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On uniqueness for nonlinear differential polynomials
sharing the same 1-point

by ABHLIT BANERJEE (Kalyani)

Abstract. We study the uniqueness of meromorphic functions when two nonlinear
differential polynomials generated by two meromorphic functions share the same 1-points.
Our results improve results of Fang—Fang and Lin—Yi and supplement a recent result of
Lahiri—Pal.

1. Introduction, definitions and results. Let f and g be two non-
constant meromorphic functions defined in the open complex plane C. If for
some a € CU{o0}, f —a and g — a have the same set of zeros with the
same multiplicities, we say that f and g share the value a CM (counting
multiplicities), and if we do not consider the multiplicities then f and g are
said to share the value a IM (ignoring multiplicities).

Let m be a positive integer or infinity and a € C U {oco}. We denote by
E,)(a; f) the set of all a-points of f with multiplicities not exceeding m,
where an a-point is counted according to its multiplicity. Also we denote by
E(a; f) the set of distinct a-points of f(z) with multiplicities not greater
than m. If for some a € CU {oc}, Eyy(a; f) = Ex)(a;g) we say that f, g
share the value a CM.

We denote by T'(r) the maximum of T'(r, f) and T'(r,g). The notation
S(r) indicates any quantity satisfying S(r) = o(T'(r)) as r — oo, outside of
a possible exceptional set of finite linear measure.

We use I to denote any set of 0 < r < oo of infinite linear measure.

During the last few years a great deal of research has been carried out
on the uniqueness of meromorphic functions generating differential poly-
nomials (cf. [1], [2], [3], [5], [9], [12]-[15]). In [5] and [9] Lahiri studied the
problem of uniqueness of meromorphic functions when two linear differential
polynomials generated by them share the same 1-points.
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In [5] the following question was asked.

What can be said if two nonlinear differential polynomials generated
by two meromorphic functions share 1 CM?

A considerable amount of research has already been done in this direc-
tion. (cf. [1]-[3], [12]-[15]). In 2002 Fang and Fang [2] and in 2004 Lin-Yi [15]
independently proved the following result.

THEOREM A. Let f and g be two nonconstant meromorphic functions
and n > 13 be an integer. If f*(f — 1)2f" and g"(g — 1)%*¢’ share 1 CM,
then f = g.

Also in [2] Fang and Fang proved the following theorem.

THEOREM B. Let f and g be two nonconstant meromorphic functions
and n > 28 be an integer. If f*(f—1)2f" and g"(g—1)?¢’ share 1 IM, then

f=g
In [2] Fang and Fang and recently in [12] Lahiri-Pal proved the following
result.

THEOREM C. Let f and g be two nonconstant meromorphic functions
and n > 13 be an integer. If Es(1; f*(f — 1)2f) = Esy(1;9™(g — 1)2g)),
then f = g.

In 2001 an idea of gradation of sharing of values was introduced in [7], [8]
to measure how close a shared value is to being shared CM or IM. This notion
is known as weighted sharing and is defined as follows.

DEFINITION 1.1 ([7], [8]). Let k be a nonnegative integer or infinity. For
a € CU {oo} we denote by FEj(a; f) the set of all a-points of f, where an
a-point of multiplicity m is counted m times if m < k and k + 1 times
it m > k. If Ex(a; f) = Ex(a;g), we say that f,g share the value a with
weight k.

The definition implies that if f, g share a value a with weight k then zg
is an a-point of f with multiplicity m < k if and only if it is an a-point of g
with multiplicity m < k, and zg is an a-point of f with multiplicity m > k
if and only if it is an a-point of g with multiplicity n > k, where m is not
necessarily equal to n.

We write f,g share (a,k) to mean that f,g share the value a with
weight k. Clearly if f, g share (a, k), then f, g share (a,p) for any integer p,
0 < p < k. Also we note that f, g share a value a IM or CM if and only if
f, g share (a,0) or (a,oc0) respectively.

In this paper we employ the idea of weighted sharing of values and trun-
cated sharing of values to investigate the uniqueness of meromorphic func-
tions when the nonlinear differential polynomials of the form mentioned in



Polynomials sharing the same 1-point 261

Theorem A share the value 1. We now give the following five theorems which
are our main results.

THEOREM 1.1. Let f and g be two nonconstant meromorphic functions
and n > 12 —20(o0; f) — 20(00; g) — min{O(o0; f), O(c0; g)} be an integer.
If f*(f —1)2f" and g™(g — 1)%g’ share (1,2) then f = g.

REMARK 1.1. If in Theorem 1.1 we take min{©(occ; f),O(c0;9)} > 0

then the assertion is true for n > 12. Clearly Theorem 1.1 is an improvement
of Theorem A.

THEOREM 1.2. Let f and g be two nonconstant meromorphic functions
and n > 29/2 — 30(c0; f) — 30(c0; g) be an integer. If f*(f — 1)2f and
g" (g —1)2¢’ share (1,1) then f = g.

THEOREM 1.3. Let f and g be two nonconstant meromorphic functions
and n > 27 —560(oc0; f) — 50(00; g) — min{O(o0; f), O(c0; g)} be an integer.
If f*(f —1)2f" and g™(g — 1)%g’ share (1,0) then f = g.

REMARK 1.2. If in Theorem 1.3 we take min{©(co; f),O(c0;9)} > 0
then the assertion is true for n > 27.

THEOREM 1.4. Let f and g be two nonconstant meromorphic functions
and n > 12 be an integer. If

Ey(LfM(f = 1) = Ey(L;9"(9 — 1)*9),
Eoy(1; f™(f = 1)*f") = By (1:9"(g — 1)%)
and min{O(o0; f),O(c0;g9)} > 0 then f = g.
REMARK 1.3. If in Theorem 1.4 we take n > 13 then the condition

min{O@(o0; f),O(c0;g)} > 0 can be removed and in that case Theorem 1.4
improves Theorem A.

THEOREM 1.5. Let f and g be two nonconstant meromorphic functions
and n > 13 be an integer. If

Egy (L f"(f = D) = By (L g"(9 — 1)*9),
Ey(L f*(f = 1)%f') = Ey(1:9"(g — 1)°9)
and min{O(o0; f),O(c0;9)} > 1/4 then f = g.
REMARK 1.4. If in Theorem 1.5 we take n > 15 then the condition
min{@(oo; f),O(c0;g)} > 1/4 can be removed.

Though we use the standard notations and definitions of the value dis-
tribution theory available in [4], we explain some definitions and notations
which are used in the paper.

DEFINITION 1.2 ([6]). For a € CU {oco} we denote by N(r,a; f|=1)
the counting function of simple a-points of f. For a positive integer m we
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denote by N(r,a; f|< m) (resp. N(r,a; f|>m)) the counting function of
those a-points of f whose multiplicities are not greater (resp. less) than m
where each a-point is counted according to its multiplicity.

N(r,a; f|<m) and N(r,a; f|> m) are defined similarly, but ignoring
multiplicities.

Also N(r,a; f| <m), N(r,a; f| >m), N(r,a; f| <m) and N(r,a; f| >m)
are defined analogously.

_ DermNiTION 1.3 ([8], cf. [20]). We denote by Na(r,a;f) the sum
N(r,a; f) + N(ra; f| > 2).

DEFINITION 1.4. Let m and r be two positive integers such that 1 < r <
m — 1 and for some a € C, Em)(a; f)= Em)(a;g), Eyy(a; f) = Epy(a; g). Let
2o be a zero of f(z)—a of multiplicity p and a zero of g(z)—a of multiplicity gq.
We denote by N (r,a; f) (resp. Ni(r,a;g)) the reduced counting function
of those a-points of f and g for which p > ¢ > r 4+ 1 (resp. ¢ > p >
r+ 1), by Ng“(r, a; f) the reduced counting function of those a-points of
f and g for which p = ¢ > 7+ 1, and by Ny>pmq1(r,a; f|g # a) (resp.

Ng>m41(r,a;g| f # a)) the reduced counting functions of those a-points of
f and g for which p > m+ 1 and ¢ =0 (resp. ¢ > m+ 1 and p = 0).

DEFINITION 1.5. Let E,,)(a; f) = Eyyy(a; g) for some a € C. Also let z
be a zero of f — a of multiplicity p and a zero of g — a of multiplicity q. We
denote by N(r,a; f| = p;g|= q) the reduced counting functions of common
a-points of f and ¢g with multiplicity p and ¢ respectively. Also we denote
by N fs5(r,a; g) (vesp. N y55(r, a; g)) the reduced counting functions of those
a-points of f and g for which p > g = s (resp. ¢ > p = s).

DEFINITION 1.6 ([10]). Let a,b€ CU{oco}. We denote by N(r,a; f|g="0)
the counting function of those a-points of f, counted according to multiplic-
ity, which are b-points of g.

DEFINITION 1.7 ([10]). Let a,b€ CU{oco}. We denote by N(r,a; f|g#b)
the counting function of those a-points of f, counted according to multiplic-
ity, which are not b-points of g.

2. Lemmas. In this section we present some lemmas which will be

needed in what follows. Let f, g, F', G be four nonconstant meromorphic
functions. Henceforth we shall denote by h and H the following two func-

tions:
(525 (5- 2
froof=1 g g-1)

F/// 2F// G/// 2G/l
A=\ -"7=1) \& a-1)
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LEMMA 2.1. If f, g are two nonconstant meromorphic functions such
that Eyy(1; f) = E1)(1;9) and h # 0 then
N(r,1; f]=1)=N(r,1;g[=1) <N(r,0;h) < N(r,00; h)+S(r, ) + S(r, ).
Proof. Since f and g have the same simple 1-points it can be easily
verified by direct computation that h is zero whenever f — 1 has a simple
zero. This proves the lemma. =
LEMMA 2.2. Let E,(1; f) = E,y(159), E1y(1; f) = Ey(1;9) and h # 0,
where m > 3. Then
N(r,00;h) < N(r,0; f[>2) + N(r,0;g| > 2) + N(r,00; f | > 2)
+N(T,oo,g]2 2) +NL(T71,f) +NL(T71,9)
T Npzma1(r, L flg # 1) + Nozmia(r, Lig| f #1)
+ No(r,0; f') + No(r,0: ¢'),
where No(r,0; f') is the reduced counting function of those zeros of f" which
are not the zeros of f(f —1), and No(r,0;¢") is similarly defined.

Proof. We can easily verify that possible poles of h occur at (i) multiple
zeros of f and g, (ii) multiple poles of f and g, (iii) common zeros of f — 1
and g — 1 whose multiplicities are different, (iv) those 1-points of f (or g)
which are not 1-points of g (or f), (v) zeros of f’ which are not zeros of
f(f = 1), (vi) zeros of ¢’ which are not zeros of g(g — 1).

Since all poles of h are simple, the lemma follows from the above. =

LEMMA 2.3 ([11]). If N(r,0; f®)| f #0) denotes the counting function
of those zeros of f¥) which are not zeros of f, where a zero of f*) is
counted according to its multiplicity, then

N(r,0; f®) | f #0) < kN(r,00; f) + N(r,0; f | < k)
+kN(r,0; f| > k) + S(r, f).

LEMMA 2.4 (cf. [16], [17]). Let f be a nonconstant meromorphic function
and P(f) = ao+ a1 f + -+ anf", where ag,ai,...,a, are constants and
an # 0. Then T(r, P(f)) =nT(r, f) + O(1).

LEMMA 2.5. If Es(1; f) = Ey)(1;:9) and Eyy(1; f) = Eyy(1;9), then
ONL(r, 15 ) + 2N (. 159) + NG (r, 15 f)
+3Ngoa(r, Lig| f #1) = Nysa(r, 159)
Proof. Let zy be a 1-point of f with multiplicity p and a 1-point of g with
multiplicity ¢. If ¢ = 2 the possible values of p are (i) p = 2, (ii) p = 3. When
q = 3, the possible values of p are (i) p =2 (ii), p = 3. If ¢ = 4 the possible

values of p are (i) p = 4, (ii) p > 5, (iii) p = 0. Similarly when ¢ = 5 the
possible values of p are (i) p = 4, (ii) p =5, (iii) p > 6, (iv) p=0.If ¢ > 6
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we can similarly find the possible values of p. The lemma now follows from
the above discussion since the simple 1-points of f and g are the same. =

LEMMA 2.6. If E3(1; f) = Es)(1;9) and Ey)(1; f) = Eyy(1;g) then
(1) Nf>2(7“, 179) < %N(T’,O,f) + %N(’I",OO7 f) - %NO(Tvo; f ) + S(Ta f)7
(ii)  Ngsa(r,1;f) < $N(r,0;9) + N (r, 005 9) — 5No(r, 05 ¢) + S(r, g).

Proof. We prove (i) since the proof of (ii) can be carried out similarly.
Using Lemma 2.3 we get

Nf>2(r, )<N(r1,f]> )g_% rOf’\le)
< $N(r,0; f) + AN(r,00; f) — ANo(r, 0; f') + S(r, f). m
(

LEMMA 2.7. Let E3(1; f) = Es
Then

T(r,f)+T(r,g) < 2{Na(r,0; f) + Na(r, 00; f) + Na(r,0; g) + Na(r,00; 9)}
+ 5[N(r,0; f) + N(r,00; ) + N(r,0; g) + N(r, 00; g)]
—m(r,1; f) —m(r,1;9) + S(r, f) + S(r, g).
Proof. By the second fundamental theorem we get
(2.1)  T(r, f) +T(r,g) < N(r,0; f) +N(r,00; f) +N(r,0; g) + N(r, 005 g)
+ N(r,1; f) + N(r,1;9) — No(r,0; f)
— No(r,0;9") + S(r, f) + S(r, 9).
By Lemmas 2.1, 2.2 and 2.5 we get
(22)  N(r,1;f)+N(r,1;9)
<N(r,1;fl=1)4+ Np(r,1; f) + Np(r, 1; )
—l—]vg(r,l;f) + Nf24(r, Lflg#1)+ N(r,1;9)
< N(r,0; f|>2) + N(r,00; f| > 2) + N(r,0;9| > 2)
+ N(r,009]>2) + Nysa(r,1; f | g #1)
+ Ngza(r, ;g f #1) + Np(r, 15 f) + Np(r, 15 9)
+ No(r,0; f') + No(r,0;¢') + NL(r,1; f)
+ Ni(r,159) + NG, 15 ) + Nysa(r, 15 £ g # 1)
+ N(r,1;9) = 2Np(r,1; f) = 2N (r, 1;9)
— NG 1) = 8Ng2a(r Lig| f #1)
+ Nysa(r,159) + S(r, f) + S(r, 9)

L g), Evy(1; f) = Eyy(1;9) and h # 0.
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< N0 f|22)+ N(r,00i f| 2 2) + N(r,0:9] > 2)
+N(r,00ig]>2)+ 2N p>a(r 1 f[g # 1)
—2Ng>a(r, L[ f # 1) + Nysa(r, 1:9) + T(r,g) — m(r, 15 g)
+ No(r,0; f') + No(r,0;¢) + S(r, f) + S(r, 9)-
Using Lemma 2.6 we deduce from (2.1) and (2.2) that
(2.3)  T(r, f) < Na(r,0; f) + Na(r, 00; f) + Na(r,0; g) + Na(r, 005 g)
+2Npoa(r, 1 f1g #1) = 2Nga(r Lig| f # 1)
+ 5N (r,0; f) + 3N (r,00; f) — m(r, 1; 9)
+S(r, f)+S(r,g).
Similarly we can obtain
(2.4) T(r,g) < Na(r,0; f) + Na(r, 00; f) + Na(r,0; g) + Na(r, 00; g)
+2Ngu(r, Lig f #1) = 2Npsa(r, 15 f g #1)
+ %N(T,O;g) + %N(r,oo;g) —m(r,1; f)
+S(r, f)+S(r, g).
Adding (2.3) and (2.4) we get the conclusion of the lemma. m
LEMMA 2.8 ([22], [23]). If h =0, then f and g share 1 CM.

LEMMA 2.9 ([18)). If f, g share 1 CM, then one of the following cases
holds:
(1) T(Ta f)+T(Ta g) < Z{NQ(Ta Oa f)+N2(T7 07 g)+N2(Ta 03 f)—l_NQ(T’ Q3 g)}
+S(r, f) +5(r,9);
i)  f=g
(iil) fg=1.
LEMMA 2.10. If E4 (L; ) = E4 (159) and Ey(1; f) = Eq)(1;g) then the

conclusion of Lemma 2. 9 holds.

Proof. If h = 0 then the result follows from Lemmas 2.8 and 2.9. So
we suppose that h #Z 0. Then by the second fundamental theorem and
Lemmas 2.1 and 2.2 we get

(2.5)  T(r,f)+T(r,g) < N(r,0; f)+N(r,00; f) +N(r,0; 9)
+ N, L fl=1)+N(r 1 f|>2)
— No(r,0; f') — No(r,0:¢") + S(r, f)

N(r,00;9)
N(r,1;9)
+ S(r, 9)

+ +
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< Na(r, 05 f) + Na(r, 005 f) + Na(r,0; g) + Na(r, 005 g)
+Np(r, 1 f) + Ni(r,19) + Nyss(r, 1 f | g # 1)
+ Ng>s(r, gl f# 1)+ N(r, 1, f| > 2) + N(r, 1;9)
+S(r, f)+S(r,g).
Since
(r, 1 f=4),
(r,1;9[=4),

(r,1;f|=4)

N(r,1; f|=4;g|=3)+ <
(r,1;9]=4) <2

N(r 1 f|=3;g|=4)+
we see that

Np(r L f)+ Np(r,1i9) + Npss(r, 15 f g # 1) + Ng>s(r, L g| f # 1)

+N(r 1 f|=2)+ N(r,1; g)
SN Lfl=49=3)+ N L f[=6)+ N(r,1ig|=4;f|=3)

N N
N N

+ N(r,1;9]>6) + N(r,1; f| > 5) + N(r,1;9| > 5) + N(r,1; f| = 2)
+ N L f]=3)+ N L fl=4) + N(r, 1, f|>5) + N(r, 1;9]= 1)
+N(r,Lig|=2)+ N(r,1;9[=3) + N(r,1;g|=4) + N(r,1;9[ > 5)
<GN(r L fl=1)+5N(r,Lig|=1)+ N(r,1; f|=2) + N(r,1;9]| = 2)

N(r,1; f1=3)+N(r,1;9|=3)+2N(r,1; f | = 4) + 2N (r, 1;g| = 4)
2N(r,1; f|>5)4+2N(r,1;9|>5)+ N(r,1; f | > 6) + N(r,1;9| > 6)
< 3[IN(r, 1 f)+ N(r,1;9)] < 5[T(r, /) + T(r, g)].

Now the lemma follows from (2.5). m

+
_|_

LEMMA 2.11 ([19]). Let f be a nonconstant meromorphic function. Then
N(r,0; fM) < kN(r,00; ) + N(r,0; f) + S(r, f).

LeMMA 2.12 ([1]). Let f, g be two nonconstant meromorphic functions
that share (1,1) and have h # 0. Then

T(’I", f) S NQ("",O,f) +N2(T,Oo;f) +N2(T70ag) +N2(7“,OO;Q)
+ %N(T,O; )+ %N(r,oo;f) + S(r, f)+ S(r,g).

LEMMA 2.13 ([1]). Let f, g be two nonconstant meromorphic functions
that share (1,0) and have h # 0. Then

T(Ta f) < NQ(T,O;f) +N2(7’,OO;f) + NQ(T,O;Q) +N2(T',OO;g) + QN(T’,O,f)
+2N(r, 005 f) + N(r,05 9) + N(r, 00 9) + S(r, ) + S(r, 9).
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LeMMA 2.14 ([1], cf. [21]). If h =0 and

N(r,0; N : N(r.0: N ,
lim sup (r, 05 f) + N(r, 00; f) + N(r,0;9) + N(r,00;9)

T—00 T(T)
rel

then f =g or fg=1.

LEMMA 2.15 ([12]). Let f and g be two nonconstant meromorphic func-
tions. Then

<1,

=129 - 1) #£1
for any integer n > 7.
LEMMA 2.16 ([12]). Let
2 2 1 2 2 1
F:Jm_i_l(nf—l—‘?)_n—fJ—cQ+n+1>7 G:gm_l(ni—?)_n—fQ—}_n—}—l)’
where n > 5 is an integer. Then F' = G’ implies F = G.
LeMMA 2.17 ([12]). Let F' and G be as in Lemma 2.16 and

a—n+3+z’ n-+3 1
“nxr2  Vanr1l nr2

Then

G T(F) < T F)+ N0, )+ Niras f) + N, )
—QN(’I“,l;f)—N(T,O;f/)+S(T,f),

(ii) T(r,G) <T(r,G')+ N(r,0;g) + N(r,a;9) + N(r,a;g)

- 2N(T7 179) - N(T’,O;g/) + S(T,g)
LEMMA 2.18 ([12]). Let F and G be as in Lemma 2.16. Then F = G
implies f = g.

LEMMA 2.19 ([8]). Let f, g share (1,2). Then one of the following cases
holds.

(i) T(r) < Na(r,0; f) + Na(r, 05 g) + Na(r, 003 f) + Na(r, 005 g)
+5(r, ) + 8(r, )
(i) f=g
(i) fg=1.
LEMMA 2.20. Let F and G be as in Lemma 2.16. Then S(r, F') = S(r, f)
and S(r,G") = S(r,g).
Proof. Using Lemma 2.4 we see that
T(r,F") <2T(r,F)+S(r,F)=2(n+3)T(r,f) + S
T(r,G') <2T(r,G)+ S(r,G) = 2(n+ 3)T(r,g) + S(r, g).
Hence S(r, F') = S(r, f) and S(r,G') = S(r,g). =
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LEMMA 2.21 ([2]). Let f and g be two meromorphic functions, and n > 8
be an integer. Also let F = f*(f —1)2f" and G = g"(g — 1)2¢". If
b+1)G+(a—b—-1)

bG + (a —b) ’

where a # 0, b are two constants, then f = g.

F:

3. Proofs of the theorems

Proof of Theorem 1.1. Let F and G be as in Lemma 2.16. Then it follows
that F' and G’ share (1,2). So by Lemmas 2.11, 2.17, 2.19 and 2.20 we
obtain, for all € > 0,

(3.1) T(r,F)<T(r,F')+ N(r,0; f) + N(r,a; f) + N(r,a; f)
—2N(r,1; f) = N(r,0; f') + S(r, f)
< No(r,0; ')+ Na(r, 00; F') + No(r, 0; G) 4+ Na(r, 00; G')
+ N(r,0; f)+ N(r,a; f) + N(r,a; f) = 2N(r, 1; f)
— N(r,0; f') + S(r, f) + S(r, 9)
< 2N(r,0; f) + 2N (r,00; f) + 3T(r, f) + 2N (r,0; g)
+2N(r,1;9) + N(r,0;¢") + 2N (r,00; g)
+ S(r, f)+ S(r,g)
< 5T(r, f) +5T(r,g) + 2N (r,00; f) + 3N (r, 00; g)
+ S(r, f)+ S(r,g)
< (7=20(o0; f)+e)T(r, f)+(8—36(00;9) +)T'(r, )
+ S(r, f)+ S(r,g)
< (15 —20(o0; f) — 30(00; g) + 26)T'(r) + S(r).
Using Lemma 2.4 we get
(3.2)  (n+3)T(r,f) < (15 —20(o0; f) — 30 (05 g) + 2¢)T'(r) + S(r).
In a similar manner we obtain
(3.3)  (n+3)T(r,g) <{15—360(c0; f) — 20(oc0; g) + 2c}T(r) + S(r).
Combining (3.2) and (3.3) we obtain
(3.4)  [n—12+420(c0c; f) +20(c0; g)
+ min{O(o0; f), O(00; 9)} — 2e]T(r) < S(r).
We choose
n — 12 4 20(o0; f) + 20(00; g) + min{O(oc; f), O(c0; 9)}
2
Then (3.4) implies a contradiction and hence H = 0.

O<e<
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Therefore case (i) of Lemma 2.19 does not hold. According to Lem-
ma 2.15, F/ # G'. So case (iii) of Lemma 2.19 does not hold either. Hence we
must have F’ = G’. Now the theorem follows from Lemmas 2.16 and 2.18.

Proof of Theorem 1.2. Let F and G be as in Lemma 2.16. Then F’ and
G’ share (1,1). Suppose H # 0. Then by Lemma 2.12 we get

T(er/) < NQ(T,O;F/) +N2(T700;F/) + NQ(T’,O;G/) + NQ(T’,OO;G/)
+ $N(r,0; F') + 3N(r,00; F') + S(r, F') + S(r, G").

Now by Lemmas 2.4, 2.11, 2.17 and 2.20 and proceeding in the same way
as for Theorem 1.1 we obtain, for all € > 0,

(3.5) (n+3)T(r,f) <[35/2 —360(c0; f) —36(c0;g) + 2e]|T(r) + S(r).
In a similar manner we obtain
(3.6) (n+3)T(r,g) <[35/2—360(oc0; f) — 360(c0; g) + 2¢]T(r) + S(r).
From (3.5) and (3.6) we get
(3.7) [n—29/2 + 30(o0; f) + 30(00; g) — 2e]T'(r) < S(r).
Since € > 0 is arbitrary, (3.12) implies a contradiction. Hence H = 0. Since
N(r,0; f') <T(r, f') = m(r,1/f') < 2T(r, f) — m(r, 1/ f') + S(r, f),
we note that
(3.8)  N(r,0;F')+ N(r,00; F') + N(r,0;G') + N(r,00; G")
< N(r,0: f) + N(r, 1 f) + N(r, 005 f) + N (1,05 f') + N(r,0; g)
+ N(r,1;9) + N(r,00;9) + N(r,0;¢")
< 5T(r, f) + 5T'(r, g) — m(r, 0; f') —m(r,0;") + S(r)
<107(r) — m(r,0; f') — m(r,0; ¢') + S(r).
Also using Lemma 2.4 we get
(3.9 T(r,F")+m(r,1/f")

=m(r, f*(f = 1)°f) +m(r,1/f") + N(r,00; f*(f = 1)°f)
> m(r, f"(f = 1)%) + N(r,00; f*(f = 1)*)
=T(r, f*(f = 1)%) = (n +2)T(r, f) + O(1).

Similarly

(3.10) T(r,G")+m(r,1/g") > (n+2)T(r,g) + O(1).

From (3.9) and (3.10) we get
(3.11)  max{T(r, F"),T(r,G")}
> (n+2)T(r)—m(r,1/f) —m(r,1/g") + O(1).
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By (3.8) and (3.11) applying Lemma 2.14 we get either F/ = G’ or F'G’ = 1.
Now the theorem follows from Lemmas 2.15, 2.16 and 2.18.

Proof of Theorem 1.3. Let F and G be as in Lemma 2.16. Then F’ and
G’ share (1,0). Suppose H # 0. Now using Lemma 2.13, follow the proof of
Theorem 1.2. u

Proof of Theorem 1.4. Let F and G be as in Lemma 2.16. From the as-
sumptions it follows that E4)(1; F') = E4(1;G') and E9)(1; F') = E9(1; G").
If possible suppose that
(312) T(r,F')+T(r,G")

< 2{Ny(r,0; F') + No(r,0; G') + No(r,00; F') + Na(r,00; G")}
+S(r, F") 4+ S(r,G").
Then by Lemmas 2.11, 2.17 and 2.20 we deduce from (3.12) that
T(r,F)+T(r,G) <T(r,F")+T(r,G') + N(r,0; f) + N(r,a; f)
+N(r,a@ f) = 2N(r,1; f) = N(r,0; f) + N(r,0; 9)
+ N(r,a;9) + N(r,a;g) — 2N(r,1;9) — N(r,0; ')
+ S(r, f)+ S(r,g)
<AN(r,0; f) + 4N (r,1; f) + 2N (r,0; f') + 4N (r, 00; f)
+4N(r,0;9) + 4N(r,1;9) + 2N(r,0;¢') + 4N (r, 00; g)
+ N(r,0; f)+ N(r,a; f)+ N(r,a; f) — 2N (r, 1; f)
— N(r,0; f) + N(r,0;9) + N(r,a;9) + N(r,a; g)
—2N(r,1;9) = N(r,0:¢') + S(r, f) + S(r, 9)
< 10T(r, f) + 5N (r,00; f) + 10T (r,g) + 5N (r, 00; g)
+ S(r, f)+ S(r,g).
So by Lemma 2.4 we get
(3.13) (n—=7T(r,f)+ (n—"7)T(r,9g)
< 5N(r,00; f) + 5N(r,00;9) + S(r, f) + S(r, g).
Choose 0 < € < n — 12 4+ min{O(o0; f), @(00; g)}. Then from (3.13) we get
(n—=1246(co; f) —e)T(r, f) + (n — 12+ O(o0; 9) — )T (1, g)
< S(r, f)+5(r,9),
which is a contradiction. Therefore the inequality (3.12) does not hold. So

from Lemma 2.10 we see that either F/ = G’ or F'G’ = 1. Now the theorem
follows from Lemmas 2.15, 2.16 and 2.18. =

Proof of Theorem 1.5. Let F and G be as in Lemma 2.16. From the as-
sumptions it follows that Es3)(1; F') = E3)(1;G') and Eyy(1; F') = Eyy(1; G").
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Then by Lemmas 2.7, 2.17 and 2.20 we get
(3.14) T(r,F)+T(r,G)
< 2{No(r,0; F') + Na(r,0; G') + Na(r,00; F') + Na(r,00; G')}
+ 5[N(r,0; F') + N(r,00; F') + N(r,0; G') + N(r, 00; G')]
+N(r,0,f)+N(r,a,f)+N(r,6,f) _2N(Ta]-af) _N(T‘,O,f/)
+N(T707.q) +N(T7a;g) +N<Taaag> - 2N(7’,1,g) - N(T’,O;g/)
+S(r, f) + S(r,9).
Using Lemmas 2.4 and 2.11 we infer from (3.14) that
(n+3)T(r, f) + (n+3)T(r,9)
<AN(r,0; f) + N(r,0; f) + 2N (r,1; f) + 5N (r, 00; f) + 3T (r, f)
+ 5[N(r,0; f) + N(r,1; f) + N(r,0; f) 4+ 2N (r, 00; f)]
+4N(r,0;9) + N(r,0; g) + 2N (r, 1;9) + 5N (r, 00; g) + 3T(r, g)
+ 3[N(r,0;9) + N(r,1;9) + N(r,0; g) + 2N (r, 00; g)] + S(r, f) + S(r, )
< BT(r, f) + ZT(r, g) + 6N (r, 00; f) + 6N (r, 00 g) + S(r, f) + S(r, 9),
i.e.
(3.15) (n—17/2)T(r, f) + (n—17/2)T(r, g)
< 6N (r,00; f) 4+ 6N (1,005 9) + S(r, ) + S(r, 9).
Choose 0 < & <n—29/2 + 6min{O(c0; f),O(c0;g)}. Then from (3.15) we
get
(n—29/2+60(c0; f) —e)T(r,f)+ (n—29/2+66(c0;9) —e)T(r,g)
< S(r, f) +S(r,9),
which is a contradiction. Therefore H = 0. So
b+1)G'+ (a—b—1)
bG' + (a —b) ’
where a # 0, b are two constants. Hence by Lemma 2.21 the theorem fol-
lows. =

o
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