Real hypersurfaces with parallel induced almost contact structures

by ZUZANNA SZANCER (Kraków)

Abstract. Real affine hypersurfaces of the complex space C^{n+1} with a J-tangent transversal vector field and an induced almost contact structure (φ, ξ, η) are studied. Some properties of hypersurfaces with φ or η parallel relative to an induced connection are proved. Also a local characterization of these hypersurfaces is given.

1. Introduction. We study real affine hypersurfaces of the complex space C^{n+1} with a J-tangent transversal vector field C and an induced almost contact structure (φ, ξ, η). The main purpose of this paper is to investigate some properties of hypersurfaces with $\nabla \varphi = 0$ or $\nabla \eta = 0$, where ∇ is an affine connection induced by a transversal vector field C.

In Section 2 we briefly recall basic formulas of affine differential geometry, we introduce the notion of a J-tangent transversal vector field and give a lemma relating to differential equations required in the next sections.

In Section 3 we recall some results obtained in [SS] for an induced almost contact structure and show how induced almost contact structures are related to each other in case the J-tangent transversal vector field changes.

Section 4 contains the main results of this paper. In particular, we prove some properties of induced objects under the condition $\nabla \varphi = 0$ as well as $\nabla \eta = 0$. Moreover, we prove that the existence of a J-tangent transversal vector field φ with $\nabla \varphi = 0$ is equivalent to the existence of a J-tangent transversal vector field η with $\nabla \eta = 0$. At the end we give a local characterization of such hypersurfaces.

Throughout the paper we write $\alpha \equiv 0$ if $\alpha(x) = 0$ for all $x \in M$, and $\alpha \neq 0$ if $\alpha(x) \neq 0$ for every $x \in M$ (i.e. α is a nowhere vanishing function on M).

2010 Mathematics Subject Classification: 53A15, 53D15.

Key words and phrases: affine hypersurface, almost contact structure, parallel structure.
2. Preliminaries. We briefly recall the basic formulas of affine differential geometry. For more details, we refer to [NS]. Let \(f : M \to \mathbb{R}^{n+1} \) be an orientable, connected differentiable \(n \)-dimensional hypersurface immersed in the affine space \(\mathbb{R}^{n+1} \) equipped with its usual flat connection \(D \). Then for any transversal vector field \(C \) we have

\[
D_X f_* Y = f_*(\nabla_X Y) + h(X, Y)C, \\
D_X C = -f_*(S X) + \tau(X)C,
\]

(2.1) (2.2)

where \(X, Y \) are vector fields tangent to \(M \). For any transversal vector field, \(\nabla \) is a torsion-free connection, \(h \) is a symmetric bilinear form on \(M \), called the second fundamental form, \(S \) is a tensor of type \((1,1)\), called the shape operator, and \(\tau \) is a 1-form, called the transversal connection form.

We shall now consider the change of a transversal vector field for a given immersion \(f \).

Theorem 2.1 ([NS]). Suppose we change a transversal vector field \(C \) to

\[
\bar{C} = \Phi C + f_*(Z),
\]

where \(Z \) is a tangent vector field on \(M \) and \(\Phi \) is a nowhere vanishing function on \(M \). Then the affine fundamental form, the induced connection, the transversal connection form, and the affine shape operator change as follows:

\[
\bar{h} = \frac{1}{\Phi} h, \\
\bar{\nabla}_X Y = \nabla_X Y - \frac{1}{\Phi} h(X, Y)Z, \\
\bar{\tau} = \tau + \frac{1}{\Phi} h(Z, \cdot) + d \ln |\Phi|, \\
\bar{S} = \Phi S - \nabla.Z + \bar{\tau}(\cdot)Z.
\]

If \(h \) is non-degenerate, then we say that the hypersurface or the hypersurface immersion is non-degenerate. We have the following

Theorem 2.2 ([NS], §II.2, Theorem 2.1). For an arbitrary transversal vector field \(C \) the induced connection \(\nabla \), the second fundamental form \(h \), the shape operator \(S \), and the 1-form \(\tau \) satisfy the following equations:

\[
R(X,Y)Z = h(Y,Z)SX - h(X,Z)SY, \\
(\nabla_X h)(Y, Z) + \tau(X)h(Y, Z) = (\nabla_Y h)(X, Z) + \tau(Y)h(X, Z), \\
(\nabla_X S)(Y) - \tau(X)SY = (\nabla_Y S)(X) - \tau(Y)SX, \\
h(X, SY) - h(SX, Y) = 2d\tau(X, Y).
\]

Equations (2.3), (2.4), (2.5), and (2.6) are called, respectively, the equation of Gauss, Codazzi for \(h \), Codazzi for \(S \) and Ricci.

For a hypersurface immersion \(f : M \to \mathbb{R}^{n+1} \) a transversal vector field \(C \) is said to be equiaffine (resp. locally equiaffine) if \(\tau = 0 \) (resp. \(d\tau = 0 \)).
Let $\dim M = 2n + 1$ and $f: (M, g) \to (\mathbb{R}^{2n+2}, \tilde{g})$ be a non-degenerate (relative to the second fundamental form) isometric immersion, where \tilde{g} is the standard inner product on \mathbb{R}^{2n+2}. We assume that $\mathbb{R}^{2n+2} \cong \mathbb{C}^{n+1}$ is endowed with the standard complex structure J,

$$J(x_1, \ldots, x_{n+1}, y_1, \ldots, y_{n+1}) = (-y_1, \ldots, -y_{n+1}, x_1, \ldots, x_{n+1}).$$

Let C be a transversal vector field on M. We say that C is J-tangent if $JC_x \in f_*(T_xM)$ for every $x \in M$. We also define a distribution \mathcal{D} on M as the biggest J-invariant distribution on M, that is,

$$\mathcal{D}_x = f_*^{-1}(f_*(T_xM) \cap J(f_*(T_xM)))$$

for every $x \in M$. It is clear that $\dim \mathcal{D} = 2n$. A vector field X is called a \mathcal{D}-field if $X_x \in \mathcal{D}_x$ for every $x \in M$. We use the notation $X \in \mathcal{D}$ for vectors as well as for \mathcal{D}-fields. We say that the distribution \mathcal{D} is non-degenerate if h is non-degenerate on \mathcal{D}. To simplify the writing, we will omit f_* in front of vector fields in most cases.

We conclude this section with the following useful lemma relating to differential equations (we also give the proof for completeness):

Lemma 2.3 ([S]). Let $F: I \to \mathbb{R}^{2n}$ be a smooth function on the interval I and let $\alpha, \beta \in C^\infty(I, \mathbb{R})$ be such that $\alpha^2 + \beta^2 \neq 0$ on I. If F satisfies the differential equation

$$F'(y) = -\alpha(y)JF(y) + \beta(y)F(y),$$

then F is of the form

$$F(y) = Je^{\hat{\beta}(y)} \cos(\hat{\alpha}(y)) + ve^{\hat{\beta}(y)} \sin(\hat{\alpha}(y)),$$

where $v \in \mathbb{R}^{2n}$ and $\hat{\alpha}, \hat{\beta}$ are any integrals of α and β on I, respectively.

Proof. It is easily seen that functions of the form (2.8) satisfy the differential equation (2.7). On the other hand, since (2.7) is a first order ordinary differential equation, the Picard–Lindelöf theorem implies that any solution of (2.7) must be of the form (2.8). \qed

3. Almost contact structures. A $(2n + 1)$-dimensional manifold M is said to have an almost contact structure if there exist on M a tensor field φ of type $(1, 1)$, a vector field ξ and a 1-form η which satisfy

$$\varphi^2(X) = -X + \eta(X)\xi, \quad \eta(\xi) = 1$$

for every $X \in TM$.

Let $f: M \to \mathbb{R}^{2n+2}$ be a hypersurface with a J-tangent transversal vector field C. Then we can define a vector field ξ, a 1-form η and a tensor field φ of type $(1, 1)$ as follows:

$$\xi := JC, \quad \eta|_\mathcal{D} = 0 \quad \text{and} \quad \eta(\xi) = 1, \quad \varphi|_\mathcal{D} = J|_\mathcal{D} \quad \text{and} \quad \varphi(\xi) = 0.$$
It is easy to see that \((\varphi, \xi, \eta)\) is an almost contact structure on \(M\); it is said to be induced by \(C\).

For an induced almost contact structure we have the following theorem:

Theorem 3.1 ([SS]). If \((\varphi, \xi, \eta)\) is an induced almost contact structure on \(M\) then

\[
\eta(\nabla_X Y) = -h(X, \varphi Y) + X(\eta(Y)) + \eta(Y)\tau(X),
\]

\[
\varphi(\nabla_X Y) = \nabla_X \varphi Y + \eta(Y)SX - h(X, Y)\xi,
\]

\[
\eta([X, Y]) = -h(X, \varphi Y) + h(Y, \varphi X) + X(\eta(Y)) - Y(\eta(X)) + \eta(Y)\tau(X) - \eta(X)\tau(Y),
\]

\[
\varphi([X, Y]) = \nabla_X \varphi Y - \nabla_Y \varphi X - \eta(X)SY + \eta(Y)SX,
\]

\[
\eta(\nabla_X \xi) = \tau(X),
\]

\[
\eta(SX) = h(X, \xi),
\]

for all \(X, Y \in \mathcal{X}(M)\).

Lemma 3.2. Let \(C\) be a \(J\)-tangent transversal vector field. Then any other \(J\)-tangent transversal vector field \(\bar{C}\) has the form

\[
\bar{C} = \phi C + f_\ast Z,
\]

where \(\phi \neq 0\) and \(Z \in \mathcal{D}\). Moreover, if \((\varphi, \xi, \eta)\) is the almost contact structure induced by \(C\), then \(\bar{C}\) induces the almost contact structure \((\bar{\varphi}, \bar{\xi}, \bar{\eta})\), where

\[
\bar{\xi} = \phi \xi + \varphi Z, \quad \bar{\eta} = \frac{1}{\phi} \eta, \quad \bar{\varphi} = \varphi + \eta(\cdot)\frac{1}{\phi} Z.
\]

Proof. Since \(Z \in \mathcal{D}\) and \(J = \varphi\) on \(\mathcal{D}\), we have

\[
\bar{\xi} = J\bar{C} = J(\phi C + f_\ast Z) = \phi JC + \varphi Z = \phi \xi + \varphi Z.
\]

Directly from the definition of \(\eta\) and \(\bar{\eta}\) we get \(\eta = \bar{\eta}\) on \(\mathcal{D}\) and

\[
\eta(\xi) = 1 = \bar{\eta}(\bar{\xi}) = \bar{\eta}(\phi \xi + \varphi Z) = \phi \bar{\eta}(\xi),
\]

thus

\[
\bar{\eta}(\xi) = \frac{1}{\phi} \eta(\xi),
\]

and finally \(\bar{\eta} = \frac{1}{\phi} \eta\). To prove the last equality of the statement, note that

\[
0 = \varphi(\xi) = \bar{\varphi}(\bar{\xi}) = \bar{\varphi}(\phi \xi + \varphi Z) = \phi \bar{\varphi}(\xi) + \varphi(\varphi Z).
\]

From the definition of \(\varphi\) and \(\bar{\varphi}\) we have \(\varphi = \bar{\varphi}\) on \(\mathcal{D}\), which implies that

\[
\bar{\varphi}(\xi) = \frac{1}{\phi} Z = \varphi(\xi) + \eta(\xi)\frac{1}{\phi} Z,
\]

since \(Z \in \mathcal{D}\). The last formula proves that

\[
\bar{\varphi}(X) = \varphi(X) + \eta(X)\frac{1}{\phi} Z.
\]
is valid for $X = \xi$. Clearly, it is also valid for every $X \in \mathcal{D}$, and thus for every $X \in TM$. ■

4. Parallel induced almost contact structures. In this section we always assume that (φ, ξ, η) is an almost contact structure induced by a J-tangent transversal vector field C. It is important to note that we do not assume that the second fundamental form h is non-degenerate.

Lemma 4.1. Let (φ, ξ, η) be an induced almost contact structure such that $\nabla \varphi = 0$. Then

4.1. $h|_{\mathcal{D} \times \mathcal{D}} = 0$,
4.2. $h(\xi, X) = h(X, \xi) = 0$ for all $X \in \mathcal{D}$,
4.3. $S|_{\mathcal{D}} = 0$,
4.4. $S\xi = h(\xi, \xi)\xi$,
4.5. $d\tau = 0$.

Proof. From formula (3.2) we have

$$(\nabla_X \varphi)(Y) = -\eta(Y)SX + h(X, Y)\xi$$

for all $X, Y \in \mathcal{X}(M)$. Since $\nabla \varphi = 0$ we get $h(X, Y) = 0$ and $h(\xi, Y) = 0$ for all $X, Y \in \mathcal{D}$. Now, taking $X \in \mathcal{D}$ and $Y = \xi$ we have $SX = 0$. Taking $X = Y = \xi$ we easily get $S\xi = h(\xi, \xi)\xi$. The last equation follows immediately from the Ricci equation (2.6). ■

The above lemma implies that if $\nabla \varphi = 0$, then C is a locally equiaffine transversal vector field, so locally we can find a nowhere vanishing function Φ such that $\bar{C} = \Phi C$ is an equiaffine J-tangent vector field. Now, using Theorem 2.1 and Lemma 3.2 we get the following corollary:

Corollary 4.2. Let C be a J-tangent transversal vector field such that $\nabla \varphi = 0$ and let Φ be a nowhere vanishing function on M. Denote by \bar{C} the transversal vector field ΦC. Then $\bar{\nabla} \bar{\varphi} = 0$. Thus, parallelism of φ relative to $\bar{\nabla}$ is the direction property. In particular, locally we can always choose C equiaffine.

We shall prove

Lemma 4.3. Let (φ, ξ, η) be an induced almost contact structure such that $\nabla \eta = 0$. Then

4.6. $h|_{\mathcal{D} \times \mathcal{D}} = 0$,
4.7. $h(\xi, X) = h(X, \xi) = 0$ for every $X \in \mathcal{D}$,
\(\tau = 0, \)
\(\nabla_X Y \in \mathcal{D} \quad \text{for all } X, Y \in \mathcal{D}, \)
\(\nabla_X \xi \in \mathcal{D} \quad \text{for every } X \in \mathcal{X}(M), \)
\(\nabla_{\xi} X \in \mathcal{D} \quad \text{for every } X \in \mathcal{D}, \)
\(X(h(\xi, \xi)) = 0 \quad \text{for every } X \in \mathcal{D}. \)

\textbf{Proof.} Since \(\nabla \eta = 0 \) we have
\(\eta(\nabla_X Y) = X(\eta(Y)) \)
for all \(X, Y \in \mathcal{X}(M) \). Now, using formula (3.1) we get
\(h(X, \varphi Y) = \eta(Y) \tau(X) \)
for all \(X, Y \in \mathcal{X}(M) \). Hence, if \(X, Y \in \mathcal{D} \), then \(h(X, \varphi Y) = 0 \), which proves (4.6). Taking \(X = \xi \) and \(Y \in \mathcal{D} \) in (4.14) we easily get (4.7). On the other hand, taking \(Y = \xi \) we have \(\tau(X) = 0 \), that is, (4.8). Formulas (4.9)–(4.11) can be obtained directly from (4.13). To prove (4.12) note that from the Codazzi equation (2.4) for \(h \) (and using (4.8)) we have
\((\nabla_X h)(\xi, \xi) = (\nabla_\xi h)(X, \xi) = \xi(h(X, \xi)) - h(\nabla_\xi X, \xi) - h(X, \nabla_\xi \xi). \)
Now, if we take \(X \in \mathcal{D} \) then because of (4.6)–(4.7) we get \(h(X, \xi) = 0 \) and \(h(X, \nabla_\xi \xi) = 0 \), whereas (4.11) implies that also \(h(\nabla_\xi X, \xi) = 0 \). Thus, we obtain
\[0 = (\nabla_X h)(\xi, \xi) = X(h(\xi, \xi)) - 2h(\nabla_X \xi, \xi) \]
for every \(X \in \mathcal{D} \). Now, using (4.10) in the above formula leads to
\[X(h(\xi, \xi)) = 0 \]
for every \(X \in \mathcal{D} \). This finishes the proof of (4.12). \(\blacksquare \)

Denote by \(N \) the metric normal field for \(f : M \to \mathbb{R}^{2n+2} \) (relative to the standard inner product on \(\mathbb{R}^{2n+2} \)). The metric normal field induces objects \(\hat{\nabla}, \hat{h} \) and \(\hat{S} \) as the transversal vector field on \(M \). Recall that the induced connection \(\hat{\nabla} \) is the Levi-Civita connection of the induced Riemannian metric \(g \). It is clear that \(N \) is \(J \)-tangent, thus induces an almost contact structure \((\hat{\varphi}, \hat{N}, \hat{\eta}) \) on \(M \).

\textbf{Theorem 4.4.} Let \(f : M \to \mathbb{R}^{2n+2} \) be an affine immersion. Then the following conditions are equivalent:

(1) For every point on \(M \) there exist a neighborhood \(U \) and a \(J \)-tangent transversal vector field \(C \) defined on \(U \) such that \(\nabla \varphi = 0 \).
(2) For every point on \(M \) there exist a neighborhood \(U \) and a \(J \)-tangent transversal vector field \(C \) defined on \(U \) such that \(\nabla \eta = 0 \).
(3) An induced almost contact structure \((\hat{\varphi}, \hat{N}, \hat{\eta}) \) is \(\hat{\nabla} \)-parallel.
Proof. Let x be any point on M. Assume that in some neighborhood U of x there exists a J-tangent transversal vector field C such that $\nabla \phi = 0$. Then, by virtue of Corollary 4.2 we can assume (possibly shrinking U) that C is equiaffine. Now, by Theorem 3.1 (formula (3.1)) we get

$$(\nabla_X \eta)(Y) = h(X, \phi Y) - \eta(Y)\tau(X) = h(X, \phi Y)$$

for all $X, Y \in \mathcal{X}(U)$. Using the first two formulas from Lemma 4.1 we get

$$\nabla \eta \equiv 0,$$

which proves the implication (1)\Rightarrow(2).

To prove (2)\Rightarrow(3) note that if (ϕ, ξ, η) is an almost contact structure induced by a J-tangent transversal vector field C defined on some neighborhood U of x and such that $\nabla \eta = 0$ then

$$\hat{\nabla}|_U = \Phi \xi + \phi Z,$$

where $Z \in \mathcal{D}$ and $\Phi = \text{const}$. Also note that the condition $\nabla \eta = 0$ is invariant under scaling the field C by a constant. Therefore, we can later assume that C is chosen in such a way that

$$\hat{\nabla}|_U = \xi + \phi Z.$$

By Theorem 2.1 and Lemma 3.2 we obtain $\hat{h} = h$ and $\hat{\eta} = \eta$. Since N is the metric normal field we see that $g, \hat{h} = h$ and \hat{S} are related by the formula

$$h(X, Y) = g(\hat{S}X, Y)$$

for all $X, Y \in \mathcal{X}(U)$. The above equality and Lemma 4.3 imply

$$\hat{S}X = h(\hat{N}, X)\hat{N}$$

for every $X \in \mathcal{X}(U)$. Now, using (3.2) and (3.5) for the structure $(\hat{\phi}, \hat{N}, \hat{\eta})$ we easily get

$$\hat{\phi}(\hat{\nabla}_X \hat{N}) = \hat{S}X - h(\hat{N}, X)\hat{N} = 0 \quad \text{and} \quad \hat{\eta}(\hat{\nabla}_X \hat{N}) = 0$$

for every $X \in \mathcal{X}(U)$, that is, $\hat{\nabla}_X \hat{N} = 0$ for every $X \in \mathcal{X}(U)$. Lemma 4.3 implies that

$$(\hat{\nabla}_X \hat{\phi})(Y) = \hat{h}(X, Y)\hat{N} - \hat{\eta}(Y)\hat{S}X = h(X, Y)\hat{N} - \eta(Y)h(\hat{N}, X)\hat{N}$$

$$= (h(X, Y) - \eta(Y)h(\xi, X))\hat{N} = 0$$

for all $X, Y \in \mathcal{X}(U)$. Arbitrariness of $x \in M$ gives $\hat{\nabla}\hat{N} = 0$ and $\hat{\nabla}\hat{\phi} = 0$ on the whole M. The condition $\hat{\nabla}\hat{\eta} = 0$ can easily be obtained from the equality $\hat{\nabla}\hat{\phi} = 0$, the fact that N is equiaffine and the proof of (1)\Rightarrow(2).

To prove (3)\Rightarrow(1) it is sufficient to take $C := N$. □
From the proof of Theorem 4.4 it follows that if there exists an equiaffine J-tangent transversal vector field C with $\nabla \varphi = 0$, then we also have $\nabla \eta = 0$ for C. Moreover, condition (3) in the above theorem is equivalent to the global versions of conditions (1) and (2), that is,

(1') There exists a J-tangent transversal vector field C on M such that $\nabla \varphi = 0$.

(2') There exists a J-tangent transversal vector field C on M such that $\nabla \eta = 0$.

It follows from Lemmas 4.1 and 4.3 that rank $f \leq 1$. However, the converse is not true in general since we have the following

Example 4.5. Let us consider an affine immersion defined as follows:

$$ f: \mathbb{R}^3 \ni (x, y, z) \mapsto \begin{bmatrix} x \\ y \\ z \\ e^z \end{bmatrix} \in \mathbb{R}^4. $$

Of course rank $f = 1$. Let $\{\partial_1, \partial_2, \partial_3\}$ be the canonical basis on \mathbb{R}^3 generated by the coordinate system (x, y, z) on \mathbb{R}^3. It is not difficult to see that

$$ N: \mathbb{R}^3 \ni (x, y, z) \mapsto \begin{bmatrix} 0 \\ 0 \\ -\frac{e^z}{\sqrt{e^{2z} + 1}} \\ \frac{1}{\sqrt{e^{2z} + 1}} \end{bmatrix} \in \mathbb{R}^4 $$

is the metric normal field for f. Now,

$$ \hat{N} = \begin{bmatrix} e^z \\ \frac{1}{\sqrt{e^{2z} + 1}} \\ 0 \\ 0 \end{bmatrix}. $$

The above implies that

$$ f_*(\partial_3) = f_z = \begin{bmatrix} 0 \\ 0 \\ 1 \\ e^z \end{bmatrix} $$
is orthogonal to \tilde{N}, thus it belongs to the distribution \mathcal{D}. We will show that $(\tilde{\nabla}_{\partial_3} \tilde{\varphi})(\partial_3) \neq 0$. By straightforward computations we get

$$\tilde{\nabla}_{\partial_2} \partial_3 = \frac{e^{2z}}{e^{2z} + 1} \partial_3 \quad \text{and} \quad \tilde{\varphi}(\partial_3) = -\partial_1 - e^z \partial_2.$$

Now

$$(\tilde{\nabla}_{\partial_3} \tilde{\varphi})(\partial_3) = \tilde{\nabla}_{\partial_3}(\tilde{\varphi}(\partial_3)) - \tilde{\varphi}(\tilde{\nabla}_{\partial_3} \partial_3)$$

$$= \tilde{\nabla}_{\partial_3}(-\partial_1 - e^z \partial_2) - \tilde{\varphi}\left(\frac{e^{2z}}{e^{2z} + 1} \partial_3\right)$$

$$= -\tilde{\nabla}_{\partial_3} \partial_1 - e^z \tilde{\nabla}_{\partial_3} \partial_2 - \partial_3(e^z) \partial_2 + \frac{e^{2z}}{e^{2z} + 1} \partial_1 + \frac{e^{3z}}{e^{2z} + 1} \partial_2$$

$$= \frac{e^{2z}}{e^{2z} + 1} \partial_1 + \left(\frac{e^{3z}}{e^{2z} + 1} - e^z\right) \partial_2 \neq 0,$$

since $\tilde{\nabla}_{\partial_3} \partial_1 = \tilde{\nabla}_{\partial_3} \partial_2 = 0$ and ∂_1, ∂_2 are linearly independent.

In later parts of this paper we will give a local characterization of affine hypersurfaces satisfying any (thus all) of the conditions from Theorem 4.4. We need the following lemma:

Lemma 4.6. Let $f : M \to \mathbb{R}^{2n+2}$ be a hypersurface with a metric normal field N. Assume that an almost contact structure $(\tilde{\phi}, \tilde{N}, \tilde{\eta})$ induced by N is $\tilde{\nabla}$-parallel. Then, for every point x of M and for any nowhere vanishing smooth function α defined in some neighborhood of x and constant in the direction of \mathcal{D} (i.e. $X(\alpha) = 0$ for every $X \in \mathcal{D}$), there exist a neighborhood of x and a map $\psi(y, x_1, \ldots, x_{2n})$ defined on this neighborhood such that the vector fields $\partial/\partial y, \partial/\partial x_1, \ldots, \partial/\partial x_{2n}$ satisfy

$$\frac{\partial}{\partial y} = \alpha \tilde{N} \quad \text{and} \quad \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_{2n}} \in \mathcal{D}.$$

Proof. Since $(\tilde{\varphi}, \tilde{N}, \tilde{\eta})$ is $\tilde{\nabla}$-parallel, in particular (by (4.9)) the distribution \mathcal{D} is involutive. Let x be any point on M and let α be a nowhere vanishing smooth function defined in some neighborhood of x and constant in the direction of \mathcal{D}. The Frobenius theorem implies that for x there exist an open neighborhood $U \subset M$ and linearly independent vector fields $X_1, \ldots, X_{2n}, X_{2n+1} = \alpha \tilde{N} \in \mathcal{X}(U)$ such that $[X_i, X_j] = 0$ for $i, j = 1, \ldots, 2n + 1$. For every $i = 1, \ldots, 2n$ we have

$$X_i = D_i + \alpha_i \tilde{N},$$

where $D_i \in \mathcal{D}$ and $\alpha_i \in C^\infty(U)$. Thus

$$0 = [X_i, X_{2n+1}] = [D_i, X_{2n+1}] - X_{2n+1}(\alpha_i) \tilde{N}. \tag{4.15}$$

From (4.10) and (4.11) it is clear that $[D_i, \tilde{N}] \in \mathcal{D}$. Since $D_i(\alpha) = 0$ we also
have
\[[D_i, X_{2n+1}] = \alpha [D_i, \hat{N}] + D_i(\alpha) \hat{N} = \alpha [D_i, \hat{N}] \in D. \]

Now (4.15) implies that \([D_i, X_{2n+1}] = 0\) and \(X_{2n+1}(\alpha_i) = 0\) for \(i = 1, \ldots, 2n\).
Moreover, for all \(i, j = 1, \ldots, 2n\) we have
\[[D_i, D_j] = [X_i, X_j] - [\alpha_i \hat{N}, X_j] - [X_i, \alpha_j \hat{N}] + [\alpha_i \hat{N}, \alpha_j \hat{N}]. \]

Since \([X_i, X_j] = 0\), \(D\) is involutive and the last three terms in the above equality are proportional to \(\hat{N}\), we obtain
\[[D_i, D_j] = 0 \]
for all \(i, j = 1, \ldots, 2n\). Of course the vector fields \(D_1, \ldots, D_{2n}, X_{2n+1}\) are linearly independent over \(C^\infty(U)\), so we can find a map \(\psi(y, x_1, \ldots, x_{2n})\) on \(U\) such that \(\partial/\partial y = X_{2n+1}\) and \(\partial/\partial x_i = D_i\) for \(i = 1, \ldots, 2n\).

In the next two theorems we give a local characterization of hypersurfaces for which there exists a \(J\)-tangent transversal vector field inducing an almost contact structure \((\varphi, \xi, \eta)\) such that \(\nabla \varphi = 0\) or \(\nabla \eta = 0\).

Theorem 4.7. Let \(f : M \to \mathbb{R}^{2n+2}\) be a hypersurface such that the almost contact structure \((\widehat{\varphi}, \widehat{\omega}, \widehat{\eta})\) is \(\widehat{\omega}\)-parallel. Let \(U\) be a non-empty open subset of \(M\). If \(\text{rank } f = 0\) on \(U\) then \(f(U)\) is a piece of a hyperplane.

Proof. Since \(\text{rank } \hat{h} = 0\) and \(\widehat{\omega} = 0\) on \(U\), Lemma 4.1 implies
\[D_X N = -\hat{S} X = 0 \]
for every \(X \in \mathcal{X}(U)\). It follows that a metric normal field \(N\) is constant on \(U\), thus \(f(U)\) is a hyperplane in \(\mathbb{R}^{2n+2}\).

Theorem 4.8. Let \(f : M \to \mathbb{R}^{2n+2}\) be a hypersurface such that the almost contact structure \((\widehat{\varphi}, \widehat{\omega}, \widehat{\eta})\) is \(\widehat{\omega}\)-parallel. Let \(x\) be a point on \(M\) such that \(\text{rank } f = 1\) at \(x\). Then there exists an open neighborhood \(U\) of \(x\) such that \(f\) can be expressed on \(U\) in the form
\[f(x_1, \ldots, x_{2n}, y) = x_1 b_1 + \cdots + x_{2n} b_{2n} - v \int \alpha(y) \cos y dy + Jv \int \alpha(y) \sin y dy, \]
where \(v \in \mathbb{R}^{2n+2}\), \(\|v\| = 1\), \(\alpha\) is some nowhere vanishing smooth function on \(U\) and \(b_1, \ldots, b_{2n} \in \mathbb{R}^{2n+2}\) are linearly independent vectors from \(\{v, Jv\}^\perp\). Moreover, every hypersurface (4.16) has a \(\widehat{\omega}\)-parallel almost contact structure \((\widehat{\varphi}, \widehat{\omega}, \widehat{\eta})\).

Proof. First, note that since \(\text{rank } \hat{h}_x = 1\), we have \(\hat{h}_x(\hat{N}_x, \hat{N}_x) \neq 0\). Since \(\hat{h}(\hat{N}, \hat{N})\) is smooth we can find a neighborhood \(U\) of \(x\) such that \(\hat{h}(\hat{N}, \hat{N}) \neq 0\) on \(U\), thus \(\text{rank } \hat{h} = 1\) on \(U\). Moreover, by (4.12) the function \(\hat{h}(\hat{N}, \hat{N})\) is constant in a direction of the distribution \(D\).
Let us define a new function on U,
$$
\alpha := \frac{1}{\hat{h}(\hat{N}, \hat{N})}.
$$
It is clear that $\alpha \neq 0$ and α is constant in a direction of \mathcal{D}. Using Lemma 4.6 and possibly shrinking U we deduce that there exists a map ψ on U such that
$$
\frac{\partial}{\partial y} = \alpha \hat{N} \quad \text{and} \quad \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_{2n}} \in \mathcal{D}.
$$
By the Weingarten formula (2.2) and formulas (4.3), (4.4) we get
$$
D_{\partial/\partial x_i} N = -\hat{S} \left(\frac{\partial}{\partial x_i} \right) = 0
$$
for $i = 1, \ldots, 2n$ and
$$
D_{\partial/\partial y} N = -\hat{S} \left(\frac{\partial}{\partial y} \right) = -\alpha \hat{S}(\hat{N}) = -\alpha \hat{h}(\hat{N}, \hat{N}) \hat{N} = -\hat{N} = -JN,
$$
thus $N_{x_i} = 0$ for $i = 1, \ldots, 2n$ and $N_y = -JN$. Now, Lemma 2.3 implies that
$$
N = Jv \cos y + v \sin y,
$$
where $v \in \mathbb{R}^{2n+2}$. Since N is a metric normal field, we see that
$$
1 = ||N|| = ||Jv \cos y + v \sin y|| = ||v||.
$$
Let b_1, \ldots, b_{2n} be any linearly independent vectors from \mathbb{R}^{2n+2} such that $b_i \in \{v, Jv\}^\perp$. We have
$$
N \cdot b_i = 0 \quad \text{and} \quad \hat{N} \cdot b_i = 0,
$$
for every $i = 1, \ldots, 2n$, therefore the vectors b_1, \ldots, b_{2n} span $f_*(\mathcal{D})$. Let $\partial_1, \ldots, \partial_{2n}$ be vector fields on U such that $f_*(\partial_i) = b_i$ for $i = 1, \ldots, 2n$. Of course $\partial_1, \ldots, \partial_{2n}$ are linearly independent and span the distribution \mathcal{D}. For every $X \in TU$ and for every $i = 1, \ldots, 2n$ we have
$$
D_X f_* \partial_i = D_X b_i = 0.
$$
On the other hand by the Gauss formula (2.1) and due to the fact that $\hat{h}|_{\mathcal{D} \times \mathcal{D}} = 0$ we obtain
$$
D_X f_* \partial_i = f_* (\hat{\nabla}_X \partial_i),
$$
thus
$$
\hat{\nabla}_X \partial_i = 0
$$
for every $X \in TU$. In particular, we have
$$
\hat{\nabla}_{\partial_i} \partial_j = 0
$$
for all $i, j \in \{1, \ldots, 2n\}$ and
$$
\hat{\nabla}_{\partial_i \partial_j} \partial_i = 0.
for \(i = 1, \ldots, 2n \). Moreover
\[
\hat{\nabla}_{\partial_i} \frac{\partial}{\partial y} = \hat{\nabla}_{\partial_i}(\alpha \hat{N}) = \partial_i(\alpha) \hat{N} + \alpha \hat{\nabla}_{\partial_i} \hat{N} = 0,
\]
since \(\alpha \) is constant in a direction of \(\mathcal{D} \) and \(\hat{\nabla} \hat{N} = 0 \). To sum up, the vector fields
\[
\partial_1, \ldots, \partial_{2n}, \frac{\partial}{\partial y}
\]
are associated with some map \(\tilde{\psi} \). Denoting again \(\partial_1, \ldots, \partial_{2n} \) by \(\partial/\partial x_1, \ldots, \partial/\partial x_{2n} \) we see that the immersion \(f \) satisfies the differential equations
\[
f_{x_i} = b_i
\]
for \(i = 1, \ldots, 2n \) and
\[
f_y = \alpha(y) \hat{N} = \alpha(y)(-v \cos y + Jv \sin y).
\]
Solving the above we get a local form of \(f \) as follows:
\[
f(x_1, \ldots, x_{2n}, y) = x_1 b_1 + \cdots + x_{2n} b_{2n} - v \int \alpha(y) \cos y \, dy + Jv \int \alpha(y) \sin y \, dy.
\]

To prove the second part of the theorem note that the function described by (4.16) is an immersion, since \(b_1, \ldots, b_{2n} \) and \(-v\alpha(y) \cos y + Jv\alpha(y) \sin y\) are linearly independent. Now, it is enough to show that \(\hat{\nabla} \hat{\eta} = 0 \). It is not difficult to see that \(N = Jv \cos y + v \sin y \), thus
\[
\hat{N} = -v \cos y + Jv \sin y;
\]
moreover \(\partial/\partial x_i \in \mathcal{D} \) and \(\hat{\nabla}_X(\partial/\partial x_i) = 0 \) for \(i = 1, \ldots, 2n \), which imply \((\hat{\nabla}_X \hat{\eta})(Y) = 0 \) for all \(X \in TM \) and \(Y \in \mathcal{D} \). To complete the proof note that
\[
(\hat{\nabla}_X \hat{\eta})(\hat{N}) = X(\hat{\eta}(\hat{N})) - \hat{\eta}(\hat{\nabla}_X \hat{N}) = -\hat{\eta}(\hat{\nabla}_X \hat{N})
\]
for every \(X \in TM \). If \(X \in \mathcal{D} \) then \(\hat{\nabla}_X \hat{N} = 0 \), because
\[
D_X \hat{N} = D_X(-v \cos y + Jv \sin y) = 0
\]
for every \(X \in \mathcal{D} \). If \(X = \partial/\partial y \) then
\[
D_{\partial/\partial y} \hat{N} = Jv \cos y + v \sin y = N,
\]
thus \(\hat{\nabla}_{\partial/\partial y} \hat{N} = 0 \). Summarizing, we have shown that \(\hat{\nabla} \hat{\eta} = 0 \), which completes the proof. \(\blacksquare \)

References

Zuzanna Szancer
Department of Applied Mathematics
University of Agriculture in Kraków
253c Balicka St.
30-198 Kraków, Poland
E-mail: Zuzanna.Szancer@ur.krakow.pl

Received 29.8.2011
and in final form 2.11.2011