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On the solvability of the Lyapunov equation for
nonselfadjoint differential operators of order 2m

with nonlocal boundary conditions

by Aris Tersenov (Heraklion)

Abstract. This paper is devoted to the solvability of the Lyapunov equation A∗U +
UA = I, where A is a given nonselfadjoint differential operator of order 2m with nonlocal
boundary conditions, A∗ is its adjoint, I is the identity operator and U is the selfadjoint
operator to be found. We assume that the spectra of A∗ and −A are disjoint. Under this
restriction we prove the existence and uniqueness of the solution of the Lyapunov equation
in the class of bounded operators.

1. Introduction. Consider the Cauchy problem in a Hilbert space H:

(1.1)
du

dt
= Au(t), t > 0; u(0) = u0,

where A is a closed linear operator with domain D(A) dense in H. It is as-
sumed that this problem is abstract parabolic, i.e. for any initial data u0 ∈ H
there is a continuous function u(t), which is defined for t > 0, takes values
in D(A) and satisfies (1.1). Many initial boundary value problems for evo-
lution equations reduce to problem (1.1). Assume that A is a nonselfadjoint
differential operator of order 2m, satisfying the following condition, which
ensures the abstract parabolicity of problem (1.1) (see [10]):

1o For some real β and θ (π/2 < θ < π), the resolvent R(A, λ) =
(A − λI)−1 of A exists and the quantity ‖λR(A, λ)‖ is uniformly bounded
with respect to λ in the sector |arg(λ− β)| ≤ θ.

Suppose that the operator A has a discrete spectrum. It is known that
the stability of solutions of problem (1.1) depends on the location of the
spectrum of A. The sum of the algebraic multiplicities of the eigenvalues
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of A in the half-plane <(λ) ≥ 0 minus the number of linearly independent
eigenelements corresponding to the imaginary eigenvalues is called the insta-
bility index of A. A direct computation of the spectrum is a laborious work,
therefore for applications it is important to find effective criteria for counting
instability indices. This problem is completely solved for selfadjoint ordinary
differential equations. Using the methods of variational calculus Morse [11],
[12] reduced the problem of counting the instability indices to the problem of
calculating the number of conjugate points of some boundary value problem.
Similar results were obtained by Krein [6], who used a different approach.
The theory of instability indices started in the works of Morse and Krein
and was completed by Zelenyak [4] and Belov [5].

Extending these results to nonselfadjoint operators is complicated due to
difficulties in the use of the methods of variational calculus. A constructive
approach to solving this problem for matrices was suggested by Lyapunov,
who reduced the problem of investigating the stability of a nonselfadjoint
matrix A to the problem of investigating the stability of some selfadjoint
matrix U. To construct such a U one has to solve an equation of the following
type:

(1.2) A∗U + UA = V,

where A is the given matrix, A∗ is its adjoint, V = V∗, V > 0, U is
the selfadjoint matrix to be found. Lyapunov showed that if A is stable,
then so is U and vice versa. Krein [6] generalized these results to bounded
operators in infinite-dimensional spaces. Belonosov [1] extended them to the
case of unbounded operators. He proved that if A satisfies 1o as well as the
conditions:

2o The spectra of A∗ and −A are disjoint ,
3o The operator V in (1.2) is bounded ,

then (1.2) has no more than one solution in the class of bounded operators
and the instability indices of A and U coincide.

The question of the properties of the solution of the Lyapunov equa-
tion (1.2) when A is a nonselfadjoint differential operator of order 2m with
local boundary conditions in spaces of vector-valued functions with one inde-
pendent variable was investigated in [1]–[3]. The present work is concerned
with equation (1.2) when A is a nonselfadjoint operator of order 2m with
nonlocal boundary conditions in spaces of vector-valued functions with one
independent variable. We assume that conditions 1o–3o are satisfied. As V
we take the identity operator in L2. We look for a solution of (1.2) in integral
form. The kernel of this integral satisfies certain conditions which will be
explained in what follows. After substitution of this integral operator into
(1.2) we obtain an elliptic boundary value problem in a square domain with
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respect to the kernel of the integral operator. This kernel also satisfies an
additional condition: the normal derivative of the kernel has a discontinu-
ity on the diagonal of the square. We construct a solution of the boundary
value problem mentioned above. As a final result we prove the existence
and uniqueness of the solution of the Lyapunov equation in the class of
bounded operators. The results of this work can be used in the investigation
of instability indices of nonselfadjoint operators of order 2m with nonlocal
boundary conditions.

2. Boundary value problem. Denote by C the set of complex num-
bers and by Cn the n-dimensional complex space. A vector u ∈ Cn is re-
garded as a column with components u1, . . . , un. The set of complex matrices
B = (bij), 1 ≤ i ≤ n, 1 ≤ j ≤ m, is denoted by Cn×m, and B∗ ∈ Cm×n is
the matrix adjoint to B. We use the standard spaces L2(Ω,G), W k

2 (Ω,G),
Ck(Ω,G) of functions defined on Ω or Ω and taking values in G, where
Ω ⊂ Rm, and G is either Cn or Cn×n. Notice that L2(Ω,Cn) is a Hilbert
space with inner product

(u, v) =
�

Ω

v∗(x)u(x) dx.

Consider the nonselfadjoint operator A on the interval ω = {0 < x < 1},
generated by the differential expression

l(u) = u(2m)(x) + P1(x)u(2m−1)(x) + . . .+ P2m(x)u(x)

and the regular boundary conditions [13]

B1
i u

(ki)(0) +
ki−1∑

j=0

B1
iju

(j)(0) +B2
i u

(ki)(1) +
ki−1∑

j=0

B2
iju

(j)(1) = 0,

i = 1, . . . , 2m, 0 ≤ k2m ≤ . . . ≤ k1 ≤ 2m− 1, ki+2 < ki,

where at least one of the matrices B1
i , B2

i is not zero. The coefficients Pk(x)
belong to C2m−k+ε([0, 1],Cn×n), where 0 < ε < 1. The domain D(A) con-
sists of the functions u ∈ W 2m

2 (ω,Cn) which satisfy the given boundary
conditions. It is known [13] that A acts in L2(ω,Cn), is closed, has a dis-
crete spectrum and satisfies 1o. We assume that A satisfies 2o and, without
loss of generality, that for any |λ| the following estimate holds:

‖(A− λI)−1‖ ≤ c

1 + |λ| , |arg(λ− β)| ≤ θ.

The resolvent of A is an integral operator with continuous kernel, acting in
L2(ω,Cn). The adjoint operator A∗ is generated by the differential expres-
sion [13]

m(v) = v(2m)(x) + (−1)2m−1(P ∗1 (x)v(x))(2m−1) + . . .+ P ∗2mv(x)
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and the regular boundary conditions of the same type, but with other coef-
ficients:

B̃1
i v

(ki)(0) +
ki−1∑

j=0

B̃1
ijv

(j)(0) + B̃2
i v

(ki)(1) +
ki−1∑

j=0

B̃2
ijv

(j)(1) = 0.

The operator A∗ also acts in L2(ω,Cn) and its resolvent is an integral
operator with continuous kernel. We say that the boundary condition is of
order ki if it does not involve u(ν)(p), p = 0, 1, when ν > ki and at least one
of the matrices B1

i , B2
i is not zero.

Consider equation (1.2) with coefficients A and A∗. Let V = I, where I
is the identity operator. We look for a solution of equation (1.2) in integral
form:

(2.1) Uu(x) =
1�

0

U(x, y)u(y) dy,

where the kernel U(x, y) is defined in the domain Ω = {(x, y) : 0< x < 1,
0 < y < 1}, takes values in Cn×n and satisfies the following conditions:

1. U ∈W 2m−1
2 (Ω,Cn×n).

2. U± ∈W 2m
2 (Ωδ±,Cn×n) for any δ > 0, where

Ωδ+ = {(x, y) ∈ Ω : y < x, x− y < 1− δ, δ < (x+ y)/2 < 1− δ},
Ωδ− = {(x, y) ∈ Ω : x < y, y − x < 1− δ, δ < (x+ y)/2 < 1− δ},

and U+(x, y) and U−(x, y) are the restrictions of U(x, y) to Ω0
+ and Ω0

−.
3. Suppose that Dk

xD
l
yU = U (k,l) coincides with Dk

xD
l
yU± in Ω0

± respec-
tively. It is required that

1�

0

( 1�

0

|U (k,l)| dx
)2
dy +

1�

0

( 1�

0

|U (k,l)| dy
)2
dx <∞

for all k and l such that k + l = 2m.

When studying the Lyapunov equation for operators with local bound-
ary conditions, Belonosov [1], [2] looked for a solution of (1.2) in the form
(2.1) with a kernel which satisfies conditions 1–3. In [3] he obtained a num-
ber of properties of the function U(x, y) which can be extended to the
present case. In particular, he proved that the traces of the derivatives Dk

xD
l
y

of order k + l = 2m − 1 on the line γ = {x = y : (x, y) ∈ Ω} belong to
L2(γ,Cn×n) and

D2m−k−1
x Dk

yU+|y=x −D2m−k−1
x Dk

yU−|y=x

= (−1)k[D2m−1
x U+|y=x −D2m−1

x U−|y=x], 0 ≤ k ≤ 2m− 1.
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For all α ∈ ω and k + l = 2m − 1 the traces of the derivatives Dk
xD

l
yU on

the lines x = α belong to L2(ω,Cn×n) with respect to the variable y. The
mapping α 7→ Dk

xD
l
yU(α, y), defined on ω and taking values in L2(ω,Cn×n),

is uniformly continuous. In an analogous way we find that U is a solution
of (1.2) if:

I. U+(x, y) and U−(x, y) are solutions of

(2.2) A∗(x,Dx)U(x, y) + [A∗(y,Dy)UT (x, y)]T = 0

in the domains Ω0
+ and Ω0

−.
II. U(x, y) satisfies the boundary conditions

Bi1(Dx)U(x, y) + Bi2(Dx)U(x, y) = 0,

Ci1(Dy)U(x, y) + Ci2(Dy)U(x, y) = 0,
where

Bi1(Dx)U(x, y) = B̃1
i U

(ki)
x (0, y) +

ki−1∑

j=0

B̃1
ijU

(j)
x (0, y),

Bi2(Dx)U(x, y) = B̃2
i U

(ki)
x (1, y) +

ki−1∑

j=0

B̃2
ijU

(j)
x (1, y).

Ci1(Dy)U(x, y) = U (ki)
y (x, 0)B̃1∗

i +
ki−1∑

j=0

U (j)
y (x, 0)B̃1∗

ij ,

Ci2(Dy)U(x, y) = U (ki)
y (x, 1)B̃2∗

i +
ki−1∑

j=0

U (j)
y (x, 1)B̃2∗

ij , i = 1, . . . , 2m.

III. D2m−1
x U+|y=x−D2m−1

x U−|y=x = 1
2E, where E is the identity matrix

in Cn×n.

Thus we have obtained the boundary value problem I–III with respect to
U(x, y). Henceforth we omit the tilde sign over the coefficients in boundary
conditions.

This boundary value problem can be modified by getting rid of condition
III. It is not difficult to construct T (x, y) which belongs to C2m+ε(Ω0

±) ∩
C2m−2+ε(Ω,Cn×n) and satisfies III on the diagonal x = y. So H(x, y) =
U(x, y)−T (x, y) satisfies 1–3, belongs to W 2m

2 in the domain Ωδ = {(x, y) ∈
Ω : |x − y| < 1 − δ, δ < (x+ y)/2 < 1 − δ, δ > 0} and is a solution of the
boundary value problem

(2.3) A1H(x, y) + [A2H
T (x, y)]T = F (x, y), (x, y) ∈ Ω,

Bi1(Dx)H(x, y) + Bi2(Dx)H(x, y) = ϕi(y), i = 1, . . . , 2m,(2.4)

Cj1(Dy)H(x, y) + Cj2(Dy)H(x, y) = ψj(x), j = 1, . . . , 2m,(2.5)
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where A1 = A∗(x,Dx), A2 = A∗(y,Dy) and F (x, y), ϕi(y), ψj(x) are obvi-
ously determined by T (x, y) and belong to Cε(Ω,Cn×n), C2m−ki+ε(ω,Cn),
C2m−kj+ε(ω,Cn), 0 < ε < 1, respectively.

3. Compatibility conditions. To solve the boundary value problem
(2.3)–(2.5), we first constructQ(x, y) which satisfies the boundary conditions
(2.4)–(2.5). Then the difference H−Q satisfies the boundary value problem
with homogeneous boundary conditions. Assume that Q ∈ Ck(Ω,Cn×n).
Then Q(x, y) satisfies the following equalities:

[Bi1(Dx) + Bi2(Dx)][Cj1(Dy) + Cj2(Dy)]Q(x, y)

= [Cj1(Dy) + Cj2(Dy)][Bi1(Dx) + Bi2(Dx)]Q(x, y), i, j = 1, . . . , 2m,

where we insert Q(x, y) only in the equalities in which the total order of the
boundary conditions on the left and right sides of (3.1) does not exceed k.
Hence for the right sides of (2.4), (2.5) we have

(3.1) [Bi1(Dx) + Bi2(Dx)]ψj(x) = [Cj1(Dy) + Cj2(Dy)]ϕi(y).

Henceforth we call (3.1) the compatibility conditions of order k. Notice that

ϕi(y) = −[Bi1(Dx) + Bi2(Dx)]T (x, y),

ψj(x) = −[Cj1(Dy) + Cj2(Dy)]T (x, y).

We have T ∈ C2m−2+ε(Ω,Cn×n) and the derivatives of order 2m − 1 have
a discontinuity on the diagonal. Therefore ϕi(y) and ψj(x) satisfy the com-
patibility conditions of order at most 2m − 2. Let us modify the boundary
value problem (2.3)–(2.5) in such a way that ϕi(y) and ψj(x) satisfy the
compatibility conditions of order 2m− 1.

We construct a solution of the following boundary value problem with
local boundary conditions in the quadrant:

(3.2)

v
(2m)
ix (x, y) + v

(2m)
iy (x, y) = 0, x > 0, y > 0,

v
(kj)
1y (x, 0)B1∗

j + (−1)kjv(kj)
4y (x, 0)B2∗

j =
θj

(2m− kj − 1)!
x2m−kj−1,

v
(kj)
2y (x, 0)B1∗

j + (−1)kjv(kj)
3y (x, 0)B2∗

j =
θj+2m

(2m− kj − 1)!
x2m−kj−1,

B1
i v

(ki)
1x (0, y) + (−1)kiB2

i v
(ki)
2x (0, y) =

σi
(2m− ki − 1)!

y2m−ki−1,

B1
i v

(ki)
4x (0, y) + (−1)kiB2

i v
(ki)
3x (0, y) =

σi+2m

(2m− ki − 1)!
y2m−ki−1,

i, j = 1, . . . , 2m,

where θl, σl, l = 1, . . . , 4m, are arbitrary elements of Cn×n, and vs(x, y),
s = 1, . . . , 4, take values in Cn×n.
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Passing to polar coordinates and using the method of separation of vari-
ables one can show [9] that (3.2) has a particular solution of the form

(3.3) vs(r, ϕ) = r2m−1
ν∑

k=0

(ln r)kχsk(ϕ),

where χsk ∈ C∞[0, 2π].
Write vs in Cartesian coordinates and apply the following transforma-

tions:
v̌1(x, y) = v1(x, y), v̌2(x, y) = v2(1− x, y),

v̌3(x, y) = v3(1− x, 1− y), v̌4(x, y) = v4(x, 1− y).

Further, multiply v̌s(x, y), s = 1, . . . , 4, by cut-off functions hs which have
the following properties:

1. h1 ≡ 1 in the ε1-neighborhood of (0, 0), h2 ≡ 1 in the ε1-neighborhood
of (1, 0), h3 ≡ 1 in the ε1-neighborhood of (1, 1), h4 ≡ 1 in the ε1-neighbor-
hood of (0, 1),

2. hs ≡ 0 outside the ε2-neighborhood of the corresponding angular
points, where ε2 > ε1.

Notice that after these transformations each of the functions hsv̌s satis-
fies (hsv̌s)

(2m)
x +(hsv̌s)

(2m)
y = 0 in the ε1-neighborhood of the corresponding

angular point.
Set

v(x, y) =
4∑

s=1

hs(x, y)v̌s(x, y).

Theorem 1. Let
ϕ̌i(y) = ϕi(y)− (Bi1(Dx) + Bi2(Dx))v(x, y), i = 1, . . . , 2m,

ψ̌j(x) = ψj(x)− (Cj1(Dy) + Cj2(Dy))v(x, y), j = 1, . . . , 2m.

Then one can select θl and σl, l = 1, . . . , 4m, (from (3.2)) so that the func-
tions ϕ̌i(x, y) and ψ̌j(x, y) satisfy the compatibility conditions (3.1).

Consider the boundary value problem (2.3)–(2.5) for H(x, y) − v(x, y).
Then the compatibility conditions (3.1) will appear in the following way:

(3.4) [Cj1(Dy) + Cj2(Dy)]ϕi(y)

− [Cj1(Dy) + Cj2(Dy)][Bi1(Dx) + Bi2(Dx)]v(x, y)

= [Bi1(Dx) + Bi2(Dx)]ψj(x)

− [Bi1(Dx) + Bi2(Dx)][Cj1(Dy) + Cj2(Dy)]v(x, y).

The function v(x, y) belongs to W 2m−1+ε
2 (Ω,Cn×n) and vanishes together

with the derivatives Dl
xD

k
yv, k + l ≤ 2m− 2, at the angular points. Taking

into account that ϕi(y) and ψj(x) satisfy the compatibility conditions of
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order 2m − 2, we conclude that (3.4) can be represented in the following
way:

(3.5) σiB
1∗
j + σi+2mB

2∗
j −B1

i θj −B2
i θj+2m

= [Bi1(Dx) + Bi2(Dx)]ψj(x)

− [Cj1(Dy) + Cj2(Dy)]ϕi(y), ki + kj = 2m− 1,

where θl, σl, l = 1, . . . , 4m, are functions with values in Cn×n. From the
regularity of the boundary conditions (2.4), (2.5) it follows that the matrix
(B1

i B
2
i ) has maximal rank and therefore (3.5) is solvable with respect to θl,

σl, l = 1, . . . , 4m. Calculating θl, σl, we satisfy the compatibility conditions
(3.1). The theorem is proved.

Consider the difference H(x, y) − v(x, y) = H1(x, y). Replacing H in
(2.3)–(2.5) by H1(x, y) + v(x, y) we obtain

(3.6) A1H1(x, y) + [A2H
T
1 (x, y)]T = F̃ (x, y),

Bi1(Dx)H1 + Bi2(Dx)H1 = ϕ̌i(y), i = 1, . . . , 2m,(3.7)

Cj1(Dy)H1 + Cj2(Dy)H1 = ψ̌j(x), j = 1, . . . , 2m.(3.8)

The right sides in (3.7), (3.8) satisfy the compatibility conditions (3.1) dis-
tinct from those satisfied by the right sides in (2.4), (2.5). By the special
choice of v(x, y), in the neighborhood of all angular points we have v(2m)

x +
v

(2m)
y (x, y) = 0, therefore F̃ ∈ W ε

2 (Ω), ϕ̌i ∈ W
2m−ki−1/2+ε
2 (ω,Cn×n),

ψ̌j ∈W 2m−kj−1/2+ε
2 (ω,Cn×n), ε < 1/2.

4. Transformation of the nonhomogeneous boundary value
problem to the homogeneous one. We proceed to construct V ∈
W 2m+ε

2 (Ω,Cn×n) which satisfies (3.7), (3.8). First we construct a function
Ṽ (x, y) = V1(x, y) + V2(x, y) in the case when the right sides in (3.7), (3.8)
satisfy

(4.1)
ϕ̌

(p)
i (0) = ϕ̌

(p)
i (1) = 0, p = 0, . . . , 2m− ki − 1, i = 1, . . . , 2m,

ψ̌
(p)
j (0) = ψ̌

(p)
j (1) = 0, p = 0, . . . , 2m− kj − 1, j = 1, . . . , 2m,

where V1(x, y) satisfies the boundary conditions of the type

(4.2) B1
i V

(ki)
1x (0, y) +

ki−1∑

p=0

B1
ipV

(p)
1x (0, y)

+B2
i V

(ki)
1x (1, y) +

ki−1∑

p=0

B2
ipV

(p)
1x (1, y) = ϕ̌i(y), i = 1, . . . , 2m,
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(4.2)
[cont.] V

(kj)
1y (x, 0)B1∗

j +
kj−1∑

p=0

V
(p)
1y (x, 0)B1∗

jp

+V
(kj)
1y (x, 1)B2∗

j +
kj−1∑

p=0

V
(p)
1y (x, 1)B2∗

jp = 0, j = 1, . . . , 2m,

and V2(x, y) satisfies the boundary conditions of the type

B1
i V

(ki)
2x (0, y) +

ki−1∑

p=0

B1
ipV

(p)
2x (0, y)

+B2
i V

(ki)
2x (1, y) +

ki−1∑

p=0

B2
ipV

(p)
2x (1, y) = 0, i = 1, . . . , 2m,

(4.3)

V
(kj)
2y (x, 0)B1∗

j +
kj−1∑

p=0

V
(p)
2y (x, 0)B1∗

jp

+V
(kj)
2y (x, 1)B2∗

j +
kj−1∑

p=0

V
(p)
2y (x, 1)B2∗

jp = ψ̌j(x), j = 1, . . . , 2m.

Let ϕ̌i(y) ≡ 0 when y ∈ (−∞, 0) ∪ (1,∞), ψ̌j(x) ≡ 0 when x ∈ (−∞, 0) ∪
(1,∞), i, j = 1, . . . , 2m. By the regularity of the boundary conditions, (4.2)
is solvable with respect to V

(kj)
1y (x, 0), V (kj)

1y (x, 1), V (ki)
1x (0, y), V (ki)

1x (1, y),
i, j = 1, . . . , 2m. So one can deduce that V1(x, y) takes the following values
on the boundary of Ω:

V
(l)
1y (x, 0) = V

(l)
1y (x, 1) = 0, V

(l)
1x (0, y) = ϕl(y),

V
(l)
1x (1, y) = ϕl+2m(y), l = 0, . . . , 2m− 1,

where ϕl(y), ϕl+2m(y), l = 0, . . . , 2m− 1, are linear combinations of ϕ̌i(y),
i = 1, . . . , 2m. If the boundary condition of order ks is absent then, for
simplicity, we assume ϕs = ϕs+2m = 0.

We consider a model problem. We have to find u1 ∈W 2m+ε
2 (ΩN1 ), where

ΩN1 = {(x, y) : 0 < x < N, 0 < y < N}, which takes given values on the
boundary of Ω1 = {(x, y) : x > 0, y > 0}:
(4.4) u

(l)
1y = 0, u

(l)
1x = ϕl(y), l = 0, . . . , 2m− 1.

Let

u(ϕ)(x, y) =
1
x

∞�

0

ω

(
y − ξ
x

)
ϕ(ξ) dξ,

where ω ∈ C∞0 (R+) and � ∞0 ω dx = 1. Let us prove the following
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Lemma 1. If ϕ ∈ W 2m−1/2−k+ε
2 (R+) then xku(ϕ)(x, y) ∈ W 2m+ε

2 (ΩN1 ),
k = 0, . . . , 2m− 1, for any N > 0 where ϕ(l)(0) = 0, l = 0, . . . , 2m− 1− k.

Proof. First we show that
∥∥∥∥
∂2m(xku(ϕ)(x, y))

∂y2m

∥∥∥∥
L2(Ω1)

≤ C‖ϕ‖
W

2m−1/2−k
2 (R+),

where ϕ ∈ C∞0 (R+). In fact

(4.5)
∥∥∥∥
∂2m(xku(ϕ)(x, y))

∂y2m

∥∥∥∥
L2(Ω1)

=
∥∥∥∥
∂2m

∂y2m

(
xk
∞�

0

ω(t)ϕ(y − xt) dt
)∥∥∥∥

L2(Ω1)

=
∥∥∥∥
∂k+1

∂yk+1

(
xk−1

∞�

0

ω

(
y − ξ
x

)
ϕ(2m−1−k)(ξ) dξ

)∥∥∥∥
L2(Ω1)

=
∥∥∥∥

1
x

∞�

0

ω(k+1)(t)ϕ(2m−1−k)(y − xt) dt
∥∥∥∥
L2(Ω1)

.

Let us add and subtract ϕ(2m−1−k)(y) in the last integral. Then one can
represent (4.5) in the following way:
∥∥∥∥

1
x

∞�

0

ω(k+1)(t)[ϕ(2m−1−k)(y − xt)− ϕ(2m−1−k)(y)] dt

+
1
x

∞�

0

ω(k+1)(t)ϕ(2m−1−k)(y) dt
∥∥∥∥
L2(Ω1)

=
∥∥∥∥

1
x

∞�

0

ω(k+1)(t)[ϕ(2m−1−k)(y − xt)− ϕ(2m−1−k)(y)] dt
∥∥∥∥
L2(Ω1)

,

since

1
x

∞�

0

ω(k+1)(t)ϕ(2m−1−k)(y) dt =
ϕ(2m−1−k)(y)

x

∞�

0

d(ω(k)(t)) dt = 0,

due to the fact that ω ∈ C∞0 (R+). Without loss of generality we assume
that ω ∈ C∞0 [0, 1]. Let τ = xt. Then

(4.6)
∥∥∥∥

1
x

∞�

0

ω(k+1)(t)[ϕ(2m−1−k)(y − xt)− ϕ(2m−1−k)(y)] dt
∥∥∥∥
L2(Ω1)
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=
(∞�

0

∞�

0

∣∣∣∣
1
x

1�

0

ω(k+1)(t)[ϕ(2m−1−k)(y − xt)− ϕ(2m−1−k)(y)] dt
∣∣∣∣
2

dx dy

)1/2

≤ C
(∞�

0

dy

∞�

0

dx

∣∣∣∣
1
x2

x�

0

τα
ϕ(2m−1−k)(y − τ)− ϕ(2m−1−k)(y)

τα
dτ

∣∣∣∣
2)1/2

≤ C
(∞�

0

dy

∞�

0

dx

(
1
x4

x�

0

τ2α dτ

×
x�

0

|ϕ(2m−1−k)(y − τ)− ϕ(2m−1−k)(y)|2
|τ |2α dτ

))1/2

,

where α < 1. Since

1
x4

x�

0

τ2α dτ =
1

2α+ 1
x2α−3,

after changing the limits of integration in the last two integrals in (4.6) one
can obtain

(4.7) C

(∞�

0

dy

∞�

0

dx

(
1
x4

x�

0

τ2α dτ

×
x�

0

|ϕ(2m−1−k)(y − τ)− ϕ(2m−1−k)(y)|2
|τ |2α dτ

))1/2

≤ C1

(∞�

0

dy

∞�

0

x2α−3 dx

x�

0

|ϕ(2m−1−k)(y − τ)− ϕ(2m−1−k)(y)|2
|τ |2α dτ

)1/2

≤ C1

(∞�

0

dy

∞�

0

|ϕ(2m−1−k)(y − τ)− ϕ(2m−1−k)(y)|2
|τ |2α dτ

∞�

τ

x2α−3 dx

)1/2

≤ C2

(∞�

0

∞�

0

|ϕ(2m−1−k)(y − τ)− ϕ(2m−1−k)(y)|2
|τ |2 dy dτ

)1/2

≤ C2‖ϕ(2m−1/2−k)‖
W

1/2
2 (R+).

From (4.7) it follows that

(4.8)
∥∥∥∥
∂2m(xku(ϕ)(x, y))

∂y2m

∥∥∥∥
L2(Ω1)

≤ C‖ϕ‖
W

2m−1/2−k
2 (R+).

Consider the derivative of order 2m with respect to x. From the formulas
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for differentiation of the product and of the composite function we have

(4.9)
∂2m(xku(ϕ)(x, y))

∂x2m =
k∑

p=0

k−p∑

q=0

k−p−q∑

r=0

{
apbqcr

1
x

×
[∞�

0

ω(k−p−q−r+1)(t)t2m−p−q−rϕ(2m−1−k)(y − xt) dt

− (2m− p− q − r)
∞�

0

ω(k−p−q−r)(t)t2m−p−q−r−1ϕ(2m−1−k)(y − xt) dt
]}

− 1
x

[
(2m− k)

∞�

0

ω(t)t2m−1−kϕ(2m−1−k)(y − xt) dt

+
∞�

0

ω′(t)t2m−kϕ(2m−1−k)(y − xt) dt
]
,

where the constants ap, bq, cr can be easily calculated. Taking into account
that the singularity with respect to x in (4.9) is the same as in (4.5) and
that

(2m− p− q − r)
∞�

0

ω(k−p−q−r)(t)t2m−1−p−q−r dt

+
∞�

0

ω(k−p−q−r−1)(t)t2m−p−q−r dt = 0

for all admissible k, p, q, r, we obtain

(4.10)
∥∥∥∥
∂2m(xku(ϕ)(x, y))

∂x2m

∥∥∥∥
L2(Ω1)

≤ C‖ϕ‖
W

2m−1/2−k
2 (R+).

It is clear that all the derivatives of order less than 2m of the function xkuϕ
belong to L2(ΩN1 ). Here we write ΩN

1 instead of Ω1 because the functions
Dp
xD

q
y(xkuϕ), p + q < 2m, have singularities at infinity. From (4.8), (4.10)

it follows [14] that

‖xku(ϕ)(x, y)‖W 2m
2 (ΩN1 ) ≤ CN‖ϕ‖W 2m−1/2−k

2 (R+).

Now if ϕ ∈W 2m−1/2−k
2 (R+), then we assume that

(4.11) ϕ(p)(0) = 0, p = 0, . . . , l − 2,
1�

0

|ϕ(l−1)(ξ)| dξ
ξ
<∞,

where l = 2m− k. From (4.11) it follows that ϕ(ξ) can be approximated by
functions ζl ∈ C∞0 (R+),

(4.12) ‖ϕ− ζl‖W 2m−1/2−k
2 (R+) → 0, l→∞.
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From (4.12) and the considerations above it follows that

‖xku(ϕ)(x, y)‖W 2m
2 (ΩN1 ) ≤ CN‖ϕ‖W 2m−1/2−k

2 (R+).

Analogously one can obtain the estimate

‖xku(ϕ)(x, y)‖W 2m+1
2 (ΩN1 ) ≤ CN‖ϕ‖W 2m+1/2−k

2 (R+),

where ϕ ∈ W
2m+1/2−k
2 (R+) and the necessary compatibility conditions

when ξ = 0 are satisfied. Using the results of Grisvard concerning inter-
polation spaces ([8], Theorems 7.3 and 7.6) we obtain

‖xku(ϕ)(x, y)‖W 2m+ε
2 (ΩN1 ) ≤ CN‖ϕ‖W 2m−1/2−k+ε

2 (R+),

where ϕ(l)(0) = 0, l = 0, . . . , 2m− 1− k. The lemma is proved.

Let

(4.13) u1(x, y) = u(ϕ0)(x, y) +
2m−1∑

k=1

xku(ϕ̌k)(x, y),

where

(4.14) ϕ̌k =
1
k!

[
ϕk − ∂ku(ϕ0)

∂xk
(0, y)−

k−1∑

l=1

∂k(xlu(ϕ̌l))

∂xk
(0, y)

]
.

From the previous section and the definition of ϕ0, ϕ̌k, k = 1, . . . , 2m−1,
it follows that ϕ0 ∈ W 2m−1/2+ε

2 (R+), ϕ̌k ∈ W 2m−1/2−k+ε
2 (R+). From Lem-

ma 1 we find that u1∈W 2m+ε
2 (ΩN1 ). Furthermore u(k)

1y (x, 0) = 0, k = 0, . . .
. . . , 2m − 1, since limy→0 ω

(k)((y − ξ)/x) = 0, k = 0, . . . , 2m − 1. It is not
difficult to verify that

∂l

∂xl
(xku(ϕ̌k)(x, y))

∣∣∣∣
x=0

= 0, l = 1, . . . , k − 1.

Therefore

(4.15) u
(l)
1x(0, y) =

∂lu(ϕ0)

∂xl
(0, y) +

l∑

p=1

∂l(xku(ϕ̌k))
∂xl

(0, y).

From the formulas for differentiation of the product one can obtain

∂l

∂xl
(xlu(ϕ̌l)(0, y)) = ϕ̌l(y).

Consequently, from (4.14) and (4.15) it follows that

u
(l)
1x(0, y) = ϕl(y).

So we have shown that u1 represented by (4.13) belongs to W 2m+ε
2 (ΩN1 ) for

any N > 0 and takes the given values (4.4).
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Define

Ω2 = {(x, y) : x < 1, y > 0},
Ω3 = {(x, y) : x < 1, y < 1},
Ω4 = {(x, y) : x > 0, y < 1},
ΩN2 = {(x, y) : −N < x < 1, 0 < y < N},
ΩN3 = {(x, y) : −N < x < 1, −N < y < 1, },
ΩN4 = {(x, y) : 0 < x < N, −N < y < 1}

and let us, s = 2, 3, 4, be functions which belong to W 2m+ε
2 (ΩNs ) and take

the following values on the boundary of Ωs, s = 2, 3, 4, respectively:

u
(l)
2y (x, 0) = 0, u

(l)
2x(1, y) = ϕl+2m(y),

u
(l)
3y (x, 1) = 0, u

(l)
3x(1, y) = ϕl+2m(y),

u
(l)
4y (x, 1) = 0, u

(l)
4y (0, y) = ϕl(y), l = 0, . . . , 2m− 1.

It is not difficult to obtain us(x, y) from (4.13) by a suitable change of
variables.

Consider an open covering of the boundary of Ω by discs with centers
at the vertices of the square and with radii 1/2 ≤ ε ≤

√
2/2 and take a

partition of unity subordinate to this covering,

(4.16) 1 =
4∑

s=1

ξs(x, y).

Note that it is sufficient to require the fulfillment of (4.16) only on the
boundary of Ω. It is clear that the function

V1(x, y) =
4∑

s=1

ξs(x, y)us(x, y)

is the required extension. Similarly one can construct V2(x, y).
Due to the special selection of V1 and V2 the function Ṽ belongs to

W 2m+ε
2 (Ω,Cn×n) and satisfies the boundary conditions (3.7), (3.8), where

the right sides satisfy (4.1).
We return to the original boundary problem (3.6)–(3.8) and formulate

the following

Theorem 2. If the boundary conditions (3.7), (3.8) are such that for
any ki, kj we have ki + kj ≥ 2m, then V (x, y) always exists. Otherwise for
the existence of V (x, y) it is necessary and sufficient that the compatibility
conditions (3.1) hold.

Proof. The necessity was shown in §2. To prove the sufficiency, consider
(3.7), (3.8):
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B1
i V

(ki)
x (0, y) +

ki−1∑

p=0

B1
ipV

(p)
x (0, y)

+B2
i V

(ki)
x (1, y) +

ki−1∑

p=0

B2
ipV

(p)
x (1, y) = ϕ̌i(y), i = 1, . . . , 2m,

V (kj)
y (x, 0)B1∗

j +
kj−1∑

p=0

V (p)
y (x, 0)B1∗

jp

+V (kj)
y (x, 1)B2∗

j +
kj−1∑

p=0

V (p)
y (x, 1)B2∗

jp = ψ̌j(x), j = 1, . . . , 2m.

Introduce the following notations:

(4.17)
V (k)
x (0, y) = f0

k (y), V (k)
y (x, 0) = g0

k(x),

V (k)
x (1, y) = f1

k (y), V (k)
y (x, 1) = g1

k(x), k = 1, . . . , 2m− 1.

Since we require that V ∈W 2m+ε
2 (Ω,Cn×n), the embedding theorems yield

V ∈ C2m−1(Ω,Cn×n). Therefore the values of f 0
k (y), f1

k (y), g0
k(x), g1

k(x)
at the vertices of the square must satisfy certain conditions, which can be
written in the following way:

(4.18)
g

0(k)
l (0) = f

0(l)
k (0), g

0(k)
l (1) = f

1(l)
k (0),

g
1(k)
l (0) = f

0(l)
k (1), g

1(k)
l (1) = f

1(l)
k (1), k + l ≤ 2m− 1.

Let us successively differentiate every boundary condition in (3.7), (3.8)
and add the results to the originals until the order of the boundary condition
reaches 2m− 1. Then we successively put x = 0, x = 1, y = 0, y = 1 in the
resulting extended system of boundary conditions. In this way, we obtain
the following system of equalities:

B1
i f

0(l)
ki

(0) +
ki−1∑

p=0

B1
ipf

0(l)
p (0)

+B2
i f

1(l)
ki

(0) +
ki−1∑

p=0

B2
ipf

1(l)
p (0) = ϕ̌

(l)
i (0),

(4.19)

g
0(k)
kj

(0)B1∗
j +

kj−1∑

p=0

g0(k)
p (0)B1∗

jp

+ g
1(k)
kj

(0)B2∗
j +

kj−1∑

p=0

g1(k)
p (0)B2∗

jp = ψ̌
(k)
j (0),
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B1
i f

0(l)
ki

(1) +
ki−1∑

p=0

B1
ipf

0(l)
p (1)

+B2
i f

1(l)
ki

(1) +
ki−1∑

p=0

B2
ipf

1(k)
p (1) = ϕ̌

(l)
i (1),

(4.19)
[cont.] g

0(k)
kj

(1)B1∗
j +

kj−1∑

p=0

g0(k)
p (1)B1∗

jp

+ g
1(k)
kj

(1)B2∗
j +

kj−1∑

p=0

g1(k)
p (1)B2∗

jp = ψ̌
(k)
j (1).

ki + l ≤ 2m− 1, kj + k ≤ 2m− 1.

If the system (4.18), (4.19) is solvable with respect to f and g, then one can
construct P (x, y) =

∑4
s=1 hs(x, y)Ps(x, y), where Ps(x, y) are polynomials

of order 2m − 1, and hs(x, y) are cut-off functions mentioned above [1],
which take the corresponding given values together with their derivatives at
the angular points. Consequently, for H1 − P we obtain a boundary value
problem in which the right sides of the boundary conditions satisfy (4.1).

First we prove the solvability of (4.18), (4.19) when the boundary con-
ditions are without low order terms. Let us express g in terms of f using
(4.18) and substitute it into (4.19):

(4.20)

(
f

0(kj)
k (0) f

0(kj)
k (1)

f
1(kj)
k (0) f

1(kj)
k (1)

)(
B1∗
j

B2∗
j

)
=

(
ψ̌

(k)
j (0)

ψ̌
(k)
j (1)

)
,

(B1
i B2

i )

(
f

0(l)
ki

(0) f
0(l)
ki

(1)

f
1(l)
ki

(0) f
1(l)
ki

(1)

)
= ( ϕ̌(l)

i (0) ϕ̌
(l)
i (1) ),

Set (
f

0(r)
q (0) f

0(r)
q (1)

f
1(r)
q (0) f

1(r)
q (1)

)
= Xr

q ,

(
B1∗
j

B2∗
j

)
= B∗j , (B1

i B2
i ) = Bi,

(
ψ̌

(k)
j (0)

ψ̌
(k)
j (1)

)
= Ψjk, ( ϕ̌(l)

i (0) ϕ̌
(l)
i (1) ) = Φil.

Then we can represent (4.20) as

(4.21) 1. Xkj
k B

∗
j = Ψjk, 2. BiX l

ki = Φil.

The compatibility conditions (3.1) appear in the following form:

(4.22) BiΨjki = ΦikjB
∗
j , ki + kj ≤ 2m− 1.

It can be easily seen that (4.21) decomposes into subsystems with respect
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to some Xr
q . Each of these subsystems can consist of one, two, three or

four matrix equations depending on which boundary conditions are present
in (3.7), (3.8). Note that these subsystems may consist of no more than
two matrix equations of type 1 and no more than two matrix equations of
type 2. Otherwise conditions (4.18) would connect the values of the functions
f
i(l)
k (y), k = 0, . . . , 2m−1, l = 0, . . . , 2m−1−k, i = 0, 1 at the points y = 0,
y = 1, which is impossible.

Let us now show that these subsystems are solvable in all cases mentioned
above. Suppose we have one matrix equation with respect to Xr

q , for example
of type 2. Then

BqX
r
q = Φqr.

This equation is always solvable, because the rank of Bq is n, due to the
fact that the boundary conditions are regular.

Suppose we have two matrix equations of type 2 with respect to Xr
q ,

(
Bq
Bq+1

)
Xr
q =

(
Φqr
Φq+1,r

)
.

This system is again solvable, because det
(
Bq
Bq+1

)
is not zero due to the fact

that the boundary conditions (3.7), (3.8) are regular. Let us again consider
system (4.21). Let k = ki, l = kj . Then (4.21) is transformed into

(4.23) (a) X l
kB
∗
j = Ψjk, (b) BiX l

k = Φil.

If (4.23) consists of four matrix equations, then again from the regularity of
the boundary conditions we obtain

(4.24) X l
k = (Ψjk Ψj,k+1 )(B∗j B∗j+1 )−1 =

(
Bi
Bi+1

)−1(
Φil
Φi+1,l

)
.

It follows directly that

(4.25) BiΨjk = ΦilB
∗
j , Bi+1Ψj+1,k = Φi+1,lB

∗
j+1,

and k = ki, l = kj , so (4.25) is one of the compatibility conditions (4.22).
They are assumed to hold, so (4.23) has a solution, which is given by one of
the formulas in (4.24).

Let (4.23) consist of one matrix equation of each type (the case when
(4.23) consists of two matrix equations of one type and one matrix equation
of another type is treated similarly). The rank of Bi is n, so we can solve the
second equation in (4.23) with respect to X l

k and write it in the following
form:

X l
k = B+

i Φil,

where B+
i is some right-inverse operator to Bi, i.e., BiB+

i = E, not uniquely
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defined. Represent it in the following way:

(4.26) B+
i Φil = CiΦil + Yi,

where Ci is a linear operator which solves the corresponding nonhomoge-
neous problem and Yi is a solution of the homogeneous one. Select B+

i in
such a way that X l

k, defined from the second matrix equation in (4.23), is
also a solution of the first one. Then

(4.27) X l
kB
∗
j = B+

i ΦilB
∗
j = Ψjk.

Since the compatibility conditions BiΨjk = ΦilB
∗
j hold, for solvability of

(4.27) we must select B+
i in such a way that

(4.28) CiBiΨjk + YiB
∗
j = Ψjk.

Notice that Bi acts in C2n×n. Decompose C2n×n into the direct sum of
the defective subspace and its orthogonal complement. Represent Ψjk in the
form

Ψjk = Ψ1
jk + Ψ2

jk,

where BiΨ2
jk = 0 and Ψ1

jk belongs to the orthogonal complement. Let Es,
s = 1, . . . , n, be a basis in the orthogonal complement and Gs, s = 1, . . . , n,
be a basis in the defective subspace. Let

(4.29) CiBiEs = Es, s = 1, . . . , n, YiB
∗
j = Ψ2

jk.

From the regularity of the boundary conditions (3.7), (3.8) it follows that
(4.29) is solvable with respect to Ci and Yi. The theory of linear algebraic
systems [7] shows that among all solutions of (4.29) we can select Yi that
can be represented in the following form:

Yi = Ψ2
jkY

1
i ,

where Y 1
i is a matrix of appropriate dimension. Notice that BiYi = 0. It is

not difficult to verify that defined in such a way, the operator B+
i satisfies

(4.28). We can show that B+
i Φil is a solution of BiX l

k = Φil.
Represent Φil in the following form:

Φil =
( n∑

p=1

αpQp

n∑

p=1

βpQp
)
,

where Qp = BiEp, p = 1, . . . , n. Consequently, by (4.29),

B+
i Φil = CiΦil + Yi = Ci

( n∑

p=1

αpQp

n∑

p=1

βpQp
)

+ Yi

=
( n∑

p=1

αpEi

n∑

p=1

βpEi
)

+ Yi.



Solvability of the Lyapunov equation 97

Finally we obtain

BiB
+
i Φil = Bi(CiΦil + Yi)

= Bi

( n∑

p=1

αpCiQp

n∑

p=1

βpCiQp
)

+BiYi

= Bi

( n∑

p=1

αpEi

n∑

p=1

βpEi
)

+BiYi

=
( n∑

p=1

αpQp

n∑

p=1

βpQp
)

= Φil,

since BiYi = 0.

Suppose now that low order terms of the boundary conditions are present.
In that case the compatibility conditions appear in the following form:

ΦikjB
∗
j +

kj−1∑

p=0

ΦipB
∗
jp = BiΨikj +

ki−1∑

p=0

BipΨjp, ki + kj ≤ 2m− 1.

After replacing g by f the systems (a) and (b) take the form

(a) Xkj
k B

∗
j +

kj−1∑

q=0

Xq
kB
∗
jq = Ψjk, k + kj ≤ 2m− 1,

(b) BiX l
ki +

ki−1∑

p=0

BipX
l
p = Φil, ki + l ≤ 2m− 1.

Consider (b) for each l = 0, . . . , 2m− ki − 1 to obtain X l
0, X l

1, . . . ,X
l
ki

. We
can do this as the boundary conditions are regular and (b) has a diagonal
form for each l. Let us prove that a suitable solution of (b) is also a solution
of (a). Let ki and kj take values in [τ0, τ1], where 0 ≤ τ0, τ1 ≤ 2m− 1. Then
0 ≤ k, l ≤ τ2 = 2m−1−τ0. If τ0+τ1 ≤ 2m−1 then τ2 ≥ τ1 and the unknown
terms Xµ

k , k > τ1, k + µ ≤ 2m − 1, are obtained directly from (a). Note
that if the boundary condition of order kν , where τ0 ≤ kν ≤ τ1, is absent
in (3.7) then we obtain Xµ

kν
for µ + kν ≤ 2m − 1 again directly from (a),

substitute them in (b) and obtain the corresponding X l
ki

for ki+ l ≤ 2m−1
from system (b). If τ0 + τ1 > 2m − 1 then τ1 > τ2. In that case Xµ

k for
µ + k ≤ 2m − 1 and for µ > τ2 are obtained directly from (a). Moreover if
the boundary condition of order kν is absent in (3.7) then we use the same
considerations as in the case τ0 + τ1 ≤ 2m−1. When kν > τ2 we choose Xµ

kν

for kν + µ ≤ 2m − 1 arbitrarily. Substitute X l
ki

, ki + l ≤ 2m − 1, from (b)
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into (a), regarding that

(4.30) X l
ki = Cki

(
Φil −

ki−1∑

p=0

BipX
l
p

)
+ Ykil,

where BiYkil = 0, l = 0, . . . , τ2. Using the corresponding compatibility con-
ditions we see that X l

ki
, ki + l ≤ 2m − 1, from (b) solve system (a) if and

only if

CkiBiΨjki + YkikjB
∗
j +

kj∑

q=0

YkiqB
∗
jq = Ψjki , ki + kj ≤ 2m− 1.

We have already constructed such operators when proving the theorem in
the case when the boundary conditions do not contain low order terms.

Note that if ki+kj > 2m−1 for all i, j then every equation of system (a)
contains terms which cannot be obtained from (b) and therefore it is possible
to solve system (a)–(b) without compatibility conditions.

Finally, the values of the traces of V (x, y) and their derivatives at the
vertices of the square satisfy the conditions (4.18), (4.19) if and only if the
compatibility conditions (3.1) hold. Moreover, if ki + kj > 2m − 1 for all
i, j, then kl, ks < ki, kj and the system (4.18), (4.19) is solvable without
the compatibility conditions (which are not required in this case). Therefore
V (x, y) = Ṽ (x, y)+P (x, y) satisfies the boundary conditions (3.7), (3.8) and
has the required smoothness. The theorem is proved.

Thus Z(x, y) = H1(x, y) − V (x, y) is a solution of the boundary value
problem

(4.31)

A1Z(x, y) + [A2Z
T (x, y)]T = F ∗(x, y), (x, y) ∈ Ω,

Bi1Z(x, y) + Bi2Z(x, y) = 0, i = 1, . . . , 2m,

Cj1Z(x, y) + Cj2Z(x, y) = 0, j = 1, . . . , 2m,

where F ∗(x, y) = F̌ (x, y)− (A1V (x, y) + [A2V
T (x, y)]T ).

5. Solution of the homogeneous boundary value problem. Con-
sider problem (4.31). Let Z(x, y) and F ∗(x, y) be functions with values in
Cn2 . Then problem (4.31) can be represented in the following way:

AxZ(x, y) + AyZ(x, y) = F (x, y),

(5.1) (B1
i ⊗ I)Z(ki)

x (0, y) +
ki−1∑

p=0

(B1
ip ⊗ I)Z(p)

x (0, y)

+ (B2
i ⊗ I)Z(ki)

x (1, y) +
ki−1∑

p=0

(B2
ip ⊗ I)Z(p)

x (1, y) = 0, i = 1, . . . , 2m,
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(5.1)
[cont.] (I⊗B1

j )Z
(kj)
y (x, 0) +

kj−1∑

p=0

(I⊗B1
jp)Z

(p)
y (x, 0)

+ (I⊗B2
j )Z

(kj)
y (x, 1) +

kj−1∑

p=0

(I⊗B2
jp)Z

(p)
y (x, 1) = 0, j = 1, . . . , 2m,

where

AxZ(x, y) = Z(2m)
x (x, y) + (−1)2m−1((P ∗1 ⊗E)Z(x, y))(2m−1)

+ (−1)2m−2((P ∗2 ⊗E)Z(x, y))(2m−2) + . . .+ (P ∗2m ⊗E)Z(x, y),

AyZ(x, y) = Z(2m)
y (x, y) + (−1)2m−1((E⊗ PT1 )Z(x, y))2m−1

+ (−1)2m−2((E⊗ PT2 )Z(x, y)) + . . .+ (E⊗ P T2m)Z(x, y),

and the symbol ⊗ means direct product. For simplicity we omit the star
on F (x, y). Let us prove that the solution of (5.1) is given by the contour
integral (see [8])

(5.2) Z(x, y) = − 1
2πi

�

Γ

(Ax − λI)−1(Ay + λI)−1F dλ.

Here

(Ax − λI)−1F =
1�

0

G(x, ξ, λ)F (ξ, η) dξ,

where G(x, ξ, λ) is the Green function of the operator Ax − λI, and

(Ay + λI)−1F =
1�

0

J(y, η, λ)F (ξ, η) dη,

where J(y, η, λ) is the Green function of Ay+λI. Moreover, Γ is a composite
contour, which consists of contours Γ0, Γ1, Γ2 to be defined below (see [1]).
From 1o–2o it follows that the spectrum of Ax lies in the sector |arg(λ −
γ1)| ≤ θ1 and the spectrum of −Ay lies in the sector |arg(λ − γ2)| ≤ θ2,
where γ1, γ2 ≥ 0, π/2 < θ1 < π, 0 < θ2 < π/2. We encircle the part of the
spectrum of Ax in the right half-plane by some contour Γ1 so that the points
of the spectrum of −Ay lie outside the contour. We proceed similarly with
the part of the spectrum of −Ay in the left half-plane, using a contour Γ2.
It is obvious that these contours may be constructed, because the spectra of
Ax and −Ay are disjoint. For Γ0 we take the imaginary axis, which does not
intersect the two spectra. The integral over Γ0 is understood as a principal
value. The convergence of (5.2) and its derivatives over Γ1 and Γ2 is easily
determined.

Below we are interested in the behavior of the contour integral (5.2)
and its derivatives in L2(Ω,Cn2). It is clear that the convergence of (5.2) is
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determined by the convergence of the integral over Γ0. Moreover, it is not
difficult to show from the properties of the direct product that Ax, Ay and
their resolvents commute.

Denote by % that value of 2m
√
λ which has the smallest positive real part.

Write the asymptotic expansions of the Green function as |λ| → ∞ [13]:

G(x, ξ, λ) =
C

%2m−1 exp %(x− ξ)I +O(%2m), x < ξ,(5.3)

G(x, ξ, λ) =
C

%2m−1 exp %(ξ − x)I +O(%2m), ξ < x,(5.4)

where O(%2m) means a vector of the type D(x, ξ, λ)/%2m, where D(x, ξ, λ)
is a function with values in Cn2 whose entries all satisfy

|Di(x, ξ, λ)| ≤ C,
where C is some constant. We can have a similar representation for J(y, η, λ).
Recall that, without loss of generality, we can suppose that for all |λ|,

‖(Ax − λI)−1‖ ≤ C

1 + |λ| , ‖(Ay + λI)−1‖ ≤ C

1 + |λ| .

First, let us prove that differentiation and integration commute. Consider
the integral

(5.5)
�

Γ

(Ay + λI)−1Ax(Ax − λI)−1F dλ

and let us investigate its convergence in L2(Ω,Cn2).

Lemma 2. Suppose that F ∈ W ε
2 (Ω,Cn2). Then the integral (5.5) con-

verges in L2(Ω,Cn2).

Proof. Consider the identity

(5.6) Ax(Ax − λI)−1F = F + λ(Ax − λI)−1F.

Substitute (5.6) into (5.5) to get

(5.7)
�

Γ

(Ay + λI)−1Ax(Ax − λI)−1F dλ

=
�

Γ

(Ay + λI)−1F dλ+
�

Γ

(Ay + λI)−1λ(Ax − λI)−1F dλ.

Using Lemma 1 from [1], identity (5.6) and the Minkowski inequality we
have

(5.8)
∥∥∥

�

Γ

(Ay + λI)−1Ax(Ax − λI)−1F dλ
∥∥∥

≤
∥∥∥

�

Γ

(Ay + λI)−1λ(Ax − λI)−1F dλ
∥∥∥+ C‖F‖,



Solvability of the Lyapunov equation 101

where ‖ · ‖ = ‖ · ‖L2(Ω,Cn2 ). It remains to show that the norm of the inte-
gral on the right side of (5.8) is finite. It is clear that the difficulties may
arise only when estimating the main term in the asymptotic formulas (5.3),
(5.4). Denote it by G0(x, ξ, λ) and substitute it into the integral in question.
Then add and subtract F (x, η) in the resulting integral. By assumption,
F ∈ W ε

2 (Ω,Cn2). With the help of integral representations of W ε
2 (Ω,Cn2)

functions [14] one can show that F ∈W ε
2 (x,Cn2) for almost all y and anal-

ogously F ∈W ε
2 (y,Cn2) for almost all x. Therefore

F (ξ, η)− F (x, η)
(|ξ − x|)ε+1/2

∈ L2((0, 1)× (0, 1),Cn2)

for almost all η. Taking into account that Ay satisfies 1o, applying the Hölder
inequality and again using Lemma 1 from [1], we obtain

(5.9)
∥∥∥

�

Γ

(Ay + λI)−1λ

1�

0

G0(x, ξ, λ)F (ξ, η) dξ dλ
∥∥∥

≤ C‖F‖+
�

Γ

C

|%|2m−1

( 1�

0

[ x�

−∞
|exp[2%(ξ − x)]| · |ξ − x|2ε+1 dξ

×
x�

0

|F (ξ, η)− F (x, η)|2
|ξ − x|2ε+1 dξ

]
dx

)1/2

|dλ|

+
�

Γ

C

|%|2m−1

( 1�

0

[∞�

x

|exp[2%(x− ξ)]| · |x− ξ|2ε+1 dξ

×
1�

x

|F (ξ, η)− F (x, η)|2
|ξ − x|2ε+1 dξ

]
dx

)1/2

|dλ|.

Calculating the integrals in square brackets one obtains

(5.10)
∥∥∥

�

Γ

(Ay + λI)−1λ

1�

0

G0(x, ξ, λ)F (ξ, η) dξ dλ
∥∥∥

≤
�

Γ

C

1 + |λ|1+ε/(2m)
|dλ| · ‖F‖W ε

2 (Ω,Cn2 ).

Obviously the integral on the right side of (5.10) absolutely converges when
ε > 0. From (5.8) and (5.10) it follows that (5.5) converges in L2(Ω,Cn2).
Analogously one can show that the integral

�

Γ

Ay(Ay + λI)−1(Ax − λI)−1F dλ

converges in L2(Ω,Cn2) when F ∈W ε
2 (Ω,Cn2). The lemma is proved.
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Let us now show that the operator of differentiation can be inserted
under the integral sign.

Lemma 3. If the resolvents R(Ax, λ), R(Ay, λ) satisfy 1o with appropri-
ate θ and γ, then

Ax

�

Γ

(Ay + λI)−1(Ax − λI)−1F dλ =
�

Γ

(Ay + λI)−1Ax(Ax − λI)−1F dλ.

Proof. Let

R(x, y, λ) = R(Ay, λ)R(Ax, λ)F (x, y).

We have to prove that

Ax

�

Γ

R(x, y, λ) dλ =
�

Γ

AxR(x, y, λ) dλ.

The validity of this equality for the integrals over Γ1 and Γ2 follows from
their boundedness and the properties of the resolvents R(Ax, λ), R(Ay, λ).
Consider a sequence of bounded contours Γ n0 such that limn→∞ Γn0 = Γ0.
Using the considerations from the beginning of the section, for all n we have

Ax

�

Γn0

R(x, y, λ) dλ =
�

Γn0

AxR(x, y, λ) dλ.

Using Lemma 2 and the fact that Ax is a closed operator we obtain

Ax

�

Γ0

R(x, y, λ) dλ =
�

Γ0

AxR(x, y, λ) dλ.

Analogously one can prove that

Ay

�

Γ0

R(x, y, λ) dλ =
�

Γ0

AyR(x, y, λ) dλ.

The lemma is proved.

Let us show that (5.2) gives a solution of (5.1).

Lemma 4. Suppose that F ∈ W ε
2 (Ω,Cn2). Then (5.2) gives a solution

of (5.1).

Substituting (5.2) into (5.1), using Lemma 1 from [1] and the identities

Ax(Ax − λI)−1F = F + λ(Ax − λI)−1F,

Ay(Ay + λI)−1F = F − λ(Ay + λI)−1F,

we obtain
AxZ(x, y) + AyZ(x, y) = F (x, y).

The lemma is proved.

Consequently, if F ∈ W ε
2 (Ω,Cn2) then (5.2) gives the solution of (5.1),

where Z ∈W 2
2 (Ω,Cn2). From the previous section one can see that F (x, y)
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on the right side of the equation in (5.1) is in W ε
2 (Ω,Cn2). Therefore the

kernel U(x, y) of the integral operator U is represented as the sum

U(x, y) = T (x, y) + v(x, y) + V (x, y) + Z(x, y),

where all terms on the right side are regarded as functions with values in
Cn×n.

Let us formulate the final result. We have proved the following

Theorem 3. Suppose that the spectra of A∗ and −A are disjoint and
the resolvents R(A∗, λ), R(−A, λ) satisfy condition 1o. Then there exists a
solution of the problem I–III and the kernel U(x, y) of the integral operator

(5.11) Uu(x) =
1�

0

U(x, y)u(y) dy

satisfies conditions 1–3.

So we have shown that (5.11) gives the unique solution of the Lyapunov
equation

A∗U + UA = I

in the class of bounded operators.
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(1969), 311–395.
[9] V. A. Kondrat’ev, Boundary value problems for elliptic equations in domains with

conical points, Trudy Moskov. Mat. Obshch. 16 (1967), 209–292 (in Russian); En-
glish transl. in Trans. Moscow Math. Soc. 16 (1967).



104 A. Tersenov
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