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The rigidity theorem for Landsberg hypersurfaces
of a Minkowski space

by Jin Tang Li (Xiamen)

Abstract. Let Mn be a compact Landsberg hypersurface of a Minkowski space
(V n+1, F ) with constant mean curvature H. Using the Gauss formula for the Chern con-
nection of Finsler submanifolds, we prove that if M is convex, then M is Riemannian with
constant curvature.

1. Introduction. Let M be an n-dimensional smooth manifold and
π : TM →M be the natural projection from the tangent bundle. Let (x, Y )
be a point of TM with x ∈ M , Y ∈ TxM and let (xi, Y i) be the local
coordinates on TM with Y = Y i∂/∂xi. A Finsler metric on M is a function
F : TM → [0,∞) with the following properties:

(i) Regularity: F (x, Y ) is smooth in TM \ 0.
(ii) Positive homogeneity: F (x, λY ) = λF (x, Y ) for λ > 0.

(iii) Strong convexity: The fundamental quadratic form g = gij(x, Y )dxi

⊗ dxj is positive definite, where gij = 1
2∂

2(F 2)/∂Y i∂Y j .

Then (M,F ) is called a Finsler manifold. The simplest class of Finsler man-
ifolds is the Minkowski spaces. Let V be an n-dimensional real vector space.
A Minkowski norm on V is a function F : V → [0,∞) with the following
properties:

(i) Regularity: F is smooth in V \ {0}.
(ii) Positive homogeneity: F (λY ) = λF (Y ) for λ > 0 and Y ∈ V .
(iii) Strong convexity: For any Y ∈ V \{0}, the symmetric bilinear form

gY is positive definite, where gY (u, v)= 1
2
∂2

∂s∂t [F
2(Y +su+tv)]

∣∣
s=t=0

.

Then (V, F ) is called a Minkowski space. Let {ei} be an arbitrary basis for V .
From the above definition we find that

gij(Y ) = gY (ei, ej) =
1
2

∂2

∂Y i∂Y j
[F 2(Y )].
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We see that for any Finsler manifold (M,F ), Fx(Y ) := F (x, Y ) is a Min-
kowski norm on TxM for every point x ∈ M . On the other hand, for a
Minkowski space (V, F ), the Finsler metric F (x, Y ) := F (Y ) : TV → [0,∞)
is a function of Y ∈ V only.

Riemannian submanifolds are important in modern differential geome-
try and extensively studied. For a compact hypersurface M of the Euclidean
space with constant mean curvature, Nomizu and Smyth [NS] proved that
if M is convex, then M is a Riemannian sphere. There has been remark-
able progress in recent studies on Finsler manifolds. For example, in [BRS],
D. Bao, C. Robles and Z. Shen have completely classified strongly convex
Randers metrics with constant flag curvature, and the geometry of Ingarden
spaces has been described by R. Miron [M].

In this paper, by using the Gauss formula for the Chern connection,
we study the Landsberg hypersurfaces of a Minkowski space (V n+1, F ) and
obtain the following

Main Theorem 1.1. Let Mn be a compact Landsberg hypersurface of a
Minkowski space (V n+1, F ) with constant mean curvature H. If M is convex,
then M is Riemannian with constant curvature.

Remark. The Main Theorem generalizes the result of Nomizu and
Smyth [NS] from the Riemannian to the Finsler case.

2. Preliminaries. Let (Mn, F ) be an n-dimensional Finsler manifold.
F inherits the Hilbert form, the fundamental tensor and the Cartan tensor
as follows:

ω =
∂F

∂Y i
dxi, gY = gij(x, Y )dxi ⊗ dxj ,

AY = Aijkdx
i ⊗ dxj ⊗ dxk, Aijk :=

F∂gij
2∂Y k

.

It is well known that there exists a unique Chern connection ∇ on π∗TM
with ∇ ∂

∂xi = ωji
∂
∂xj and ωji = Γ jikdx

k satisfying

d(dxi)− dxj ∧ ωij = − dxj ∧ ωij = 0,

dgij − gikωkj − gjkωki = 2Aijk
δY k

F
,

where δY i = dY i + N i
jdx

j , N i
j = γijkY

k − 1
FA

i
jkγ

k
stY

sY t and γijk are the
formal Christoffel symbols of the second kind for gij .

The curvature 2-forms of the Chern connection ∇ are

ωij − ωkj ∧ ωik = Ωi
j =

1
2
Rijkldx

k ∧ dxl +
1
F
P ijkldx

k ∧ δY l,

where Rijkl and P ijkl are the components of the hh-curvature tensor and the
hv-curvature tensor of the Chern connection, respectively.
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Let ϕ : (Mn, F )→ (Mn+p
, F ) be an isometric immersion from a Finsler

manifold to a Finsler manifold. We have [S]

(2.1)
F (Y ) = F (ϕ∗(Y )), gY (U, V ) = gϕ∗(Y )(ϕ∗(U), ϕ∗(V )),

AY (U, V,W ) = Aϕ∗(Y )(ϕ∗(U), ϕ∗(V ), ϕ∗(W )),

where Y, U, V,W ∈ TM , and g and A are the fundamental tensor and the
Cartan tensor of M , respectively.

It can be seen from (2.1) that ϕ∗(ω) = ω, where ω is the Hilbert form
of M .

In the following we simplify AY and gY to A and g, respectively.
When M is a Minkowski space, the formal Christoffel symbols γabc of the

second kind for gab must vanish and so Na
b = γabcY

c − 1
F
A
a
bcγ

c
dfY

d
Y
f = 0;

then the horizontal part (ϕ∗ei)H of ϕ∗ei = ujiϕ
A
j

∂
∂xA can be written as

(ϕ∗ei)H = ujiϕ
A
j

δ

δxA
= ujiϕ

A
j

(
∂

∂xA
−NB

A

∂

∂Y
B

)
= ujiϕ

A
j

∂

∂xA
= ϕ∗ei,

which, together with A(·, ·, Y ) = 0 and ϕ∗Y = Y , implies that

A(·, ·,∇eiϕ∗`) = A(·, ·,∇ϕ∗ei`) = 0,(2.2)

where ` = Y/F and ` = Y /F .
In the following any vector U ∈ TM will be identified with the corre-

sponding vector ϕ∗(U) ∈ TM and we will use the following convention:

1 ≤ i, j, . . . ≤ n; n+ 1 ≤ α, β, . . . ≤ n+ p;
1 ≤ λ, µ, . . . ≤ n− 1; 1 ≤ a, b, . . . ≤ n+ p.

Let ϕ : (Mn, F ) → (Mn+p
, F ) be an isometric immersion. Take a g-

orthonormal frame {ea} for each fibre of π∗TM and let {ωa} be its local
dual coframe such that {ei} is a frame field for each fibre of π∗TM and ωn

is the Hilbert form, where π : TM →M denotes the natural projection. Let
θab and ωij denote the Chern connection 1-forms of F and F , respectively,
i.e., ∇ea = θbaeb and ∇ei = ωji ej , where ∇ and ∇ are the Chern connections
of M and M , respectively. We find that A(ei, ej , en) = A(ea, eb, en) = 0,
where en = Y i

F
∂
∂xi is the natural dual of the Hilbert form ωn. Formula (2.2)

implies

Lemma 2.1. Let ϕ : (Mn, F ) → (Mn+p
, F ) be an isometric immersion

from a Finsler manifold to a Minkowski space. Then A(·, ·,∇eien) = 0.

From ωα = 0 and the structure equations of M , we have θαj ∧ ωj = 0,
which implies that θαj = hαijω

i, hαij = hαji. We obtain [L1]

ωji = θji − Ψjikω
k,(2.3)
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where

Ψjik = hαjnAkiα − hαknAjiα − hαinAkjα(2.4)

− hαnnAiksAsjα + hαnnAijsAskα + hαnnAjksAsiα.

In particular,

ωni = θni − hαnnAkiαωk.(2.5)

Using the almost g-compatibility, we have

θjα = (−hαij − 2hβniAjαβ + 2hβnnAjλαAiλβ)ωi − 2Ajαλωλn.(2.6)

In particular, θnα = −hαniωi.
We quote the following propositions:

Proposition 2.2 (Gauss equations, [L1, Theorem 3.1]). Let ϕ : (Mn, F )
→ (Mn+p

, F ) be an isometric immersion from a Finsler manifold to a
Finsler manifold. Then

P jikλ = P
j
ikλ + Ψjik;λ − 2ΨsikAjsλ − 2hαikAjλα,

Rjikl = R
j
ikl − hαikhαjl + hαilh

α
jk + Ψjik|l − Ψjil|k

+ ΨsikΨjsl − ΨsilΨjsk − 2hαikh
β
nlAjαβ + 2hαilh

β
nkAjαβ

+ 2hαikh
β
nnAjsαAlsβ − 2hαilh

β
nnAjsαAksβ − hαnnAslαP

j
iks

+ hαnnAskαP
j
ils + hαnlP

j
ikα − hαnkP

j
ilα,

where “; ” and “|” denote the vertical and the horizontal covariant differen-
tials with respect to the Chern connection ∇ respectively.

Proposition 2.3 (Codazzi equations, [L1, Theorem 3.2]). Let ϕ :
(Mn, F ) → (Mn+p

, F ) be an isometric immersion from a Finsler manifold
to a Finsler manifold. Then

hαij;λ = − Pαijλ,

hαij|k − h
α
ik|j = −Rαijk + hβnjP

α
ikβ − h

β
nkP

α
ijβ

− hαlkΨlij + hαljΨlik − hβnnAljβP
α
ikl + hβnnAlkβP

α
ijl.

Proposition 2.4 ([L2, Theorem 4.4]). An isometric immersion ϕ :
(M,F )→ (M,F ) is minimal if and only if

�

SM

〈V,H〉 dVSM = 0

for any vector V ∈ Γ (TM)⊥, where
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H =
∑
i

{
B(ei, ei) +

∑
α

[2C(eα, ei, B(ei, Fen))(2.7)

+ (∇FeH
n
C)(ei, ei, eα) + 2C(∇FeH

n
ei, ei, eα)]eα

}
,

C = A/F , eHi and denotes the horizontal part of ei.

Definition 2.5. Mn is called of constant mean curvature if H = |H| =
constant.

Proposition 2.6 ([L2, Theorem 5.2]). Let Mn be a hypersurface of a
Minkowski space V n+1 =(V n+1, F ). If M is Landsberg, then hn+1

in Ajl n+1 =0
and Ψijk = 0.

It follows from Lemma 2.1 that

A(·, ·, ej)ωjn(ei) +A(·, ·, eλ)Ψλni +A(·, ·, en+1)hn+1
ni = 0.(2.8)

Combining (2.8) and Proposition 2.5 immediately yields

Proposition 2.7. Let Mn be a Landsberg hypersurface of a Minkowski
space (V n+1, F ). Then hn+1

ni Aj n+1n+1 = hn+1
ni An+1n+1n+1 = 0.

Proposition 2.8. If Mn is a Landsberg hypersurface of a Minkowski
space V n+1 with constant mean curvature, then

∑
i h

n+1
ii = constant.

Proof. It follows from Propositions 2.5 and 2.6 and the first formula of
Proposition 2.3 that

hn+1
nn|jAi n+1n+1ω

j + hn+1
nn Ai n+1n+1;λω

λ
n + hn+1

nn Ai n+1n+1;n+1h
n+1
nj ωj = 0,

which gives

hn+1
nn Ai n+1n+1;λ = 0.(2.9)

It follows from (2.9) and Aabc;d = Aabd;c that

(2.10) (∇FeH
n
C)(ei, ei, en+1)

= Ci i n+1;λθ
λ
n(FeHn ) + Ci i n+1;n+1θ

n+1
n (FeHn ) = 0.

From Propositions 2.6 and 2.7 we can deduce that C(∇FeH
n
ei, ei, en+1)

= 0. Therefore by (2.10) and (2.7), we have H = B(ei, ei) =
∑

i h
n+1
ii en+1.

Since we are assuming that H is constant, it follows that
∑

i h
n+1
ii = con-

stant.

Proposition 2.9. If a hypersurface Mn of a Minkowski space V n+1 is
a Landsberg manifold, then

hn+1
ij;λ;µ = hn+1

ij;µ;λ,

hn+1
ij|k;λ = hn+1

ij;λ|k − h
n+1
sj P sikλ − hn+1

is P sjkλ + hn+1
ij|k An+1n+1λ,

hn+1
ij|k|l = hn+1

ij|k|l + hn+1
sj Rsikl + hn+1

is Rsjkl.
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Proof. For a hypersurface (Mn, F ) of a Minkowski space (V n+1, F ), we
have

hn+1
ij|k ω

k + hn+1
ij;λ ω

λ
n = dhn+1

ij − hn+1
kj ωki − hn+1

ik ωkj + hn+1
ij θn+1

n+1.(2.11)

Differentiating (2.11), we obtain

(2.12) {hn+1
ij|k|l −

1
2h

n+1
sj Rsikl − 1

2h
n+1
is Rsjkl − 1

2h
n+1
ij;λR

λ
nkl

+ 2hn+1
ij hn+1

sk hn+1
nl As n+1n+1 − 2hn+1

ij hn+1
sk hn+1

nn As t n+1At l n+1}ωk ∧ ωl

+ {hn+1
ij|k;λ − h

n+1
ij;λ|k + hn+1

ij;µ P
µ
nkλ + hn+1

is P sjkλ + hn+1
sj P sikλ − hn+1

ij|k An+1n+1λ

+ 2hn+1
ij hn+1

sk As n+1λ}ωk ∧ ωλn + hn+1
ij;λ;µω

λ
n ∧ ωµn = 0.

We obtain the conclusion immediately from (2.12), Propositions 2.5 and 2.6,
and the first formula of Proposition 2.3.

3. Landsberg hypersurfaces of a Minkowski space. Let Mn be a
Landsberg hypersurface with constant mean curvature of a Minkowski space
V
n+1. By Proposition 2.7, we have

(3.1)
∑
i

hn+1
ii|j ω

j +
∑
i

hn+1
ii;λ ω

λ
n = 2

∑
ij

hn+1
ij Aijλω

λ
n.

It follows from (3.1) that

(3.2)
∑
i

hn+1
ii|j = 0 and

∑
i

hn+1
ii;λ = 2

∑
ik

hn+1
ik Aikλ.

Differentiating the first formula of (3.2), we obtain∑
i

hn+1
ii|j|kω

k +
∑
i

hn+1
ii|j;λω

λ
n = 2

∑
ik

hn+1
ik|l Aikλω

λ
n,

which implies that ∑
i

hn+1
ii|j|k = 0.(3.3)

Definition 3.1. M is called convex if the second fundamental form
hn+1
ij of M is positive semi-definite.

Define δY i = dY i +N i
jdx

j . The pull-back of the Sasaki metric gijdxi ⊗
dxj+gijδY i⊗δY j from TM \{0} to the sphere bundle SM is a Riemannian
metric

ĝ = gijdx
i ⊗ dxj + δabω

a
n ⊗ ωbn.

We now quote two lemmas:

Lemma 3.2 ([Mo, Lemma 2.2]). For X=
∑

i xiω
i ∈ Γ (π∗T ∗M), divbgX

=
∑

i xi|i +
∑

µ,λ xµP
n
λλµ.
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Lemma 3.3 ([N, Theorem 1]). All Landsberg spaces of nonzero constant
flag curvature are Riemannian.

Proof of Main Theorem. According to Propositions 2.2, 2.3, and 2.6–2.8,

Rijkl = hn+1
ik hn+1

jl − h
n+1
il hn+1

jk ,(3.4)

hn+1
ij;λ = 0,(3.5)

hn+1
ij|k = hn+1

ik|j ,(3.6)

hn+1
ij|k|l = hn+1

ij|l|k + hn+1
sj Rsikl + hn+1

is Rsjkl.(3.7)

Let ω = dS = S|iω
i+S;iω

i
n. Then ω is a global section on π∗T ∗M . By (3.5),

i.e., S;i = 0, and Lemma 3.1, we have

divbg ω = 2
∑
i,j,k

(hn+1
ij|k )2 + 2

∑
i,j,k

hn+1
ij hn+1

ij|k|k.(3.8)

It can be seen from (3.3)–(3.8) that

(3.9) divbg ω
= 2

∑
i,j,k

(hn+1
ij|k )2 + 2

∑
i,j,k,s

hn+1
ij {h

n+1
kk|i|j + hn+1

si Rskjk + hn+1
ks Rsijk}

= 2
∑
i,j,k

(hn+1
ij|k )2 + 2

∑
i,j,k,l

{hn+1
ij hn+1

ki hn+1
jk hn+1

ll − 2(hn+1
ij hn+1

kl )2}.

Let λi be the eigenvalues of the second fundamental tensor hn+1
ij of M .

It is easy to see from (3.9) that
1
2

divbg ω =
∑
i,j,k

(hn+1
ij|k )2 +

1
2

∑
i,j

(λi − λj)2λiλj .(3.10)

Since M is convex, i.e., λiλj ≥ 0 for all i, j, the right hand side of (3.10)
is nonnegative. Because of the compactness of M , we infer that hn+1

ij is
constant and hn+1

ij = 0 for all i 6= j on M . Differentiating hn+1
na = 0 yields

hn+1
aa = hn+1

nn for all a = 1, . . . , n − 1, i.e., hn+1
ii = H for all i. It is easy to

see from (3.4) that

Rjikl = H(δilδjk − δikδjl).(3.11)

On the other hand, let x = xa∂/∂xa be the position vector field of
the Minkowski space V n+1 with respect to the origin. By a simple direct
computation, we get ∇Zx = Z for all Z = za∂/∂xa on V n+1, which, to-
gether with Lemma 2.1, implies that ∇eix

2 = 2〈ei, x〉 and ∇ei〈ei, x〉 =
θji (ei)〈ej , x〉 + hn+1

ii 〈en+1, x〉 + 1. As M is compact, there exists a point
P ∈ M such that hn+1

ii (P ) > 0 for all i, so H > 0. Thus by (3.11), M is
a Landsberg space with nonzero constant flag curvature H, which together
with Lemma 3.2 finishes the proof of Main Theorem.
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