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Boundary subordination

by Adam Lecko (Olsztyn)

Abstract. We study the idea of the boundary subordination of two analytic func-
tions. Some basic properties of the boundary subordination are discussed. Applications to
classes of univalent functions referring to a boundary point are demonstrated.

1. Introduction. The aim of this paper is to study the concept of
boundary subordination of two analytic functions, which appeared first in
[Le3, p. 182]. The source of this idea is in the geometrical concepts referring
to a boundary point, e.g. starlikeness with respect to a boundary point or
convexity in the positive direction of the real axis. In the classical subordina-
tion theory two subordinated analytic functions are connected by a Schwarz
function. Two boundary subordinated analytic functions are related by a
function of the class B1 defined here, i.e. by a function satisfying the as-
sumptions of the Julia lemma. By analogy to Schwarz functions, let us call
functions in B1 Julia functions. Using the assertion of the Julia lemma the
class B1 can be considered as the union of its subclasses B1(λ), 0 < λ ≤ ∞.
When two analytic functions are connected by a function of the class B1(λ),
we say that they are λ-boundary subordinated. The essential difference be-
tween Schwarz and Julia functions is in the behavior of their fixed points:
zero lying in D is a nonexpansive fixed point for Schwarz functions, while 1
which is a boundary fixed point in D admits expansion for Julia functions.
Therefore this concept may have some deeper meaning and be useful for the
study of the boundary behavior of analytic functions.

In the last section we reformulate some known results describing some
subclasses of univalent functions defined by a boundary point in terms of
boundary subordination.
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2. Preliminaries. Let C = C∪{∞}. For z0 ∈ C and r > 0 let D(z0, r) =
{z ∈ C : |z − z0| < r}, Dr = D(0, r), D = D1 and T = ∂D. Let H = {z ∈ C :
Re z > 0}. For each k > 0, let

Ok =
{
z ∈ D :

|1− z|2

1− |z|2
< k

}
denote the disk in D called the orocycle. Note that Ok=D(1/(1+k), k/(1+k))
for k > 0. For ζ ∈ T and M > 1 let

∆(ζ,M) = {z ∈ D : |ζ − z| < M(1− |z|)}

denote a Stolz angle at ζ.
Let A denote the class of analytic functions in D, and S its subclass of

univalent functions.
A function f ∈ A is said to have at ζ ∈ T:

• the angular limit f∠(ζ) ∈ C (also denoted as ∠f(ζ) or ∠ limz→ζ f(z))
if

f∠(ζ) = lim
∆(ζ,M)3z→ζ

f(z)

for every Stolz angle ∆(ζ,M);
• the asymptotic value v ∈ C if v = limγ3z→ζ f(z) for some curve γ ⊂ D

ending at ζ; the curve γ will be called an asymptotic path;
• the angular derivative f ′

∠
(ζ) ∈ C if the angular limit f∠(ζ) exists and

is finite, and

f ′
∠

(ζ) = ∠ lim
z→ζ

f(z)− f∠(ζ)
z − ζ

.

Theorem 2.1 ([P2, p. 79]). A function f ∈ A has a finite angular
derivative f ′

∠
(ζ) at ζ ∈ T if and only if f ′ has a finite angular limit at ζ.

Moreover
f ′

∠
(ζ) = ∠f ′(ζ).

3. Julia functions

3.1. Basic facts. Denote by B the class of functions ω ∈ A with
|ω(z)| < 1 for z ∈ D and by P the class of functions p ∈ A with Re p(z) > 0
for z ∈ D.

Definition 3.1. Let

B1 = {ω ∈ B : ω∠(1) = 1}.

Let us call functions in the class B1 Julia functions. Similarly, let

P0 = {p ∈ P : p∠(1) = 0}.
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Example 3.2. For a given a ∈ H let

ha(z) = |a|2 1− z
a+ az

, z ∈ D.

We see that ha ∈ P0, ha(0) = a and ha(D) = H. Moreover

h−1
a (z) =

a

a

a− z
a+ z

, z ∈ H.

Proposition 3.3. Fix a ∈ H.
1. If ω ∈ B1, then p = ha ◦ ω ∈ P0.
2. If p ∈ P0, then ω = h−1

a ◦ p ∈ B1.

In particular, for a = 1:

3. If ω ∈ B1, then

(3.1) p = h1 ◦ ω =
1− ω
1 + ω

∈ P0.

4. If p ∈ P0, then

(3.2) ω = h−1
1 ◦ p =

1− p
1 + p

∈ B1.

For ω ∈ B1 let

(3.3) Λ(ω) = sup
{
|1− ω(z)|2

1− |ω(z)|2
· 1− |z|2

|1− z|2
: z ∈ D

}
.

Recall now the Julia–Carathéodory–Wolff theorem (see [J], [P2, p. 82]),
[Ca, p. 57], [Ga, p. 43]).

Theorem 3.4. Let ω ∈ B1.

1. The angular derivative ω′
∠

(1) exists and

0 < ω′
∠

(1) = ∠ lim
z→1

1− ω(z)
1− z

= lim
r→1−

1− ω(r)
1− r

= lim
r→1−

1− |ω(r)|
1− r

= Λ(ω) ≤ ∞.

2. If ω′
∠

(1) <∞, then

(i) ω′
∠

(1) = ∠ω′(1);
(ii) ω(Ok) ⊂ OΛ(ω)k for every k > 0.

Observe that 2(i) is a consequence of Theorem 2.1.
From Theorem 3.4 and Proposition 3.3 we have

Theorem 3.5. Let p ∈ P0.

1. The angular derivative p′
∠

(1) exists and

−∞ ≤ p′
∠

(1) = ∠ lim
z→1

p(z)
z − 1

< 0.
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2. If p′
∠

(1) > −∞, then

p′
∠

(1) = ∠p′(1).

As in Theorem 3.4, part 2 follows from Theorem 2.1.
The classes of functions defined below were introduced first in [Le1, Def-

inition 1.1] (see also [Le3, p. 21]).

Definition 3.6. For λ ∈ (0,∞] let

B1(λ) = {ω ∈ B1 : ω′
∠

(1) = λ}, P0(λ) = {p ∈ P0 : p′
∠

(1) = −λ/2}.
Clearly,

B1 =
⋃

λ∈(0,∞]

B1(λ), P0 =
⋃

λ∈(0,∞]

P0(λ).

Proposition 3.7. Let a ∈ H and λ ∈ (0,∞].

1. If ω ∈ B1(λ), then p = ha ◦ ω ∈ P0(λ|a|2/Re a).
2. If p ∈ P0(λ), then ω = h−1

1 ◦ p ∈ B1(λRe a/|a|2).

In particular, for a = 1:

3. If ω ∈ B1(λ), then p = h1 ◦ ω ∈ P0(λ).
4. If p ∈ P0(λ), then ω = h−1

1 ◦ p ∈ B1(λ).

Observe that from Theorems 3.4 and 3.5 we have

Theorem 3.8. Let λ ∈ (0,∞).

1. If ω ∈ B1(λ), then, for every k > 0,

(3.4) ω(Ok) ⊂ Oλk.

2. If ω ∈ P0(λ), then, for every k > 0,

(3.5) p(Ok) ⊂ D(λk/2, λk/2).

3.2. Julia functions and Schwarz functions. Now we describe some
relations for functions which satisfy the Schwarz and the Julia lemmas. First
we distinguish some sets of functions in B.

Definition 3.9. Let

B0 = {ω ∈ B : ω(0) = 0}.
Functions in the class B0 are called Schwarz functions. For n ∈ N let

B(n)
0 = {ω ∈ B0 : ω′(0) = · · · = ω(n−1)(0) = 0, ω(n)(0) 6= 0}.

Let
B0,1 = B0 ∩ B1.

For each n ∈ N let
B(n)

0,1 = B(n)
0 ∩ B1.

Let us recall the Schwarz lemma (see e.g. [Go, p. 87]).
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Lemma 3.10. Let n ∈ N. If ω ∈ B(n)
0 , then

(3.6) |ω(z)| ≤ |z|n, z ∈ D,
and

(3.7)
1
n!
|ω(n)(0)| ≤ 1.

Equality in (3.6) for some z 6= 0 or in (3.7) can occur only for ω(z) = κzn,
z ∈ D, where κ ∈ T.

The following lemma can be found in [P2, p. 84].

Lemma 3.11. If ω ∈ B, then ω has at most one attractive fixed point
in D, i.e. a point ξ ∈ D such that

• ω(ξ) = ξ and |ω′(ξ)| < 1 when ξ ∈ D,
• ω∠(ξ) = ξ and |ω′

∠
(ξ)| < 1 when ξ ∈ T.

The above lemma implies at once

Lemma 3.12. If ω ∈ B1(λ), λ ∈ (0, 1), then ω has no fixed point in D.

Lemma 3.11 also yields the following result for Schwarz functions in the
class B1.

Lemma 3.13. If ω ∈ B0,1, then ω ∈ B1(λ) for some λ ≥ 1.

The last result can be improved:

Lemma 3.14. Let n ∈ N. If ω ∈ B(n)
0,1 , then

(3.8) n ≤ ω′
∠

(1) ≤ ∞,
and ω ∈ B1(λ) for some λ ≥ n.

Proof. Let ω ∈ B(n)
0,1 . Since ω ∈ B1, by the Julia lemma ω ∈ B1(λ) for

some λ ∈ (0,∞], where λ = ω′
∠

(1). Lemma 3.13 shows that λ ≥ 1. When
λ =∞, the assertion of the lemma is obvious.

Assume that λ <∞. Since in view of (3.6) we have

|ω(r)| ≤ rn, r ∈ [0, 1),

it follows that
1− |ω(r)|

1− r
≥ 1− rn

1− r
.

Hence and by part 1 of Theorem 3.4 we obtain

λ = ω′
∠

(1) = lim
r→1−

1− |ω(r)|
1− r

≥ lim
r→1−

1− rn

1− r
= n.

Example 3.15. For n ∈ N let ω(z) = zn, z ∈ D. Clearly, ω ∈ B(n)
0,1 .

Moreover ω′
∠

(1) = ω′(1) = n. Thus ω ∈ B(λ) with λ = n.
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The next lemma follows directly from the Julia lemma. Under the stron-
ger assumptions on f, namely, that f is continuous on Dr and analytic in
Dr ∪ {z0}, it is known as the Jack lemma or the Clunie–Jack lemma (see
e.g. [MM, Lemma 2.2a]). The Jack lemma is the fundamental result in the
theory of differential subordinations (for a survey of this theory see [MM]).

Lemma 3.16. Let n ∈ N. Let f be analytic in the disk Dr, r > 0, with

(3.9) f(0) = f ′(0) = · · · = f (n−1)(0) = 0, f (n)(0) 6= 0.

Assume that at z0 ∈ ∂Dr the limit f∠(z0) exists and is finite with

(3.10) |f∠(z0)| = sup{|f(z)| : z ∈ Dr}.
Then f ′

∠
(z0) exists and

(3.11)
z0f
′
∠

(z0)
f∠(z0)

= λ,

where

(3.12) n ≤ λ ≤ ∞.
Proof. Since, in view of (3.9), f 6≡ 0, (3.10) yields f∠(z0) 6= 0. Thus the

function

(3.13) D 3 z 7→ ω(z) =
f(z0z)
f∠(z0)

is well defined and analytic in D. Moreover, the limit ω∠(1) exists and

(3.14) ω∠(1) = 1.

Observe that (3.10) yields

|ω∠(1)| = sup{|ω(z)| : z ∈ D} = 1.

Consequently, ω(D) ⊂ D, i.e. ω ∈ B. Hence, taking into account (3.9)
and (3.14), we deduce that ω ∈ B(n)

0,1 . Thus Lemma 3.14 shows that ω ∈ B1(λ)
for n ≤ λ = ω′

∠
(1) ≤ ∞. Hence and from (3.13) it follows that f ′

∠
(z0) exists

and

n ≤ λ = ω′
∠

(1) =
z0f
′
∠

(z0)
f∠(z0)

≤ ∞.

Remark 3.17. Assuming that f is continuous on Dr and f ′(z0) exists,
the above lemma reduces to Lemma 2.2a, part (i), of [MM]. Then (3.11) has
the form

(3.15)
z0f
′(z0)

f(z0)
= λ,

where

(3.16) n ≤ λ <∞.
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Theorem 3.18. Let q ∈ S and assume that q′(ζ0) 6= 0 at ζ0 ∈ ∂D exists.
Let n ∈ N and p be a function analytic in the disk Dr, r > 0, with p 6≡ p(0),

p′(0) = · · · = p(n−1)(0) = 0, p(n)(0) 6= 0,

such that p(0) = q(0) and
p(Dr) ⊂ q(D).

Assume that at z0 ∈ ∂Dr the limit

(3.17) p(z0) = lim
z→z0

p(z)

exists and is finite, and

(3.18) p(z0) = q(ζ0).

If p′
∠

(z0) exists and is finite, then

(3.19) z0p
′
∠

(z0) = λζ0q
′(ζ0),

with λ satisfying (3.16).
If p′(z0) exists, then

(3.20) z0p
′(z0) = λζ0q

′(ζ0),

with λ satisfying (3.16).

Proof. From the univalence of q it follows that the function f = q−1 ◦ p
is well defined and analytic in Dr with

(3.21) f(Dr) ⊂ D.

Moreover f(0) = q−1 ◦ p(0) = q−1(q(0)) = 0 and

(3.22) f (k)(0) = p(k)(0) = 0, k = 1, . . . , n− 1, f (n)(0) 6= 0.

Since, in view of (3.18),

(3.23) f(z0) = q−1 ◦ p(z0) = q−1(ζ0) = ζ0 ∈ ∂D,

from (3.21) we see that |f(z0)| = sup{|f(z)| : z ∈ Dr} = 1. Hence taking
account (3.22) and Lemma 3.16 we deduce that f ′

∠
(z0) exists and

(3.24)
z0f
′
∠

(z0)
f(z0)

= λ

with n ≤ λ ≤ ∞. Since p′(z) = q′(f(z))f ′(z) for z ∈ Dr, and q′(f(z0)) =
q′(ζ0) 6= 0, from the assumption that p′

∠
(z0) is finite it follows that f ′

∠
(z0)

is finite. Hence and from (3.23) and (3.24) we have

z0p
′
∠

(z0) =
z0f
′
∠

(z0)
f(z0)

f(z0)q′(f(z0)) = λζ0q
′(ζ0).

In this way we proved (3.19) and, consequently, (3.20).
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4. Boundary subordination

4.1. Basic properties. Now we introduce the notion of boundary
subordination of two analytic functions. This concept appeared first in
[Le3, p. 182].

Definition 4.1. Let f, F ∈ A and suppose that f∠(1) and F∠(1) exist
with

(4.1) f∠(1) = F∠(1).

• We say that f is boundary subordinated to F if there exists ω ∈ B1

such that f = F ◦ ω in D. We then write f 2 F .
• Let λ ∈ (0,∞]. We say that f is λ-boundary subordinated to F if there

exists ω ∈ B1(λ) such that f = F ◦ ω in D. We then write f 2λ F .

As an immediate consequence of Definition 4.1 we have

Theorem 4.2. Let f, F ∈ A satisfy (4.1). If f 2 F, then f(D) ⊂ F (D).

Theorem 4.3. Let λ ∈ (0,∞) and f, F ∈ A satisfy (4.1). If f 2λ F,
then

f(Ok) ⊂ F (Oλk) for every k > 0.

Proof. Since f = F ◦ ω for some ω ∈ B1(λ), it suffices to apply Theo-
rem 3.8.

Observe that Proposition 3.7 implies

Proposition 4.4. p ∈ P0 if and only if

p(z) 2
1− z
1 + z

, z ∈ D.

4.2. Boundary subordination of univalent functions. If F is uni-
valent we can obtain additional properties of boundary subordination.

Theorem 4.5. Let λ ∈ (0, 1), f ∈ A and F ∈ S. If f 2λ F, then
f(z) 6= F (z) for every z ∈ D.

Proof. Suppose that, on the contrary, f(ξ) = F (ξ) for some ξ ∈ D. Since
f = F ◦ ω for some ω ∈ B1(λ), λ ∈ (0, 1), we have

F (ξ) = f(ξ) = F (ω(ξ)),

so ω(ξ) = ξ by the univalence of F in D. This contradicts Lemma 3.12.

Remark 4.6. Assume now that F is normal, the angular limit f∠(1)
exists and f = F ◦ ω for some ω ∈ B1(λ), λ ∈ (0,∞]. Let I = [0, 1). Since
ω has radial limit 1 at 1, the curve ω(I) ends at 1. As f(I) = F (ω(I)), the
curve F (ω(I)) ends at f∠(1), which means that F has asymptotic value f∠(1)
along ω(I). Since F is normal, applying [P1, Theorem 9.3], we deduce that
F∠(1) exists and (4.1) holds. Thus, if F is normal, then in Definition 4.1,
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instead of (4.1), it is enough to assume that the angular limit of f at 1
exists. Since every univalent function in D is normal, this is true when F is
univalent.

Theorem 4.7. Let f ∈ A and F ∈ S satisfy (4.1). If F (D) is a Jordan
domain and f(D) ⊂ F (D), then f 2λ F for some λ ∈ (0,∞].

Proof. By the univalence of F and by the fact that f(D) ⊂ F (D), we see
that ω = F−1 ◦ f is well defined in D and ω ∈ B.

Let I = [0, 1) and Γ = f(I). Since f∠(1) exists, Γ is a curve in f(D)
and hence in F (D) ending at f∠(1). Thus, by [P2, Proposition 2.14], ω(I) =
F−1(Γ ) is a curve in D ending at some ζ0 ∈ T. Since F has a homeomorphic
extension on D, we see from (4.1) that ζ0 = 1. Consequently, ω has a radial
limit, and, by the Lehto–Virtanen Theorem [P2, p. 71], an angular limit 1
at 1. Thus ω ∈ B1. By Theorem 3.4 the angular derivative ω′

∠
(1) exists with

0 < ω′
∠

(1) = Λ(ω) ≤ +∞. This implies that ω ∈ B1(λ) with λ = Λ(ω).

Remark. The inclusion f(D) ⊂ F (D), where f and F are univalent in D
and satisfy (4.1), is not sufficient for f 2λ F with a finite λ. As an example,
take f(z) = z and F (z) = 4z/(1 + z)2 for z ∈ D. Clearly, f(D) ⊂ F (D) and
f∠(1) = F∠(1) = 1. But ω′

∠
(1) =∞, where ω = F−1 ◦f. This happens when

F ′
∠

(1) = 0 and f ′
∠

(1) 6= 0.

The theorem below is due to Carathéodory and Lelong-Ferrand (see
[P1, pp. 307–308]).

Theorem 4.8. Let f, F ∈ A. Let F ′ be normal in D and let f 2λ F for
some λ ∈ (0,∞).

• If f ′
∠

(1) exists and is finite, then F ′
∠

(1) exists and is finite.
• If f ′

∠
(1) = 0, then F ′

∠
(1) = 0.

Proof. We have f = F ◦ ω for some ω ∈ B1(λ) with λ = ω′
∠

(1) ∈ (0,∞).
Since f ′

∠
(1) is finite and f ′(z) = F ′(ω(z))ω′(z) for z ∈ D, we deduce that

the limit

lim
r→1−

F ′(ω(r)) = lim
r→1−

f ′(r)
ω′(r)

=
f ′

∠
(1)

ω′
∠

(1)

exists and is finite. Hence F ′ has asymptotic value f ′
∠

(1)/ω′
∠

(1) along the
curve ω([0, 1)), which is also its angular limit at 1 as F ′ is a normal function.

Moreover, f ′
∠

(1) = 0 implies that F ′
∠

(1) = 0.

4.3. Applications. Now we apply the notion of boundary subordina-
tion to three classes of univalent functions.

4.3.1. Functions starlike with respect to a boundary point. The class of
functions starlike with respect to a boundary point, denoted here by S∗0 , was
introduced by Robertson [R2]. He proposed an analytic formula for the class
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S∗0 and proved it partially. Lyzzaik [Ly] completed the proof. The analytic
characterization of the class S∗0 alternative to Robertson’s formula was given
in [Le1] and proved there partially. The proof was completed in [LL].

Definition 4.9. A simply connected domain Ω ⊂ C, Ω 6= C, with
0 ∈ ∂Ω is called starlike with respect to the boundary point (at the origin) if
for every w ∈ Ω,

(0, w] = {tw : t ∈ (0, 1]} ⊂ Ω.
The class of all such domains will be denoted by Z∗.

Let S∗0 ⊂ S be the class of all functions f such that 0 ∈ ∂f(D) and
f(D) ∈ Z∗0 . Functions belonging to S∗0 will be called starlike with respect to
the boundary point.

Using the notion of boundary subordination, the characterization of the
class S∗0 proved in [Le1] and [LL] (see also [Le3, Chapter VII]) can be written
as follows.

Theorem 4.10. Let f ∈ A. Then the following conditions are equivalent:

(1) f ∈ S∗0 and f∠(1) = 0.
(2) There exists λ ∈ (0, 1] such that

(4.2) − (1− z)2 f
′(z)
f(z)

2λ 4
1− z
1 + z

, z ∈ D.

Multivalent starlike functions with respect to a boundary point were con-
sidered in [ESZ1], where the main result can be formulated now as follows.

Theorem 4.11. Let λ ∈ (0,∞). If f ∈ A satisfies (4.2), then

(1) f(D) ∈ Z∗;
(2) f is p-valent function if and only if p− 1 < λ ≤ p.
4.3.2. Functions convex in the positive direction of the real axis. The

class of functions convex in the direction of the imaginary axis was in-
troduced by Robertson [R1]. The classes of functions convex in the posi-
tive (negative) direction of the imaginary (real) axis as the subclasses of
Robertson’s class were distinguished by Hengartner and Schober [HS] who
proposed analytic formulas without detailed proofs. These were given by
Ciozda [Ci1]–[Ci3].

Alternative proofs of an analytic characterization of functions convex in
the positive (resp. negative) direction of the imaginary (resp. real) axis were
found in [Le2], [Le3, Chapter VI], [Le4] and [ES].

Definition 4.12. A simply connected domain Ω ⊂ C, Ω 6= C, is called
convex in the positive direction of the real axis if

{w + t : t ≥ 0} ⊂ Ω for every w ∈ Ω.
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Functions f ∈ S mapping D onto such domains are also called convex in
the positive direction of the real axis.

Let CR+ ⊂ S denote the class of all those functions normalized by

(4.3) f(0) = 0, lim
t→∞

f−1(f(z) + t) = 1, z ∈ D.

Using the notion of boundary subordination we can rewrite the analytic
characterization of the class CR+ basing on results due to [ES] and [BL] as
follows.

Theorem 4.13. Let f ∈ A. Then the following conditions are equivalent:

(1) f ∈ CR+.
(2) There exists λ ∈ (0,∞] such that

(4.4) (1− z)2f ′(z) 2λ 4
1− z
1 + z

, z ∈ D.

Elin and Shoikhet [ES] studied the problem of finding the horizontal
strip of minimal width containing f(D) and of maximal width lying in f(D)
when f ∈ CR+. They introduced the following subclasses in CR+.

Definition 4.14. Let 0 < ν ≤ λ ≤ ∞, with ν < λ when λ = ∞.
A function f ∈ CR+ belongs to CR+(λ, ν) if

• f(D) lies in a horizontal strip of minimal width 2λπ;
• f(D) contains a horizontal strip of maximal width 2νπ.

Some properties of functions in CR+(λ, ν) were demonstrated in [ES].
An analytical characterization of CR+(λ, ν) was given in [BL]. We rewrite
Theorem 2 of [BL] using boundary subordination.

Theorem 4.15. Let 0 < ν ≤ λ <∞ and let f ∈ A. Then f ∈ CR+(λ, ν)
if and only if (4.4) holds and there exists ζ = eiφ 6= 1 such that

∠ lim
z→ζ

1− ζz
1 + ω(z)

= ν sin2 φ

2
.

Remark. The class CR+(λ, ν) is related to the class of functions starlike
with respect to a boundary point with the image containing a wedge of angle
of size 2νπ and contained in a wedge of angle of size 2λπ. The details can
be found e.g. in [ES] and [ESZ2].

4.3.3. Functions spirallike with respect to a boundary point. The class of
spirallike functions with respect to a boundary point introduced in [AES] is
another example of a class of univalent functions which can be analytically
characterized in terms of boundary subordination. For details see e.g. [ES],
[ESZ1], [ESZ2], [Le3, Chapter VIII], [Le5, Theorems 3.4–3.5].



200 A. Lecko

References

[AES] D. Aharonov, M. Elin and D. Shoikhet, Spirallike functions with respect to a
boundary point, J. Math. Anal. Appl. 280 (2003), 17–29.

[BL] D. Bshouty and A. Lyzzaik, Univalent Convex Functions in the Positive Direc-
tion of the Real Axis, Complex Analysis & Dynamical Systems III, Contemp.
Math. 455, Amer. Math. Soc., 2008, 41–52.
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