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Analysis of a contact adhesive problem with
normal compliance and nonlocal friction

by Arezki Touzaline (Bab-Ezzouar)

Abstract. The paper deals with the problem of a quasistatic frictional contact be-
tween a nonlinear elastic body and a deformable foundation. The contact is modelled by
a normal compliance condition in such a way that the penetration is restricted with a
unilateral constraint and associated to the nonlocal friction law with adhesion. The evo-
lution of the bonding field is described by a first-order differential equation. We establish
a variational formulation of the mechanical problem and prove an existence and unique-
ness result under a smallness assumption on the friction coefficient by using arguments of
time-dependent variational inequalities, differential equations and the Banach fixed-point
theorem.

1. Introduction. Contact problems involving deformable bodies are
quite frequent in industry as well as in daily life and play an important role
in structural and mechanical systems. Contact processes involve complicated
surface phenomena, and are modelled by highly nonlinear initial boundary
value problems. Taking into account various contact conditions associated
with behaviour laws becoming more and more complex leads to the intro-
duction of new and nonstandard models, expressed with the aid of evolution
variational inequalities. An early attempt to study contact problems within
the framework of variational inequalities was made in [10]. The mathemati-
cal, mechanical and numerical state of the art can be found in [23]. Unilateral
frictional contact problems involving Signorini’s condition with or without
adhesion were studied by several authors (see for instance the references
in [1, 2, 5, 6, 8, 11, 16, 17, 20, 26, 29, 30]).

In this paper, we study a mathematical model which describes a fric-
tional unilateral contact problem with adhesion between a nonlinear elastic
body and a deformable foundation. Following [16, 27] the unilateral contact
is modelled by a normal compliance condition in such a way that finite pen-
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etration is allowed. Recall that models for dynamic or quasistatic processes
of frictionless adhesive contact between a deformable body and a founda-
tion have been studied in [3, 4, 12, 17, 22–24, 27]. Also recently dynamic or
quasistatic frictional contact problems with adhesion were studied in [7, 28].

Here as in [13, 14] we use the bonding field as an additional state vari-
able β, defined on the contact surface of the boundary. The variable is re-
stricted to values 0 ≤ β ≤ 1; when β = 0 all the bonds are severed and
there are no active bonds; when β = 1 all the bonds are active; if 0 < β < 1
then β measures the fraction of active bonds and partial adhesion takes
place. We refer the reader to the extensive bibliography on the subject
in [2, 12–15, 21–23]. However, according to [16], the method presented in
this work considers a compliance model in which the compliance term does
not necessarily represent a compact perturbation of the original problem
without contact. This will help us to study models where a strictly limited
penetration is performed by carrying out a limit procedure to the Signorini
contact problem. Here we extend the result established in [26] to the unilat-
eral contact problem with a normal compliance condition in such a way that
the penetration is limited and associated to the nonlocal friction law with
adhesion. We establish a variational formulation of the mechanical problem
for which we prove the existence of a unique weak solution if the friction
coefficient is sufficiently small and obtain a partial regularity result for the
solution.

The paper is structured as follows. In Section 2 we present some notation
and give the variational formulation. In Section 3 we state and prove our
main existence and uniqueness result, Theorem 3.1.

2. Problem statement and variational formulation. Let Ω ⊂ Rd

(d = 2, 3) be a Lipschitzian domain initially occupied by a nonlinear elastic
body. The boundary Γ of Ω is partitioned into three measurable parts such
that Γ = Γ̄1 ∪ Γ̄2 ∪ Γ̄3 where Γ1, Γ2, Γ3 are disjoint open sets and meas(Γ1)
> 0. The body is acted upon by a volume force of density ϕ1 on Ω and a
surface traction of density ϕ2 on Γ2. On Γ3 the body is in adhesive frictional
unilateral contact with a deformable foundation.

The classical formulation of this mechanical problem is as follows.

Problem P1. Find a displacement u : Ω × [0, T ] → Rd and a bonding
field β : Γ3 × [0, T ]→ [0, 1] such that

div σ + ϕ1 = 0 in Ω × (0, T ),(2.1)
σ = Fε(u) in Ω × (0, T ),(2.2)
u = 0 on Γ1 × (0, T ),(2.3)
σν = ϕ2 on Γ2 × (0, T ),(2.4)
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uν ≤ g, σν + p(uν)− cνβ2Rν(uν) ≤ 0,
(σν + p(uν)− cνβ2Rν(uν))(uν − g) = 0

}
on Γ3 × (0, T ),(2.5)

|στ + cτRτ (uτ )β2| ≤ µ|Rσν(u)|,
|στ + cτRτ (uτ )β2| < µ|Rσν(u)| ⇒ uτ = 0,
|στ + cτRτ (uτ )β2| = µ|Rσν(u)| ⇒

∃λ ≥ 0, στ + cτRτ (uτ )β2 = −λuτ

 on Γ3 × (0, T ),(2.6)

β̇ = −[β(cν(Rν(uν))2 + cτ |Rτ (uτ )|2)− εa]+ on Γ3 × (0, T ),(2.7)
β(0) = β0 on Γ3.(2.8)

Equation (2.1) is the equilibrium equation. Equation (2.2) represents the
elastic constitutive law of the material in which F is a given function and
ε(u) denotes the small strain tensor; (2.3) and (2.4) are the displacement
and traction boundary conditions, respectively, in which ν denotes the unit
outward normal vector on Γ and σν is the Cauchy stress vector. Conditions
(2.5) represent the unilateral contact with adhesion in which σν and uν
denote respectively the normal stress and the normal displacement; cν is a
given adhesion coefficient and as in [20], Rν is a truncation operator given
by

Rν(s) =


L if s < −L,
−s if −L ≤ s ≤ 0,
0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which the latter
has no additional traction (see [23]), and p is a normal compliance func-
tion which satisfies assumptions (2.18) below. The positive constant g is the
maximum value of the penetration. When uν < 0, i.e. when there is sepa-
ration between the body and the foundation, condition (2.5) combined with
hypotheses (2.18) on the function p shows that σν = cνRν(uν) and does not
exceed the value L‖cν‖L∞(Γ3). When g > 0, the body may interpenetrate
into the foundation, but the penetration is limited, that is, uν ≤ g. In the
case of penetration (i.e. uν ≥ 0), when 0 ≤ uν < g then −σν = p(uν),
which means that the reaction of the foundation is uniquely determined by
the normal displacement and σν ≤ 0. Since p is an increasing function, the
reaction increases with the penetration. When uν = g then −σν ≥ p(g) and
σν is not uniquely determined. When g > 0, condition (2.5) becomes the
Signorini contact condition with adhesion with a gap function,

uν ≤ g, σν − cνβ2Rν(uν) ≤ 0, (σν − cνβ2Rν(uν))(uν − g) = 0.

When g = 0, condition (2.5) combined with hypotheses (2.18) becomes the
Signorini contact condition with adhesion with a zero gap function, given by
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uν ≤ 0, σν − cνβ2Rν(uν) ≤ 0, (σν − cνβ2Rν(uν))uν = 0.

This contact condition was used in [6, 23, 24, 26, 27, 29]. Conditions (2.6)
represent the nonlocal friction law with adhesion in which στ denotes the
tangential stress, uτ denotes the tangential displacement on the boundary
and µ is the friction coefficient; R is a continuous regularizing operator rep-
resenting the averaging of the normal stress over a small neighbourhood of
the contact point. Here, cτ is the adhesion coefficient and Rτ (see [23]) is a
truncation operator defined by

Rτ (v) =
{
v if |v| ≤ L,
Lv/|v| if |v| > L.

Equation (2.7) is an ordinary differential equation which describes the evo-
lution of the bonding field, in which εa is the adhesion coefficient and r+ =
max{r, 0}; it was already used in [26]. Since β̇ ≤ 0 on Γ3 × (0, T ), once
debonding occurs bonding cannot be reestablished and, indeed, the adhesive
process is irreversible. Also from [18] it must be pointed out clearly that
condition (2.7) does not allow for complete debonding in finite time. Finally,
(2.8) is the initial condition, in which β0 denotes the initial bonding field. In
(2.7) the dot above a variable represents its derivative with respect to time.

We denote by Sd the space of second order symmetric tensors on Rd

(d = 2, 3) and | · | represents the Euclidean norm on Rd and Sd. Thus,
for every u, v ∈ Rd, u.v = uivi, |v| = (v.v)1/2, and for every σ, τ ∈ Sd,
σ.τ = σijτij , |τ | = (τ.τ)1/2. Here and below, the indices i and j run between
1 and d and the summation convention over repeated indices is adopted.
Now, to proceed with the variational formulation, we need the following
function spaces:

H = (L2(Ω))d, H1 = (H1(Ω))d, Q = {τ = (τij); τij = τji ∈ L2(Ω)},
Q1 = {σ ∈ Q; div σ ∈ H}.

Note that H and Q are real Hilbert spaces endowed with the respective
canonical inner products

(u, v)H =
�

Ω

uivi dx, (σ, τ)Q =
�

Ω

σijτij dx.

The strain tensor is
ε(u) = (εij(u)) = 1

2(ui,j + uj,i);

div σ = (σij,j) is the divergence of σ. For every v ∈ H1 we denote by vν and
vτ the normal and the tangential components of v on the boundary Γ given
by

vν = v.ν, vτ = v − vνν.
We also denote by σν and στ the normal and the tangential traces of a
function σ ∈ Q1; when σ is a regular function then
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σν = (σν).ν, στ = σν − σνν.
The following Green’s formula holds:

(σ, ε(v))Q + (div σ, v)H =
�

Γ

σν.v da ∀v ∈ H1,

where da is the surface measure element.
Now, let V be the closed subspace of H1 defined by

V = {v ∈ H1; v = 0 on Γ1},
and let

K = {v ∈ V ; vν ≤ g a.e. on Γ3}
be the convex subset of admissible displacements. Since meas(Γ1) > 0, the
following Korn inequality holds [10]:

(2.9) ‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V,
where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V
with the inner product

(u, v)V = (ε(u), ε(v))Q
and ‖ · ‖V is the associated norm. It follows from Korn’s inequality (2.9)
that the norms ‖ · ‖H1 and ‖ · ‖V are equivalent on V. Thus (V, ‖ · ‖V ) is a
real Hilbert space. Moreover by Sobolev’s trace theorem, there exists dΩ > 0
which only depends on the domain Ω, Γ1 and Γ3 such that

(2.10) ‖v‖(L2(Γ3))d ≤ dΩ‖v‖V ∀v ∈ V.

We use the standard norm on L∞(0, T ;V ) and equip the Sobolev space
W 1,∞(0, T ;V ) with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ).

For every real Banach space (X, ‖ · ‖X) and T > 0 we use the notation
C([0, T ];X) for the space of continuous functions from [0, T ] to X; recall
that C([0, T ];X) is a real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

We suppose that the body forces and surface tractions have the regularity

(2.11) ϕ1 ∈W 1,∞(0, T ;H), ϕ2 ∈W 1,∞(0, T ; (L2(Γ2))d),

and, using Riesz’s representation theorem, we define the function f : [0, T ]
→ V by

(2.12) (f(t), v)V =
�

Ω

ϕ1(t).v dx+
�

Γ2

ϕ2(t).v da ∀v ∈ V, t ∈ [0, T ].

We note that (2.11) and (2.12) imply f ∈W 1,∞(0, T ;V ).
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In the study of the mechanical problem P1 we assume that the nonlinear
elasticity operator satisfies

(2.13)



(a) F : Ω × Sd → Sd;

(b) there exists M > 0 such that
|F (x, ε1)− F (x, ε2)| ≤M |ε1 − ε2| for all ε1, ε2 in Sd,
a.e. x ∈ Ω;

(c) there exists m > 0 such that
(F (x, ε1)− F (x, ε2)).(ε1 − ε2) ≥ m|ε1 − ε2|2

for all ε1, ε2 in Sd, a.e. x ∈ Ω;

(d) the mapping x 7→ F (x, ε) is Lebesgue measurable on Ω
for any ε in Sd;

F (x, 0) = 0 for a.e. x ∈ Ω.

The adhesion coefficients are assumed to satisfy

(2.14) cν , cτ ∈ L∞(Γ3), εa ∈ L2(Γ3) and cν , cτ , εa ≥ 0 a.e. on Γ3,

and the friction coefficient µ satisfies

(2.15) µ ∈ L∞(Γ3) and µ ≥ 0 a.e. on Γ3.

We define the normal stress σν(u) on Γ at time t as follows. Let u ∈ H1 be
such that div σ(u) = −ϕ1(t). Then σν(u) ∈ H−1/2(Γ ) is given by

(2.16) 〈σν(u), vν〉H−1/2(Γ )×H1/2(Γ ) = 〈Fε(u), ε(v)〉Q − (ϕ1(t), v)H

for all v ∈ H1 such that vτ = 0 on Γ .
Next at time t ∈ [0, T ], we define the set Vt as

Vt = {v ∈ H1; div σ(v) + ϕ1(t) = 0 in Ω}
and the functional jt : Vt × V → R by

jt(u, v) =
�

Γ3

µ|Rσν(u)| |vτ | da ∀(u, v) ∈ Vt × V,

where R : H−1/2(Γ )→ L2(Γ3) is a continuous linear operator (see [9]). That
is, there exists a constant cR > 0 such that

(2.17) ‖Rτ‖L2(Γ3) ≤ cR‖τ‖H−1/2(Γ ) ∀τ ∈ H−1/2(Γ ).

We also define the functional r : L2(Γ3)× V × V → R by

r(β, u, v) =
�

Γ3

[(−cνβ2Rν(uν) + p(uν))vν + cτβ
2Rτ (uν).vτ ] da

for (β, u, v) ∈ L2(Γ3)× V × V , where as in [16] we assume that the normal
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compliance function p satisfies

(2.18)



(a) p : ]−∞, g]→ R;

(b) there exists Lp > 0 such that
|p(r1)− p(r2)| ≤ Lp|r1 − r2| for all r1, r2 ≤ g;

(c) (p(r1)− p(r2))(r1 − r2) ≥ 0 for all r1, r2 ≤ g;

(d) p(r) = 0 for all r < 0.

Finally we introduce the following set of bonding fields:

B = {θ : [0, T ]→ L2(Γ3); 0 ≤ θ(t) ≤ 1, ∀t ∈ [0, T ], a.e. on Γ3}
and we suppose that the initial bonding field satisfies

(2.19) β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3.

Now by assuming the solution to be sufficiently regular, we find by using
Green’s formula that Problem P1 has the following variational formulation
in terms of displacements and bonding fields.

Problem P2. Find a displacement field u ∈W 1,∞(0, T ;V ) and a bond-
ing field β ∈W 1,∞(0, T ;L2(Γ3)) ∩B such that

(2.20)
u(t) ∈ K ∩ Vt,
(Fε(u(t)), ε(v)− ε(u(t)))Q + r(β(t), u(t), v − u(t))

+ jt(u(t), v)− jt(u(t), u(t)) ≥ (f(t), v − u(t))V ∀v ∈ K, t ∈ [0, T ],

β̇(t) = −[β(t)(cν(Rν(uν(t)))2 + cτ |Rτ (uτ (t))|2)− εa]+ a.e. t ∈ (0, T ),
(2.21)

β(0) = β0.(2.22)

3. Existence and uniqueness result. Our main result to be estab-
lished in this section is

Theorem 3.1. Let (2.11), (2.13), (2.14), (2.15), (2.18) and (2.19) hold.
Then there exists a constant µ0 > 0 such that Problem P2 has a unique
solution if

‖µ‖L∞(Γ3) < µ0.

The proof of Theorem 3.1 is carried out in several steps. In the first step,
let X denote the closed subset of the space C([0, T ];L2(Γ3)) defined by

X = {θ ∈ C([0, T ];L2(Γ3)) ∩B; θ(0) = β0},
where C([0, T ];L2(Γ3)) is endowed with the norm
‖θ‖k = max

t∈[0,T ]
exp(−kt)‖θ(t)‖L2(Γ3) for all θ ∈ C([0, T ];L2(Γ3)), k > 0.

Next for a given β ∈ X, we consider the following variational problem.
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Problem P1β. Find uβ ∈ C([0, T ];V ) such that

(3.1)
uβ(t) ∈ K ∩ Vt,
(Fε(uβ(t)), ε(v − uβ(t)))Q + r(β(t), uβ(t), v − uβ(t))

+ jt(uβ(t), v)− jt(uβ(t), uβ(t)) ≥ (f(t), v − uβ(t))V ∀v ∈ K, t ∈ [0, T ].

Proposition 3.2. There exists a constant µ0 > 0 such that Problem P1β

has a unique solution if ‖µ‖L∞(Γ3) < µ0.

The proof of Proposition 3.2 will be carried out in several steps. In the
first step for each t ∈ [0, T ] and a given η ∈ K∩Vt, we consider the following
intermediate problem.

Problem Pη. Find uβη(t) ∈ K ∩ Vt such that

(3.2) (Fε(uβη(t)), ε(v − uβη(t)))Q + r(β(t), uβη(t), v − uβη(t))
+ jt(η, v)− jt(η, uβη(t)) ≥ (f(t), v − uβη(t))V ∀v ∈ K.

Lemma 3.3. Problem Pη has a unique solution.

Proof. Let t ∈ [0, T ] and let Aβ(t) : V → V be defined by

(Aβ(t)u, v)V = (Fε(u), ε(v))Q + r(β(t), u, v) ∀u, v ∈ V.
We use (2.10), (2.13)(b)&(c), (2.18)(b)&(c) and the properties of the op-
erators Rν and Rτ (see [23]) to show that the operator Aβ(t) is strongly
monotone and Lipschitz continuous; the functional jt(η, ·) : V → R is a
continuous seminorm, therefore since K is a nonempty closed convex subset
of V , it follows from a standard existence and uniqueness result for ellip-
tic quasivariational inequalities (see [25]) that there exists a unique element
uβη(t) ∈ K which satisfies the inequality (3.2). On the other hand taking
v = uβη(t)± θ in (3.2) where θ ∈ (C∞0 (Ω))d, we obtain

div σ(uβη(t)) + ϕ1(t) = 0 for all t ∈ [0, T ].

This implies that uβη(t) ∈ Vt for all t ∈ [0, T ].

In the second step, let t ∈ [0, T ] and consider the mapping Φ : K ∩ Vt →
K ∩ Vt defined by

Φ(η) = uβη(t).

Lemma 3.4. The mapping Φ has a unique fixed point η∗ and uβη∗(t) is
a unique solution to the inequality (3.1), for any t ∈ [0, T ].

Proof. Let t ∈ [0, T ] and η1, η2 ∈ K ∩ Vt. We write (3.2) for η = η1 and
v = uβη2(t), and then for η = η2 and v = uβη1(t); using (2.18)(c) and the
properties of Rν and Rτ , we add the resulting inequalities to obtain

(3.3)
(
Fε(uβη1(t))− Fε(uβη2(t)), ε(uβη1(t)− uβη2(t))

)
Q

≤ jt(η1, uβη2(t))− jt(η2, uβη1(t)) + jt(η2, uβη1(t))− jt(η2, uβη2(t)).
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Using (2.17) and (2.10) we get

(3.4) jt(η1, uβη2(t))− jt(η2, uβη1(t)) + jt(η2, uβη1(t))− jt(η2, uβη2(t))
≤ ‖µ‖L∞(Γ3)dΩ‖σν(η1)− σν(η2)‖H−1/2(Γ )‖uβη1(t)− uβη2(t)‖V .

Moreover it follows from (2.16) that there exists a constant cd > 0 such that

‖σν(η1)− σν(η2)‖H−1/2(Γ ) ≤Mcd‖η1 − η2‖V .

We now use (2.13)(c) to deduce from (3.3) and (3.4) that

‖Φ(η1)− Φ(η2)‖V ≤
cdcRMdΩ

m
‖µ‖L∞(Γ3)‖η1 − η2‖V .

Thus if we take µ0 = m/cRcdMdΩ, then the mapping Φ is a contraction
for ‖µ‖L∞(Γ3) < µ0; it has a unique fixed point η∗ and uβη∗(t) is a unique
element which solves (3.1), for any t ∈ [0, T ].

Next, denote uβη∗(t) = uβ(t) for all t ∈ [0, T ]. To end the proof of
Proposition 3.2 we prove the following result.

Lemma 3.5. We have uβ ∈ C([0, T ];V ).

Proof. Let t1, t2 ∈ [0, T ]. Set t = t1 and v = uβ(t2) in inequality (3.1),
and then t = t2 and v = uβ(t1); by adding the resulting inequalities we find

(3.5)
(
Fε(uβ(t1))− Fε(uβ(t2)), ε(uβ(t1))− ε(uβ(t2))

)
Q

≤ r(β(t1), uβ(t1), uβ(t2)− uβ(t1)) + r(β(t2), uβ(t2), uβ(t1)− uβ(t2))
+ jt1(uβ(t1), uβ(t2))− jt1(uβ(t1), uβ(t1)) + jt2(uβ(t2), uβ(t1))
− jt2(uβ(t2), uβ(t2)) + (f(t1)− f(t2), uβ(t1)− uβ(t2))V .

We have

r(β(t1), uβ(t1), uβ(t2)− uβ(t1)) + r(β(t2), uβ(t2), uβ(t1)− uβ(t2))

=
�

Γ3

(p(uβν(t1))− p(uβν(t2)))(uβν(t2)− uβν(t1))

−
�

Γ3

cν(β2(t1)Rν(uβν(t1))− β2(t2)Rν(uβν(t2)))(uβν(t2)− uβν(t1)) da

+
�

Γ3

cτ (β2(t1)Rτ (uβτ (t1))− β2(t2)Rτ (uβτ (t2))).(uβτ (t2)− uβτ (t1)) da.

Using (2.18)(c), we get

(3.6)
�

Γ3

(p(uβν(t1))− p(uβν(t2)))(uβν(t2)− uβν(t1)) ≤ 0.
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We now write the second term on the right hand side of the last equality as

−
�

Γ3

cν(β2(t1)Rν(uβν(t1))− β2(t2)Rν(uβν(t2)))(uβν(t2)− uβν(t1)) da

= −
�

Γ3

cν(β2(t1)− β2(t2))Rν(uβν(t1))(uβν(t2)− uβν(t1)) da

−
�

Γ3

cνβ
2(t2)(Rν(uβν(t1))−Rν(uβν(t2)))(uβν(t2)− uβν(t1)) da.

From the property

(Rν(uβν(t1))−Rν(uβν(t2)))(uβν(t2)− uβν(t1)) ≥ 0 a.e. on Γ3,

it follows that

(3.7) −
�

Γ3

cν(β2(t1)Rν(uβν(t1))−β2(t2)Rν(uβν(t2)))(uβν(t2)−uβν(t1)) da

≤ −
�

Γ3

cν(β2(t1)−β2(t2))Rν(uβν(t1))(uβν(t2)−uβν(t1)) da.

Analogously, as

(Rτ (uβτ (t1))−Rτ (uβτ (t2))).(uβτ (t2)− uβτ (t1)) ≤ 0 a.e. on Γ3,

we find

(3.8)
�

Γ3

cτ (β2(t1)Rτ (uβτ (t1))−β2(t2)Rτ (uβτ (t2))).(uβτ (t2)−uβτ (t1)) da

≤
�

Γ3

cτ (β2(t1)−β2(t2))Rτ (uβτ (t1)).(uβτ (t2)−uβτ (t1)) da.

As a consequence of (3.5)–(3.8) we obtain

(3.9)
(
Fε(uβ(t1))− Fε(uβ(t2)), ε(uβ(t1))− ε(uβ(t2))

)
Q

≤ −
�

Γ3

cν(β2(t1)− β2(t2))Rν(uβν(t1))(uβν(t2)− uβν(t1)) da

+
�

Γ3

cτ (β2(t1)− β2(t2))Rτ (uβτ (t1)).(uβτ (t2)− uβτ (t1)) da

+ jt1(uβ(t1), uβ(t2))− jt1(uβ(t1), uβ(t1))
+ jt2(uβ(t2), uβ(t1))− jt2(uβ(t2), uβ(t2)).

On the other hand, as in the proof of Lemma 3.4 we derive

(3.10) jt1(uβ(t1), uβ(t2))− jt1(uβ(t1), uβ(t1)) + jt2(uβ(t2), uβ(t1))

− jt2(uβ(t2), uβ(t2)) ≤ ‖µ‖L∞(Γ3)cRcddΩM‖uβ(t1)− uβ(t2)‖2V .
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Then, using (2.10), (2.13)(c), (2.14), |β(ti)| ≤ 1, i = 1, 2, and |Rs(us)| ≤ L
for s = ν, τ , from (3.9) and (3.10) we obtain

(m− ‖µ‖L∞(Γ3)cRcddΩM)‖uβ(t1)− uβ(t2)‖V
≤ 2(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))LdΩ‖β(t1)− β(t2)‖L2(Γ3) + ‖f(t1)− f(t2)‖V .
Since m− ‖µ‖L∞(Γ3)cRcddΩM > 0, we deduce the estimate

(3.11) ‖uβ(t1)− uβ(t2)‖V

≤ 2LdΩ
m− ‖µ‖L∞(Γ3)cRcddΩM

(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))‖β(t1)− β(t2)‖L2(Γ3)

+
1

m− ‖µ‖L∞(Γ3)cRcddΩM
‖f(t1)− f(t2)‖V .

Therefore from (3.11), as f ∈ C([0, T ];V ) and β ∈ C([0, T ];L2(Γ3)) we
immediately conclude the proof.

We now consider the following problem.

Problem P2β . Find β∗ : [0, T ]→ L2(Γ3) such that
(3.12)
β̇∗(t) = −[β∗(t)(cν(Rν(uβ∗ν(t)))2 + cτ |Rτ (uβ∗τ (t))|2)− εa]+ a.e. t ∈ (0, T ),

(3.13) β∗(0) = β0.

Lemma 3.6. Problem P2β has a unique solution β∗ which satisfies

β∗ ∈W 1,∞(0, T ;L2(Γ3)) ∩B.

Proof. Let T : X → X be defined by

Tβ(t) = β0 −
t�

0

[β(s)(cν(Rν(uβν(s)))2 + cτ |Rτ (uβτ (s))|2)− εa]+ ds

for β ∈ X and t ∈ [0, T ], where uβ is the solution of Problem P1β . Then for
β1, β2 ∈ X, we have

‖Tβ1(t)− Tβ2(t)‖L2(Γ3)

≤ c1
t�

0

‖β1(s)(Rν(uβ1ν(s)))2 − β2(s)(Rν(uβ2ν(s)))2‖L2(Γ3) ds

+ c1

t�

0

‖β1(s)|Rτ (u
β1
τ (s))|2 − β2(s)|Rτ (u

β2
τ (s))|2‖L2(Γ3) ds,

where c1 > 0. Using the definition of the truncation operators Rν , Rτ and
writing

β1 = β1 − β2 + β2,
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we get

‖Tβ1(t)− Tβ2(t)‖L2(Γ3)

≤ c2
t�

0

‖β1(s)− β2(s)‖L2(Γ3) ds+ c2

t�

0

‖uβ1(s)− uβ2(s)‖L2(Γ3) ds

for some positive constant c2. Moreover using (2.10), we obtain

‖Tβ1(t)− Tβ2(t)‖L2(Γ3)

≤ c2
t�

0

‖β1(s)− β2(s)‖L2(Γ3)ds+ c2dΩ

t�

0

‖uβ1(s)− uβ2(s)‖V ds.

Now for each t ∈ [0, T ], using (3.1), (2.13)(c), (2.17) and (2.18)(c), we find
for ‖µ‖L∞(Γ3) < µ0 (see [26]) the inequality

‖uβ1(t)− uβ2(t)‖V ≤ c3‖β1(t)− β2(t)‖L2(Γ3),

where c3 > 0. Hence, we deduce that there exists a constant c4 > 0 such
that

‖Tβ1(t)− Tβ2(t)‖L2(Γ3) ≤ c4
t�

0

‖β1(s)− β2(s)‖L2(Γ3) ds.

Therefore

‖Tβ1(t)− Tβ2(t)‖L2(Γ3) ≤ c4‖β1 − β2‖k
exp(kt)

k
∀t ∈ [0, T ],

which implies

(3.14) ‖Tβ1 − Tβ2‖k ≤
c4
k
‖β1 − β2‖k.

Hence, for k > c4, T is a contraction. Then it has a unique fixed point
β∗ which satisfies (3.12) and (3.13). Taking into account (3.11), we obtain
uβ∗ ∈W 1,∞(0, T ;V ).

Proof of Theorem 3.1. Let β = β∗ and let uβ∗ be the solution to Problem
P1β. We conclude from (3.1), (3.12) and (3.13) that (uβ∗ , β∗) is a solution
of Problem P2. Now to prove the uniqueness of the solution, suppose that
(u, β) is a solution of Problem P2. It follows from (2.20) that u is a solution
of Problem P1β and by Proposition 3.2 we get u = uβ . Taking u = uβ in
(2.21) and using the initial condition (2.22), we deduce that β is a solution of
Problem P2β . Finally, using Lemma 3.6, we obtain β = β∗ and so (uβ∗ , β∗)
is a unique solution to Problem P2.

Remark. For a large friction coefficient the problem of existence and
uniqueness of the solution is not studied here and remains open.
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