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Analytic solutions of a second-order iterative
functional differential equation near resonance

by Houyu Zhao and Jianguo Si (Jinan)

Abstract. We study existence of analytic solutions of a second-order iterative func-
tional differential equation

x′′(z) =

kX
j=0

∞X
t=1

Ct,j(z)(x
[j](z))t +G(z)

in the complex field C. By constructing an invertible analytic solution y(z) of an auxiliary
equation of the form

α2y′′(αz)y′(z) = αy′(αz)y′′(z) + [y′(z)]3
h kX
j=0

∞X
t=1

Ct,j(y(z))(y(αjz))t +G(y(z))
i

invertible analytic solutions of the form y(αy−1(z)) for the original equation are obtained.
Besides the hyperbolic case 0 < |α| < 1, we focus on α on the unit circle S1, i.e., |α| = 1.
We discuss not only those α at resonance, i.e. at a root of unity, but also near resonance
under the Brjuno condition.

1. Introduction. Delay differential equations or more generally func-
tional differential equations have been studied rather extensively in the past
forty years and are used as models to describe many physical and biological
systems. For example, delay differential equations of the form

(1.1) x′′(z) = f(z, x(z), x(z − τ1(z)), . . . , x(z − τk(z)))
have been extensively studied in [6], [1]. However, equations where the de-
lay functions τj(z) (j = 0, 1, . . . , k) depend not only on the argument of the
unknown function but also on the state, τj(z) = τj(z, x(z)), have been inves-
tigated not so much. In 1965, Petahov [9] studied the existence of solutions
of the second-order equation

x′′(z) = ax(x(z)).
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For the study of analytic solutions to this class of second-order equations,
we refer to [10]–[14].

In this paper, we will discuss the existence of invertible analytic solutions
to a functional differential equation of the form

(1.2) x′′(z) =
k∑
j=0

∞∑
t=1

Ct,j(z)(x[j](z))t +G(z)

in the complex field, where x[j](z) denotes the jth iterate of x(z). The above
equation is a special case of (1.1), with

f(z, y1, . . . , yk) =
∞∑
t=1

Ct,0(z)zt +
k∑
j=1

∞∑
t=1

Ct,j(z)ytj +G(z)

and τj(z) = z−x[j−1](z). A distinctive feature of (1.2) is to include the sum
of infinitely many terms in contrast to the previously considered equations
[10]–[14].

Throughout this paper, we will assume that

(H) the functions Ct,j(z) (t ∈ N, j = 0, 1, . . . , k) and G(z) are all an-
alytic in |z| < σ (σ > 0), and for each j = 0, 1, . . . , k, the series∑∞

t=1Ct,j(z1)zt2 converges for every pair (z1, z2) of nonzero complex
numbers with |z1| < σ.

We need the convergence of the series in (H) so that (1.2) is meaningful.
As in our previous works [10]–[14], by means of x(z) = y(αy−1(z)), some-

times called the Schröder transformation, we reduce (1.2) to the auxiliary
equation

(1.3) α2y′′(αz)y′(z)

= αy′(αz)y′′(z) + [y′(z)]3
[ k∑
j=0

∞∑
t=1

Ct,j(y(z))(y(αjz))t +G(y(z))
]
.

By constructing a convergent power series solution y(z) of (1.3), invertible
analytic solutions of the form y(αy−1(z)) for (1.2) are obtained. As we have
discussed in [10]–[14], the existence of analytic solutions for such equations
is closely related to the location of α in the complex plane. In this paper,
we will replace the Diophantine condition by a weaker condition, the Brjuno
condition, in the case where α is on the unit circle and is not a root of unity.
More precisely, we distinguish three different cases for α:

(C1) 0 < |α| < 1;
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(C2) α = e2πiθ, θ ∈ R \Q and θ is a Brjuno number ([2], [8]):

B(θ) =
∞∑
n=0

log qn+1

qn
<∞,

where {pn/qn} denotes the sequence of partial fractions of the
continued fraction expansion of θ;

(C3) α = e2πiq/p for some integer p ∈ N with p ≥ 2 and q ∈ Z\{0}, and
α 6= e2πiξ/v for all 1 ≤ v ≤ p− 1 and ξ ∈ Z \ {0}.

We observe that α is inside the unit circle S1 in case (C1) but on S1 in the
remaining cases. More difficulties are encountered for α on S1 because of the
small divisor αn − 1 in (2.5). Under the Diophantine condition: “α = e2πiθ,
where θ ∈ R \ Q and there exist constants ζ > 0 and δ > 0 such that
|αn − 1| ≥ ζ−1n−δ for all n ≥ 1,” the number α ∈ S1 is “far” from all roots
of unity and was considered in different settings [10]–[14]. Since then, we
have been striving to give a result of analytic solutions for those α “near”
a root of the unity, i.e., neither being roots of the unity nor satisfying the
Diophantine condition. The Brjuno condition in (C2) provides such a chance
for us. Moreover, we also discuss the so-called resonance case, i.e. (C3).

Remark 1.1. Let f be a germ of a holomorphic diffeomorphism of
(C, O). One of the main questions in the study of local holomorphic dynam-
ics is whether there exists a local holomorphic change of coordinates such
that f is conjugate to its linear part. The answer depends on the eigenvalue
of the linearized f at its fixed point O. The three cases mentioned above
correspond to the hyperbolic, parabolic and elliptic cases of holomorphic dy-
namics. For more information on this and other aspects of local dynamics,
see the monographs by Lennart Carleson and Theodore W. Gamelin [3] and
S. Marmi [7]. In particular, S. Marmi [7] gives a discussion of the parabolic
and the elliptic case which is very close to the one given here.

2. The auxiliary equation in cases (C1) and (C2). In this sec-
tion, we discuss locally invertible analytic solutions of (1.3) with the initial
condition

y(0) = 0, y′(0) = γ 6= 0, γ ∈ C.(2.1)

In order to study the existence of analytic solutions of (1.3) under the
Brjuno condition, we first briefly recall the definition of Brjuno numbers and
some basic facts. For a real number θ, we let [θ] denote its integer part and
{θ} = θ − [θ] its fractional part. Every irrational θ has a unique expression
as a Gauss continued fraction

θ = d0 + θ0 = d0 +
1

d1 + θ1
= · · · ,
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denoted simply by θ = [d0, d1, . . . , dn, . . . ], where dj ’s and θj ’s are calculated
by the algorithm: (a) d0 = [θ], θ0 = {θ}, and (b) dn =

[
1

θn−1

]
, θn =

{
1

θn−1

}
for all n ≥ 1. Define the sequences (pn)n∈N and (qn)n∈N as follows:

q−2 = 1, q−1 = 0, qn = dnqn−1 + qn−2,

p−2 = 0, p−1 = 1, pn = dnpn−1 + pn−2.

It is easy to show that pn/qn = [d0, d1, . . . , dn]. For every θ ∈ R \ Q the
series

∑
n≥0

log qn+1

qn
converges and defines an arithmetical function B(θ).

We say that θ is a Brjuno number or that it satisfies the Brjuno condition if
B(θ) <∞. The Brjuno condition is weaker than the Diophantine condition.
For example, if dn+1 ≤ cedn for all n ≥ 0, where c > 0 is a constant, then
θ = [d0, d1, . . . , dn, . . . ] is a Brjuno number but is not a Diophantine number.
So, case (C2) contains both a Diophantine condition and a condition which
expresses that α is near resonance.

Let θ ∈ R \ Q and (qn)n∈N be the sequence of partial denominators of
the Gauss continued fraction for θ. As in [4], let

Ak = {n ≥ 0 | ‖nθ‖ ≤ 1/(8qk)}, Ek = max(qk, qk+1/4), ηk = qk/Ek.

Let A∗k be the set of integers j ≥ 0 such that either j ∈ Ak or for some j1
and j2 in Ak with j2 − j1 < Ek, one has j1 < j < j2 and qk divides j − j1.
For any integer n ≥ 0, define

lk(n) = max
(

(1 + ηk)
n

qk
− 2, (mnηk + n)

1
qk
− 1
)
,

where mn = max{j | 0 ≤ j ≤ n, j ∈ A∗k}. We then define a function
hk : N→ R+ as follows:

hk(n) =

{
mn+ηkn

qk
− 1 if mn + qk ∈ A∗k,

lk(n) if mn + qk /∈ A∗k.
Let gk(n) := max(hk(n), [n/qk]), and define k(n) by the condition qk(n) ≤
n ≤ qk(n)+1. Clearly, k(n) is non-decreasing. The following result is known.

Lemma 2.1 (Davie’s lemma [5]). Let

K(n) = n log 2 +
k(n)∑
k=0

gk(n) log(2qk+1).

Then

(a) there is a universal constant ρ > 0 (independent of n and θ) such
that

K(n) ≤ n
(k(n)∑
k=0

log qk+1

qk
+ ρ
)
,

(b) K(n1) +K(n2) ≤ K(n1 + n2) for all n1 and n2,
(c) − log |αn − 1| ≤ K(n)−K(n− 1).
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Now, we consider the existence of analytic solutions of equation (1.3) in
case (C1) or (C2) holds.

Theorem 2.1. If (C1) or (C2) holds, then equation (1.3) has an ana-
lytic solution of the form

y(z) = a1z + a2z
2 + · · ·+ anz

n + · · · , a1 = γ,(2.2)

in a neighborhood of the origin.

Proof. Let

G(z) =
∞∑
n=0

bnz
n, Ct,j(z) =

∞∑
n=0

ct,j,nz
n,

for t ∈ N and j = 0, 1, . . . , k. To find a power series solution of the form
(2.2), we rewrite (1.3) as

α2y′′(αz)y′(z)− αy′(αz)y′′(z)
(y′(z))2

= y′(z)
[ k∑
j=0

∞∑
t=1

Ct,j(y(z))(y(αjz))t +G(y(z))
]

or (
y′(αz)
y′(z)

)′
=

1
α
y′(z)

[ k∑
j=0

∞∑
t=1

Ct,j(y(z))(y(αjz))t +G(y(z))
]
.

Since y′(z) = γ 6= 0, (1.3) reduces to the integro-differential equation

(2.3) y′(αz)

= y′(z)
[
1 +

1
α

z�

0

y′(s)
( k∑
j=0

∞∑
t=1

Ct,j(y(s))(y(αjs))t +G(y(s))
)
ds

]
.

By substituting the expansion of G(z), Ct,j(z) and (2.2) into (2.3), we get
∞∑
n=0

(n+ 1)an+1α
n+1zn

= α
∞∑
n=0

(n+ 1)an+1z
n +

∞∑
n=0

[ n∑
u=0

(u+ 1)au+1an−u+1b0

]
zn+1

+
∞∑
n=0

[ n∑
u=0

u+ 1
n− u+ 2

au+1

n−u∑
i=0

(i+ 1)ai+1

×
k∑
j=0

∑
(lm)∈Atn−i−u+1
1≤t≤n−i−u+1

ct,j,0

t∏
m=1

αjlmalm

]
zn+2
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+
∞∑
n=0

[ n∑
u=0

u+ 1
n− u+ 2

au+1

n−u∑
i=0

(i+ 1)ai+1

∑
(lm)∈Asn−i−u+1
1≤s≤n−i−u+1

bs

s∏
m=1

alm

]
zn+2

+
∞∑
n=0

[ n∑
u=0

u+ 1
n− u+ 3

au+1

n−u∑
i=0

n−u−i∑
h=0

(i+ 1)ai+1

×
k∑
j=0

∑
(lm)∈(A)tn−i−h−u+1

1≤t≤n−i−h−u+1

t∏
m=1

αjlmalm
∑

(lm)∈Aτh+1

1≤τ≤h+1

ct,j,τ

τ∏
m=1

alm

]
zn+3

where Atn := {(n1, . . . , nt) ∈ Nt : n1 + · · · + nt = n}. Equating coefficients,
we obtain

(2.4) a1α = a1α, a2 =
a2

1b0
2α(α− 1)

,

(2.5) an+1 =
1

(n+ 1)(αn+1 − α)

[ n−1∑
u=0

(u+ 1)au+1an−ub0 +
n−2∑
u=0

u+ 1
n− u

au+1

×
n−u−2∑
i=0

(i+ 1)ai+1

k∑
j=0

∑
(lm)∈Atn−i−u−1
1≤t≤n−i−u−1

ct,j,0

t∏
m=1

αjlmalm

+
n−2∑
u=0

u+ 1
n− u

au+1

n−u−2∑
i=0

(i+ 1)ai+1

∑
(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

bs

s∏
m=1

alm

+
n−3∑
u=0

u+ 1
n− u

au+1

n−u−3∑
i=0

n−u−i−3∑
h=0

(i+ 1)ai+1

×
k∑
j=0

∑
(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

αjlmalm
∑

(lm)∈Aτh+1

1≤τ≤h+1

ct,j,τ

τ∏
m=1

alm

]
, n ≥ 2.

We can choose a1 = γ 6= 0, and the sequence {an}∞n=2 is successively deter-
mined by (2.4) and (2.5) in a unique manner.

In what follows we prove the convergence of the series (2.2) in a neigh-
borhood of the origin. By (H), for any given r ∈ (0,min{|z1|, |z2|}), there
exists a positive number M such that

|bn| ≤
M

rn
, |ct,j,n| ≤

M

(1 + k)rn+t
, ∀t ∈ N, n ∈ N ∪ {0}, j = 0, 1, . . . , k.
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By (2.5), we have

|an+1| ≤
M

|αn+1 − α|

[ n−1∑
u=0

|au+1| |an−u|+ 2
n−2∑
u=0

|au+1|
n−u−2∑
i=0

|ai+1|(2.6)

×
∑

(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

1
rs

s∏
m=1

|alm |

+
n−3∑
u=0

|au+1|
n−u−3∑
i=0

n−u−i−3∑
h=0

|ai+1|
∑

(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

|alm |

×
∑

(lm)∈Aτh+1

1≤τ≤h+1

1
rt+τ

τ∏
m=1

|alm |
]
, n ≥ 2.

First of all, in case (C1), we have

lim
n→∞

∣∣∣∣ 1
αn+1 − α

∣∣∣∣ =
1
|α|

.

Thus, there exists a positive number L such that∣∣∣∣ 1
αn+1 − α

∣∣∣∣ ≤ L.
In order to construct a governing series of (2.2), we consider the following

implicit function equation for H(z):

H(z) = |γ|z + L̃M

(
H(z)

1−H(z)/r

)2

where L̃ = L if (C1) holds and L̃ = 1 as (C2) holds. Define

Θ(z, ω; γ, L̃,M, r) = |γ|z − ω + L̃M

(
ω

1− ω/r

)2

(2.7)

for (z, ω) in a neighborhood of (0, 0). Then the function H(z) satisfies

(2.8) Θ(z,H(z); γ, L̃,M, r) = 0.

Since Θ(0, 0; γ, L̃,M, r) = 0 and Θ′ω(0, 0; γ, L̃,M, r) = −1 6= 0, by the im-
plicit function theorem there exists a unique function Φ(z), analytic in a
neighborhood of zero, such that

Φ(0) = 0, Φ′(0) = −Θ
′
z(0, 0; γ, L̃,M, r)

Θ′ω(0, 0; γ, L̃,M, r)
= |γ|,

and Θ(z, Φ(z); γ, L̃,M, r) = 0. According to (2.8), we have H(z) = Φ(z).
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Let H(z) =
∑∞

n=1Cnz
n be the power series expansion of H(z). Substituting

the series in (2.8) we have

∞∑
n=0

Cn+1z
n+1 = |γ|z + L̃M

[ ∞∑
n=0

( n∑
u=0

Cu+1Cn−u+1

)
zn+2

+ 2
∞∑
n=0

( n∑
u=0

Cu+1

n−u∑
i=0

Ci+1

∑
(lm)∈Asn−i−u+1
1≤s≤n−i−u+1

1
rs

s∏
m=1

Clm

)
zn+3

+
∞∑
n=0

( n∑
u=0

Cu+1

n−u∑
i=0

n−u−i∑
h=0

Ci+1

∑
(lm)∈Atn−i−h−u+1

1≤t≤n−i−h−u+1

t∏
m=1

Clm

×
∑

(lm)∈Aτ
h+1

1≤τ≤h+1

1
rt+τ

τ∏
m=1

Clm

)
zn+4

]
.

Equating coefficients, we obtain C1 = |γ| and

(2.9) Cn+1

= L̃M

[ n−1∑
u=0

Cu+1Cn−u + 2
n−2∑
u=0

Cu+1

n−u−2∑
i=0

Ci+1

∑
(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

1
rs

s∏
m=1

Clm

+
n−3∑
u=0

Cu+1

n−u−3∑
i=0

n−u−i−3∑
h=0

Ci+1

∑
(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

Clm

×
∑

(lm)∈Aτh+1

1≤τ≤h+1

1
rt+τ

τ∏
m=1

Clm

]
, n ≥ 1.

In the case of (C1), from (2.6) we have, for n ≥ 2,

|an+1| ≤ L̃M
[ n−1∑
u=0

|au+1| |an−u|

+ 2
n−2∑
u=0

|au+1|
n−u−2∑
i=0

|ai+1|
∑

(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

1
rs

s∏
m=1

|alm |
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+
n−3∑
u=0

|au+1|
n−u−3∑
i=0

n−u−i−3∑
h=0

|ai+1|
∑

(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

|alm |

×
∑

(lm)∈Aτh+1

1≤τ≤h+1

1
rt+τ

τ∏
m=1

|alm |
]
.

Then by immediate induction we obtain |an| ≤ Cn for all n. This implies
that (2.2) converges in a neighborhood of the origin.

In the case of (C2), we will deduce that |an| ≤ Cne
K(n−1) for n ≥ 1,

where K : N→ R is defined in Lemma 2.1.
In fact, |a1| = |γ| = C1. For a proof by induction we assume that |aq1 | ≤

Cq1e
K(q1−1), q1 ≤ n and from Lemma 2.1 we know

|an+1| ≤
M

|αn − 1|

[ n−1∑
u=0

|au+1| |an−u|

+ 2
n−2∑
u=0

|au+1|
n−u−2∑
i=0

|ai+1|
∑

(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

1
rs

s∏
m=1

|alm |

+
n−3∑
u=0

|au+1|
n−u−3∑
i=0

n−u−i−3∑
h=0

|ai+1|
∑

(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

|alm |

×
∑

(lm)∈Aτh+1

1≤τ≤h+1

1
rt+τ

τ∏
m=1

|alm |
]

≤ M

|αn − 1|

[ n−1∑
u=0

Cu+1e
K(u)Cn−ue

K(n−u−1)

+ 2
n−2∑
u=0

Cu+1e
K(u)

n−u−2∑
i=0

Ci+1e
K(i)

∑
(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

1
rs

s∏
m=1

Clme
K(lm−1)

+
n−3∑
u=0

Cu+1e
K(u)

n−u−3∑
i=0

n−u−i−3∑
h=0

Ci+1e
K(i)

×
∑

(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

Clme
K(lm−1)

∑
(lm)∈Aτh+1

1≤τ≤h+1

1
rt+τ

τ∏
m=1

Clme
K(lm−1)

]
.
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Note that

K(u) +K(n− u− 1) ≤ K(n− 1),
K(i) +K(u) + [K(l1 − 1) + · · ·+K(ls − 1)]

≤ K(i) +K(u) +K(n− i− u− s− 1)

≤ K(n− s− 1) ≤ K(n− 1)

and

K(i) +K(u) + [K(l1− 1) + · · ·+K(lt− 1)] + [K(l1− 1) + · · ·+K(lτ − 1)]
≤ K(i) +K(u) +K(n− i− h− u− t− 2) +K(h+ 1− τ)

≤ K(n− t− τ − 1) ≤ K(n− 1).

Therefore

|an+1| ≤
M

|αn − 1|
eK(n−1)

[ n−1∑
u=0

Cu+1Cn−u

+ 2
n−2∑
u=0

Cu+1

n−u−2∑
i=0

Ci+1

∑
(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

1
rs

s∏
m=1

Clm

+
n−3∑
u=0

Cu+1

n−u−3∑
i=0

n−u−i−3∑
h=0

Ci+1

×
∑

(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

Clm
∑

(lm)∈Aτh+1

1≤τ≤h+1

1
rt+τ

τ∏
m=1

Clm

]

≤ Cn+1|αn − 1|−1eK(n)+log |αn−1| ≤ Cn+1e
K(n)

as required. Since
∑∞

n=1Cnz
n is convergent in a neighborhood of the origin,

there exists a constant Λ > 0 such that

Cn < Λn, n ≥ 1.

Moreover, from Lemma 2.1, we know that K(n) ≤ n(B(θ) + ρ) for some
universal constant ρ > 0. Thus

|an| ≤ CneK(n−1) ≤ Λne(n−1)(B(θ)+ρ),

that is,

lim sup
n→∞

|an|1/n ≤ lim sup
n→∞

(Λne(n−1)(B(θ)+ρ))1/n = ΛeB(θ)+ρ.

This implies that the convergence radius of (2.2) is at least (ΛeB(θ)+ρ)−1.
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3. The auxiliary equation in case (C3). This section is devoted to
case (C3). In this case neither the Diophantine condition nor the Brjuno
condition are satisfied.

We need to define a sequence {ãn}∞n=1 by ã1 = |γ| and

ãn+1 = ΓM

[ n−1∑
u=0

ãu+1ãn−u + 2
n−2∑
u=0

ãu+1

n−u−2∑
i=0

ãi+1(3.1)

×
∑

(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

1
rs

s∏
m=1

ãlm

+
n−3∑
u=0

ãu+1

n−u−3∑
i=0

n−u−i−3∑
h=0

ãi+1

∑
(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

ãlm

×
∑

(lm)∈Aτh+1

1≤τ≤h+1

1
rt+τ

τ∏
m=1

ãlm

]
, n ≥ 1,

where

(3.2) Γ := max
{

1,
1

|α− 1|
,

1
|α2 − 1|

, · · · , 1
|αp−1 − 1|

}
,

p is given by (C3), and M is defined in Theorem 2.1.

Theorem 3.1. Assume that (C3) holds. Let {an}∞n=1 be determined by
a1 = γ, a2 = γ2b0/(2(α2 − α)) and

(αn+1 − α)(n+ 1)an+1 = Ψ(n, α), n = 2, 3, . . . ,(3.3)

where

Ψ(n, α) =
n−1∑
u=0

(u+ 1)au+1an−ub0

+
n−2∑
u=0

u+ 1
n− u

au+1

n−u−2∑
i=0

(i+ 1)ai+1

k∑
j=0

∑
(lm)∈Atn−i−u−1
1≤t≤n−i−u−1

ct,j,0

t∏
m=1

αjlmalm

+
n−2∑
u=0

u+ 1
n− u

au+1

n−u−2∑
i=0

(i+ 1)ai+1

∑
(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

bs

s∏
m=1

alm



220 H. Y. Zhao and J. G. Si

+
n−3∑
u=0

u+ 1
n− u

au+1

n−u−3∑
i=0

n−u−i−3∑
h=0

(i+ 1)ai+1

×
k∑
j=0

∑
(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

αjlmalm
∑

(lm)∈Aτh+1

1≤τ≤h+1

ct,j,τ

τ∏
m=1

alm , n ≥ 2.

If Ψ(lp, α) = 0 for all l ∈ N = {1, 2, . . . }, then (1.3) has an analytic solution
of the form

y(z) = γz +
γ2b0

2(α2 − α)
z2 +

∑
n=lp+1, l∈N

µlp+1z
n +

∑
n6=lp+1, l∈N

anz
n

in a neighborhood of the origin, where all µlp+1
,s are arbitrary constants

satisfying the inequality |µlp+1| ≤ ãlp+1 and the sequence {ãn}∞n=1 is defined
in (3.1). Otherwise, if Ψ(lp, α) 6= 0 for some l = 1, 2, . . . , then (1.3) has no
analytic solutions in any neighborhood of the origin.

Proof. Analogously to the proof of Theorem 2.1, let (2.2) be the ex-
pansion of a formal solution y(z) of (1.3). We also have (2.5) or (3.3). If
Ψ(lp, α) 6= 0 for some natural number l, then (3.3) does not hold for n = lp
since αlp+1 − α = 0. In that case, (1.3) has no formal solutions.

If Ψ(lp, α) = 0 for all natural numbers l, then there are infinitely many
choices of corresponding alp+1 in (2.5), and the formal solutions (2.2) form a
family of functions of infinitely many parameters. We can arbitrarily choose
alp+1 = µlp+1 such that |µlp+1| ≤ ãlp+1, l = 1, 2, . . . . In what follows we
prove that the formal solution (2.2) converges in a neighborhood of the
origin. First of all, note that

|αn − 1|−1 ≤ Γ.
It follows from (2.5) that

|an+1| ≤ ΓM
[ n−1∑
u=0

|au+1| |an−u|+ 2
n−2∑
u=0

|au+1|
n−u−2∑
i=0

|ai+1|(3.4)

×
∑

(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

1
rs

s∏
m=1

|alm |

+
n−3∑
u=0

|au+1|
n−u−3∑
i=0

n−u−i−3∑
h=0

|ai+1|
∑

(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

|alm |

×
∑

(lm)∈Aτ
h+1

1≤τ≤h+1

1
rt+τ

τ∏
m=1

|alm |
]
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for all n 6= lp, l = 1, 2, . . . . Further, we can prove that

(3.5) |an| ≤ ãn, n = 1, 2, . . . .

In fact, for a proof by induction we assume that |ai2 | ≤ ãi2 for all 1 ≤ i2 ≤ n.
When n = lp, we have |an+1| = |µn+1| ≤ ãn+1. On the other hand, when
n 6= lp, from (3.4) we get

|an+1| ≤ ΓM
[ n−1∑
u=0

ãu+1ãn−u + 2
n−2∑
u=0

ãu+1

n−u−2∑
i=0

ãi+1

∑
(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

1
rs

s∏
m=1

ãlm

+
n−3∑
u=0

ãu+1

n−u−3∑
i=0

n−u−i−3∑
h=0

ãi+1

∑
(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

ãlm

×
∑

(lm)∈Aτh+1

1≤τ≤h+1

1
rt+τ

τ∏
m=1

ãlm

]
= ãn+1,

implying (3.5). Set

F (z) =
∞∑
n=1

ãnz
n.(3.6)

It is easy to check that (3.6) satisfies

Θ(z, F (z); γ, Γ,M, r) = 0,(3.7)

where the function Θ is defined in (2.7). Moreover, similarly to the proof of
Theorem 2.1, we can prove that (3.7) has a unique analytic solution F (z)
in a neighborhood of the origin such that F (0) = 0 and F ′(0) = |γ| 6= 0.
Thus (3.6) converges in a neighborhood of the origin. By the convergence
of (3.6) and inequality (3.5), the series (2.2) converges in a neighborhood of
the origin. This completes the proof.

4. Analytic solutions of equation (1.2). In this section, we give
a theorem on existence of analytic solutions for equation (1.2).

Theorem 4.1. Suppose that the conditions of either Theorem 2.1 or
Theorem 3.1 are satisfied. Then equation (1.2) has an invertible analytic
solution of the form

x(z) = y(αy−1(z))

in a neighborhood of the origin, where y(z) is an analytic solution of (1.3)
satisfying the initial conditions (2.1).

Proof. In view of Theorems 2.1 and 3.1, we can find an analytic solution
y(z) of the auxiliary equation (1.3) in the form (2.2) such that y(0) = 0
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and y′(0) = γ 6= 0. Clearly the inverse y−1(z) exists and is analytic in a
neighborhood of y(0) = 0. Define

x(z) := y(αy−1(z)).(4.1)

Then x(z) is analytic and invertible in a neighborhood of the origin. From
(4.1) and (1.3), it is easy to see

x(0) = y(αy−1(0)) = y(0) = 0,

x′(0) = αy′(αy−1(0))(y−1)′(0) =
αy′(αy−1(0))
y′(y−1(0))

=
αy′(0)
y′(0)

= α 6= 0,

and

x′′(z) =
α2y′′(αy−1(z))y′(y−1(z))− αy′(αy−1(z))y′′(y−1(z))

(y′(y−1(z))3

=
k∑
j=0

∞∑
t=1

Ct,j(y(y−1(z)))(y(αjy−1(z)))t +G(y(y−1(z)))

=
k∑
j=0

∞∑
t=1

Ct,j(z)(x[j](z))t +G(z),

that is, the function x(z) defined in (4.1) satisfies equation (1.2).

The following two examples show how to construct an analytic solution
of (1.2) for a concrete equation.

Example 4.1. Consider the equation

(4.2) x′′(z) =
2∑
j=0

∞∑
t=1

Ct,j(z)(x[j](z))t +G(z), ∀z ∈ C,

where

Ct,j(z) =
j

3t−1(3− z)
=
∞∑
n=0

j

3t+n
zn, t ∈ N, j = 0, 1, 2,

and

G(z) =
1
2
ez =

∞∑
n=0

zn

2n!
.

Clearly the functions Ct,j(z) (t ∈ N, j = 0, 1, 2) and G(z) are analytic for
|z| < 3, and for each j = 0, 1, 2, the series

∞∑
t=1

Ct,j(z1)zt2 =
∞∑
t=1

j

3t−1(3− z1)
zt2 =

3j
3− z1

· z2
3− z2
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converges for a pair of nonzero complex z1, z2 with |z1| < 3 and |z2| < 3.
Take α = 1/2. By Theorem 2.1, the auxiliary equation

(4.3) y′
(

1
2
z

)
= y′(z)

[
1 + 2

z�

0

y′(s)
( 2∑
j=0

∞∑
t=1

j

3t−1(3− y(s))
(y(2−js))t +

1
2
ey(s)

)
ds

]
has a solution of the form (2.2) where a1 = γ 6= 0 is given arbitrarily and
a2, a3, . . . are determined by (2.4) and (2.5) recursively, i.e. a2 = −γ2, and

(4.4) an+1 =
(

1
2

(n+ 1)
(

1
2n
− 1
))−1[1

2

n−1∑
u=0

(u+ 1)au+1an−u

+
n−2∑
u=0

u+ 1
n− u

au+1

n−u−2∑
i=0

(i+ 1)ai+1

2∑
j=0

1
2j(n−i−u−1)

×
∑

(lm)∈Atn−i−u−1
1≤t≤n−i−u−1

j

3t

t∏
m=1

alm

+
n−2∑
u=0

u+ 1
n− u

au+1

n−u−2∑
i=0

(i+ 1)ai+1

∑
(lm)∈Asn−i−u−1
1≤s≤n−i−u−1

1
2s!

s∏
m=1

alm

+
n−3∑
u=0

u+ 1
n− u

au+1

n−u−3∑
i=0

n−u−i−3∑
h=0

(i+ 1)ai+1

2∑
j=0

1
2j(n−i−h−u−2)

×
∑

(lm)∈Atn−i−h−u−2

1≤t≤n−i−h−u−2

t∏
m=1

alm
∑

(lm)∈Aτh+1

1≤τ≤h+1

j

3t+τ

τ∏
m=1

alm

]
, n ≥ 2.

In particular, from (4.4) we have

a3 =
y′′′(0)

3!
=

26
27
γ3, . . . .

Since y(0) = 0, y′(0) = γ 6= 0, and the inverse y−1(z) is analytic near the
origin, we can calculate

(y−1)′(0) =
1

y′(y−1(0))
=

1
y′(0)

=
1
γ
,

(y−1)′′(0) = −y
′′(y−1(0))(y−1)′(0)

(y′(y−1(0)))2
= −y

′′(0)(y−1)′(0)
(y′(0))2

=
2
γ
,



224 H. Y. Zhao and J. G. Si

(y−1)′′′(0) = − [y′′′(y−1(0))((y−1)′(0))2 + y′′(y−1(0))(y−1)′′(0)](y′(y−1(0)))2

(y′(y−1(0)))4

+
y′′(y−1(0))((y−1)′(0)) · 2y′(y−1(0))y′′(y−1(0))(y−1)′(0)

(y′(y−1(0)))4

= −
[y′′′(0)γ−2 + y′′(0) · ( 2

γ )](y′(0))2 − y′′(0)γ−1 · 2y′(0)y′′(0)γ−1

(y′(0)))4

=
56
9γ
, . . . .

Furthermore, we get

x(0) = y

(
1
2
y−1(0)

)
= y(0) = 0,

x′(0) = y′
(

1
2
y−1(0)

)
· 1

2
(y−1)′(0) =

1
2
y′(0)(y−1)′(0) =

1
2
,

x′′(0) =
1
4
y′′
(

1
2
y−1(0)

)
[(y−1)′(0)]2 +

1
2
y′
(

1
2
y−1(0)

)
(y−1)′′(0) =

1
2
,

x′′′(0) =
1
8
y′′′
(

1
2
y−1(0)

)
[(y−1)′(0)]3 +

1
2
y′′
(

1
2
y−1(0)

)
(y−1)′(0)(y−1)′′(0)

+
1
4
y′′
(

1
2
y−1(0)

)
(y−1)′(0)(y−1)′′(0) +

1
2
y′
(

1
2
y−1(0)

)
(y−1)′′′(0)

=
1
8
y′′′(0)[(y−1)′(0)]3 +

3
4
y′′(0)(y−1)′(0)(y−1)′′(0) +

1
2
y′(0)(y−1)′′′(0)

=
5
6
, . . . .

Thus near 0 equation (4.2) has an analytic solution

x(z) =
1
2
z +

1
4
z2 +

5
36
z3 + · · · .

Example 4.2. Consider the equation

(4.5) x′′(z) = zx[k](z)− αz2, ∀z ∈ C,

where k > 2 is an integer and α is a primitive root of unity of order k − 1.
We can get the auxiliary equation

(4.6) y′(αz) = y′(z)
[
1 +

1
α

z�

0

y′(s)(y(s)y(αks)− αy2(s))ds
]
.

If we substitute y(z) =
∑∞

n=1 anz
n in (4.6), where a1 = α, we obtain

a2 = a3 = 0 and

(4.7) (αn+1 − α)(n+ 1)an+1 = Ψ(n, α), n = 3, 4, . . . ,
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where

Ψ(n, α)

=
n−3∑
u=0

n−u−3∑
i=0

n−i−u−2∑
h=1

u+ 1
n− u

(i+ 1)(αh − α)ahai+1au+1an−u−i−h−1, n ≥ 3.

It is easy to find
Ψ(n, α) = 0, n = 3, 4, . . . .

Obviously, for all l = 1, 2, . . . , we have Ψ(l(k − 1), α) = 0 and a2 = a3 =
· · · = 0. This implies that (4.6) has an analytic solution

y(z) = αz.

Thus, (4.5) has an analytic solution

x(z) = y(αy−1(z)) = y

(
α

(
1
α
z

))
= y(z) = αz.

Notice in the first example that if the functions G(z) =
∑∞

n=0 bnz
n and

Ct,j(z) =
∑∞

n=0 ct,j,nz
n for t ∈ N, j = 0, 1, . . . , k, are all given near 0 by

convergent series with real coefficients then by Theorem 4.1 equation (1.2)
has an invertible analytic real solution. Clearly by (2.4) and (2.5) we can
define a real sequence {an}∞n=1 and obtain a solution y(z) of the form (2.2)
with real coefficients. The restriction of the function y(z) to the reals is
real-valued. Hence the function x(z) = y(αy−1(z)) is also a real function,
and Theorem 4.1 implies that it is analytic and invertible.
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