(|Z(t− τ2(t) +K2T )− Z(t)|+ |Z(t)|)]|Z ′′(t)| dt

≤ [b1(
√
2µ1|Z ′|2 + |Z|2) + b2(

√
2µ2|Z ′|2 + |Z|2)]|Z ′′|2

≤ [b1(
√
2µ1 + T/π) + b2(

√
2µ2 + T/π)]

T

2π
|Z ′′|22.

Since Z(t), Z ′(t) and Z ′′(t) are T -periodic and continuous functions, in view
of (A3), (2.2), (2.20) and (2.21), we have

Z(t) ≡ Z ′(t) ≡ Z ′′(t) ≡ 0 for all t ∈ R.

Thus, x1(t) ≡ x2(t) for all t ∈ R. Therefore, (1.1) has at most one T -periodic
solution.

Case (ii). If (A4) holds, multiplying (2.14) by Z
′(t) and then integrating

from 0 to T , and applying (2.20), we have

|C| |Z ′|22 =
∣∣∣
T\
0

C|Z ′(t)|2 dt
∣∣∣(2.22)

=
∣∣∣−
T\
0

[(g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t))))

+ (g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t))))]Z ′(t) dt
∣∣∣

≤
T\
0

[b1|x1(t− τ1(t))− x2(t− τ1(t))|

+ b2|x1(t− τ2(t))− x2(t− τ2(t))|]|Z ′(t)| dt
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≤ [b1(
√
2µ1|Z ′|2 + |Z|2) + b2(

√
2µ2|Z ′|2 + |Z|2)]|Z ′|2

≤ [b1(
√
2µ1 + T/π) + b2(

√
2µ2 + T/π)]|Z ′|22.

From (2.18) and (A4), (2.22) implies that

Z(t) ≡ Z ′(t) ≡ 0 for all t ∈ R.

Hence, x1(t) ≡ x2(t) for all t ∈ R. Therefore, (1.1) has at most one T -
periodic solution. The proof of Lemma 2.4 is now complete.

3. Main results

Theorem 3.1. Let (H), (A1)(1) and (A2)(1) hold. Assume that either
condition (A3) or (A4) is satisfied. Then (1.1) has a unique T -periodic so-
lution.

Proof. By Lemma 2.4, together with (A3) and (A4), it is easy to see
that (1.1) has at most one T -periodic solution. Thus, to prove Theorem 3.1,
it suffices to show that (1.1) has at least one T -periodic solution. To do
this, we shall apply Lemma 2.1. Firstly, we claim that the set of all possible
T -periodic solutions of (2.1)λ is bounded. We consider two cases as follows.

Case (1): (A3) holds. Let x(t) be a T -periodic solution of (2.1)λ. Mul-
tiplying (2.1)λ by x

′′(t) and then integrating from 0 to T , in view of (2.2),
(2.3), (2.18), (2.19), (A3) and the Schwarz inequality, we have

(3.1) |x′′|22 =
T\
0

|x′′(t)|2 dt

= − λ
T\
0

Cx′(t)x′′(t) dt− λ
T\
0

g1(t, x(t− τ1(t)))x′′(t) dt

− λ
T\
0

g2(t, x(t− τ2(t)))x′′(t) dt+ λ
T\
0

p(t)x′′(t) dt

≤
T\
0

|g1(t, x(t− τ1(t)))| |x′′(t)| dt+
T\
0

|g2(t, x(t− τ2(t)))| |x′′(t)| dt

+

T\
0

|p(t)| |x′′(t)| dt

≤
T\
0

[|g1(t, x(t− τ1(t)))− g1(t, x(t))|

+ |g1(t, x(t))− g2(t, 0)|+ |g1(t, 0)|]|x′′(t)| dt
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+

T\
0

[|g2(t, x(t− τ2(t)))− g2(t, x(t))|

+ |g2(t, x(t))− g2(t, 0)|+ |g2(t, 0)|]|x′′(t)| dt+
T\
0

|p(t)| |x′′(t)| dt

≤ b1
T\
0

|x(t− τ1(t) +K1T )− x(t)| |x′′(t)| dt

+ b1

T\
0

|x(t)| |x′′(t)| dt+
T\
0

|g1(t, 0)| |x′′(t)| dt

+ b2

T\
0

|x(t− τ2(t) +K2T )− x(t)| |x′′(t)| dt

+ b2

T\
0

|x(t)| |x′′(t)| dt+
T\
0

|g2(t, 0)| |x′′(t)| dt+
T\
0

|p(t)| |x′′(t)| dt

≤ [b1(
√
2µ1 + T/π) + b2(

√
2µ2 + T/π)]

T

2π
|x′′|22

+ [(b1 + b2)d+max{|g1(t, 0)|+ |g2(t, 0)| : 0 ≤ t ≤ T}+ |p|∞]
√
T |x′′|2,

which, together with (A3), implies that there exist positive constants D1
and D2 such that

(3.2) |x′′|2 < D1,
and

(3.3) |x′|2 < D2, |x|∞ < D2.
Since x(0) = x(T ), there exists a constant ζ ∈ [0, T ] such that

x′(ζ) = 0, |x′(t)| =
∣∣∣x′(ζ) +

t\
ζ

x′′(s) ds
∣∣∣(3.4)

≤
√
T |x′′|2 <

√
T D1 for all t ∈ [0, T ].

Case (2): (A4) holds. Let x(t) be a T -periodic solution of (2.1)λ. Mul-
tiplying (2.1)λ by x

′(t) and then integrating from 0 to T , by (A4), (2.3),
(2.18), (2.19) and the Schwarz inequality, we have

(3.5) |C| |x′|22 =
∣∣∣
T\
0

Cx′(t)x′(t) dt
∣∣∣

=
∣∣∣−λ

T\
0

g1(t, x(t−τ1(t)))x′(t) dt−λ
T\
0

g2(t, x(t−τ2(t)))x′(t) dt+λ
T\
0

p(t)x′(t) dt
∣∣∣
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≤
T\
0

[|g1(t, x(t− τ1(t)))− g1(t, x(t))|

+ |g1(t, x(t))− g2(t, 0)|+ |g1(t, 0)|]|x′(t)| dt

+

T\
0

[|g2(t, x(t− τ2(t)))− g2(t, x(t))|

+ |g2(t, x(t))− g2(t, 0)|+ |g2(t, 0)|]|x′(t)| dt+
T\
0

|p(t)| |x′(t)| dt

≤ [b1(
√
2µ1 + T/π) + b2(

√
2µ2 + T/π)]|x′|22

+ [(b1 + b2)d+max{|g1(t, 0)|+ |g2(t, 0)| : 0 ≤ t ≤ T}+ |p|∞]
√
T |x′|2,

This implies that there exists a constant D2 > 0 such that

(3.6) |x′|2 < D2, |x|∞ < D2.

Therefore, from (3.4), we obtain

(3.7) |x′(t)| ≤
∣∣∣x′(ζ) +

t\
ζ

x′′(s) ds
∣∣∣ ≤
∣∣∣
t\
ζ

x′′(s) ds
∣∣∣

=
∣∣∣
t\
ζ

[−λCx′(s)− λg1(s, x(s− τ1(s)))− λg2(s, x(s− τ2(s))) + λp(s)] ds
∣∣∣

≤ |C|
√
T |x′|2 + T [ max

t∈R, |x|≤D2

{|g1(t, x)|}+ max
t∈R, |x|≤D2

{|g2(t, x)|}+ |p|∞]

≤ |C|
√
T D2 + T [ max

t∈R, |x|≤D2

{|g1(t, x)|}+ max
t∈R, |x|≤D2

{|g2(t, x)|}+ |p|∞]

:= D1.

Therefore, in view of (3.3), (3.4), (3.6) and (3.7), there exists a positive

constant M1 > max{
√
T D1 +D2, D1 +D2} such that

‖x‖X ≤ |x|∞ + |x′|∞ < M1.

If x ∈ Ω1 = {x ∈ KerL ∩X | Nx ∈ ImL}, then there exists a constant M2
such that

(3.8) x(t) ≡M2,
T\
0

[g1(t,M2) + g2(t,M2)− p(t)] dt = 0.

Thus,

(3.9) |x(t)| ≡ |M2| < d for all x(t) ∈ Ω1.
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Let M =M1 + d+ 1. Set

Ω = {x ∈ X | |x|∞ < M, |x′|∞ < M}.
It is easy to see from (1.3) and (1.4) that N is L-compact on Ω. We deduce
from (3.8), (3.9) and the inequality M > max{M1, d} that conditions (1)
and (2) in Lemma 2.1 hold.
Furthermore, define a continuous function H(x, µ) by setting

H(x, µ) = −(1− µ)x− µ · 1
T

T\
0

[g1(t, x) + g2(t, x)− p(t)] dt, µ ∈ [0, 1].

In view of (A2)(1), we obtain

xH(x, µ) 6= 0 for all x ∈ ∂Ω ∩KerL.
Hence, using the homotopy invariance theorem, we have

deg{QN,Ω ∩KerL, 0}

= deg

{
− 1
T

T\
0

[g1(t, x) + g2(t, x)− p(t)] dt,Ω ∩KerL, 0
}

= deg{−x,Ω ∩KerL, 0} 6= 0.
In view of all the discussion above, Lemma 2.1 yields the conclusion of
Theorem 3.1.
A similar argument leads to

Theorem 3.2. Let (H), (A1)(2) and (A2)(2) hold. Assume that either
(A3) or (A4) is satisfied. Then (1.1) has a unique T -periodic solution.

4. Examples and remarks

Example 4.1. Let gi(t, x) =
10
3 x for all t ∈ R, x > 0, and gi(t, x) =

arctanx for all t ∈ R, x ≤ 0, i = 1, 2. Then the Duffing equation
(4.1)

x′′+210x′+ g1

(
t, x

(
t− 1
100
sin2 t

))
+ g2

(
t, x

(
t− 1
300
ecos t
))
=
1

4
ecos

2 t

has a unique 2π-periodic solution.

Proof. By (4.1), we have b1 = b2 =
10
3 , C = 210, τ1(t) =

1
100 sin

2 t,

τ2(t) =
1
100 e

cos t and p(t) = 14 e
cos2 t. It is obvious that the assumptions (H),

(A1)(1), (A2)(1) and (A4) hold. Hence, by Theorem 3.1, (4.1) has a unique
2π-periodic solution.

Remark 4.1. (4.1) is a very simple version of Duffing equation. Since
C 6= 0, τ1 6= 0 and τ2 6= 0, no results in [2, 4–9] and the references therein
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are applicable to (4.1) to obtain the existence and uniqueness of 2π-periodic
solutions. This implies that the results of this paper are essentially new.

Remark 4.3. By using the methods similar to those used for (1.1), we
can deal with the Duffing equation with multiple deviating arguments of the
following type:

(4.2) x′′ + Cx′(t) +
n∑

i=1

gi(t, x(t− τi(t))) = p(t),

where τi, p : R → R and gi : R × R → R, i = 1, . . . , n, are continuous
functions, τi and p are T -periodic, gi are T -periodic in the first argument,
and T > 0. One may also establish results similar to those in Theorems 3.1
and 3.2 under some minor additional assumptions on gi(t, x).
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