Uniqueness of entire functions and their derivatives

by INDRAJIT LAHIRI (West Bengal) and GAUTAM KUMAR GHOSH (Bireswarpur)

Abstract. We study the uniqueness of entire functions which share a value or a function with their first and second derivatives.

1. Introduction, definitions and results. Let f be a non-constant meromorphic function in the open complex plane \mathbb{C} . A meromorphic function a = a(z) is called a *small function* of f if T(r, a) = S(r, f), where T(r, f) is the Nevanlinna characteristic function of f and $S(r, f) = o\{T(r, f)\}$ as $r \to \infty$ possibly outside a set of finite linear measure. Also we denote by E(a; f) the set of distinct zeros of f - a.

The problem of uniqueness of meromorphic functions sharing values with their derivatives is a special case of the uniqueness theory of meromorphic functions. This problem was initiated by Rubel and Yang [4] with the following result.

THEOREM A ([4]). Let f be a non-constant entire function. If f and f' share the values a and b counting multiplicities then $f \equiv f'$.

Considering $f = e^{e^z} \int_0^z e^{-e^t} (1 - e^t) dt$ we see that $f' - 1 = e^z (f - 1)$ and so the condition that f and f' share two values is essential for Theorem A. In 1986 Jank, Mues and Volkman [3] considered the problem of sharing a single value by the derivatives of an entire function and proved the following result.

THEOREM B ([3]). Let f be a non-constant entire function and $a \ (\neq 0)$ be a finite number. If E(a; f) = E(a; f') and $E(a; f) \subset E(a; f'')$ then $f \equiv f'$.

In 2002 Chang and Fang [1] extended Theorem B and proved the following result.

Key words and phrases: entire function, derivative, uniqueness.

²⁰⁰⁰ Mathematics Subject Classification: Primary 30D35.

THEOREM C ([1]). Let f be a non-constant entire function. If E(z; f) = E(z; f') and $E(z; f') \subset E(z; f'')$, then $f \equiv f'$.

The purpose of the paper is to further extend Theorem C and prove the following theorem.

THEOREM 1.1. Let f be a non-constant entire function and $a(z) = \alpha z + \beta$, where $\alpha \ (\neq 0)$ and β are constants. If $E(a; f) \subset E(a; f')$ and $E(a; f') \subset E(a; f'')$, then either $f = A \exp\{z\}$ or

$$f = \alpha z + \beta + (\alpha z + \beta - 2\alpha) \exp\left\{\frac{\alpha z + \beta - 2\alpha}{\alpha}\right\},$$

where A is a non-zero constant.

COROLLARY 1.1. If in Theorem 1.1 we assume E(a; f) = E(a; f'), then $f = A \exp\{z\}$, where A is a non-zero constant.

Let f, g, a and b be meromorphic functions in \mathbb{C} . We denote by $N(r, a; f \mid g \neq b)$ the integrated counting functions of those zeros of f - a (counted with multiplicities) which are not the zeros of g - b.

For the standard definitions and notations of value distribution theory we refer the reader to [2].

2. Lemma. In this section we prove a lemma which is required to prove the theorem.

LEMMA 2.1. Let f be a transcendental entire function and a = a(z) $(\neq 0, \infty)$ be a non-constant small function of f such that $E(a; f) \subset E(a; f')$ and $E(a; f') \subset E(a; f'')$. Then $f = A \exp\{z\}$ if and only if m(r, 1/(f - a)) = S(r, f), where A is a non-zero constant.

Proof. Since the "only if" part easily follows from Nevanlinna's three small functions theorem, we prove the "if" part.

We suppose that

(2.1)
$$m\left(r,\frac{1}{f-a}\right) = S(r,f).$$

Let

$$\phi = \frac{f'' - f'}{f - a}$$
 and $\psi = \frac{(a - a')f'' - a(f' - a')}{f - a}$.

Also set $E = \{z : (a(z) - a'(z))(a(z) - a''(z)) = 0\}$. Since a zero of f - a which does not belong to E is a simple zero, it is not a pole of ϕ and ψ . Hence $N(r, \phi) = S(r, f)$ and $N(r, \psi) = S(r, f)$. Also for any positive integer p we get, by (2.1),

$$\begin{split} m\bigg(r, \frac{f^{(p)}}{f-a}\bigg) &= m\bigg(r, \frac{f^{(p)} - a^{(p)}}{f-a} + \frac{a^{(p)}}{f-a}\bigg) \\ &\leq m\bigg(r, \frac{f^{(p)} - a^{(p)}}{f-a}\bigg) + m\bigg(r, \frac{1}{f-a}\bigg) + m(r, a^{(p)}) + O(1) \\ &= S(r, f). \end{split}$$

Hence $m(r, \phi) = S(r, f)$ and $m(r, \psi) = S(r, f)$. Therefore $T(r, \phi) = S(r, f)$ and $T(r, \psi) = S(r, f)$. We now consider the following two cases.

CASE I. Let $\phi \equiv 0$. Then $f' \equiv f''$ and so $f = A \exp\{z\} + B$, where $A \neq 0$ and B are constants. Hence f = f' + B. By (2.1) there exists z_1 such that $a(z_1) \neq \infty$ and $a(z_1) = a(z_1) + B$ and so B = 0. Therefore $f = A \exp\{z\}$.

CASE II. Let $\phi \not\equiv 0$. Let z_0 be a zero of f - a and $z_0 \notin E$. Then in some neighbourhood of z_0 we get

$$f = a(z_0) + a_1(z - z_0) + a_2(z - z_0)^2 + a_3(z - z_0)^3 + O((z - z_0)^4),$$

$$f' = a_1 + 2a_2(z - z_0) + 3a_3(z - z_0)^2 + O((z - z_0)^3),$$

$$f'' = 2a_2 + 6a_3(z - z_0) + O((z - z_0)^2),$$

where $a_1 = 2a_2 = a(z_0)$ and $6a_3 = f^{(3)}(z_0)$.

So in some neighbourhood of z_0 we obtain

$$\phi = \frac{(6a_3 - 2a_2)(z - z_0) + O((z - z_0)^2)}{a(z_0) - a(z) + a_1(z - z_0 + O((z - z_0)^2))}$$

=
$$\frac{(6a_3 - 2a_2)(z - z_0) + O((z - z_0)^2)}{(a_1 - a'(z_0) + o(1))(z - z_0) + O((z - z_0)^2)}$$

=
$$\frac{6a_3 - 2a_2 + O(z - z_0)}{a_1 - a'(z_0) + o(1) + O(z - z_0)}.$$

Hence

(2.2)
$$\phi(z_0) = \frac{f^{(3)}(z_0) - a(z_0)}{a(z_0) - a'(z_0)}.$$

Also in some neighbourhood of z_0 we get

$$\psi = \frac{a'(z)a'(z_0) + f^{(3)}(z_0)(a(z) - a'(z)) - a(z)a(z_0) + O(z - z_0)}{a(z_0) - a'(z_0) + o(1) + O(z - z_0)}.$$

Hence

(2.3)
$$\psi(z_0) = f^{(3)}(z_0) - a(z_0) - a'(z_0).$$

From (2.2) and (2.3) we get

(2.4)
$$\{a(z_0) - a'(z_0)\}\phi(z_0) - \psi(z_0) - a'(z_0) = 0.$$

If $(a - a')\phi - \psi - a' \neq 0$, then from (2.4) we get $N\left(r, \frac{1}{f - a}\right) \leq N(r, 0; (a - a')\phi - \psi - a') + S(r, f) = S(r, f),$

which together with (2.1) implies T(r, f) = S(r, f), a contradiction. Therefore

(2.5)
$$(a-a')\phi - \psi \equiv a'.$$

First we suppose that $\psi \equiv 0$. Then from (2.5) and the definitions of ϕ and ψ we get

(2.6)
$$(a - a') \frac{f'' - f'}{f - a} \equiv a'$$

and

(2.7)
$$(a-a')f'' \equiv a(f'-a').$$

From (2.6) and (2.7) we obtain $f \equiv f'$ and so $\phi \equiv 0$, which is a contradiction.

Next we suppose that $\psi \neq 0$. Then from (2.5) and the definitions of ϕ and ψ we get

$$(a-a')\frac{f''-f'}{f-a} - \frac{(a-a')f''-a(f'-a')}{f-a} \equiv a'.$$

This implies $f \equiv f'$ and so $\phi \equiv 0$, which is a contradiction. This proves the lemma.

3. Proofs of the theorem and corollary. In this section we prove the main result of the paper.

Proof of Theorem 1.1. First we suppose that f is a polynomial and consider the following cases.

CASE I. Let f = Az + B, where $A \ (\neq 0)$ and B are constants. If z_0 is a zero of f - a, then by the hypotheses z_0 is also a zero of f' - a and f'' - a. Hence $A = a(z_0) = 0$, a contradiction.

CASE II. Let $f = Az^2 + Bz + C$, where $A \neq 0$, B and C are constants. If f(z) - a(z) = 0 has two distinct roots, then $E(a; f) \subset E(a; f')$ implies that $f'(z) \equiv a(z)$. Again since $E(a; f') \subset E(a; f'')$, we arrive at a contradiction. So f(z) - a(z) = 0 has only one double root. Also $E(a; f) \subset E(a; f')$ implies that if this root is z_0 then $a(z_0) = a'(z_0)$ and so $z_0 = (\alpha - \beta)/\alpha$. Since $f''(z_0) = a(z_0)$, we get $\alpha = 2A$. Also $f'(z_0) = a(z_0)$ implies $B = \beta$ and $f(z_0) = a(z_0)$ implies $C = (\alpha^2 + \beta^2)/2\alpha$. Therefore

$$f(z) = \frac{\alpha}{2} z^2 + \beta z + \frac{\alpha^2 + \beta^2}{2\alpha}$$

and so $f'(z) \equiv a(z)$. Since $E(a; f') \subset E(a; f'')$, we arrive at a contradiction.

CASE III. Let f be a polynomial of degree $d (\geq 3)$. If z_1, \ldots, z_n are the roots of the equation f(z) - a(z) = 0, we can write

$$f(z) = a(z) + A(z - z_1)^{p_1} \cdots (z - z_n)^{p_n},$$

where $p_1 + \cdots + p_n = d$ and $A \neq 0$ is a constant.

Also by the hypotheses

$$f'(z) = a(z) + B(z - z_1)^{q_1} \cdots (z - z_n)^{q_n} Q(z)$$

and

$$f''(z) = a(z) + C(z - z_1)^{r_1} \cdots (z - z_n)^{r_n} Q(z) R(z),$$

where Q, R are polynomials such that $q_1 + \cdots + q_n + \deg Q = d - 1$, $r_1 + \cdots + r_n + \deg Q + \deg R = d - 2$ and $B \neq 0$, C are constants.

First we suppose that C = 0. Then $f''(z) \equiv a(z)$ and so

$$f(z) = \frac{\alpha^2}{6} z^3 + \frac{\beta}{2} z^2 + \gamma z + \delta$$
 and $f'(z) = \frac{\alpha}{2} z^2 + \beta z + \gamma$,

where γ , δ are constants. Since $E(a; f) \subset E(a; f')$, we see that f(z)-a(z) = 0must have one multiple root, say z_0 . If its multiplicity is three, then by the hypotheses we have $a(z_0) = a'(z_0) = a''(z_0)$, which is impossible because $\alpha \neq 0$. So f(z) - a(z) = 0 has one double root and it is a root of a(z) - a'(z) = 0. Hence $z = (\alpha - \beta)/\alpha$ is a double root of f(z) - a(z) = 0. Also it is a root of f'(z) - a(z) = 0 and so $\gamma = (\alpha^2 + \beta^2)/2\alpha$. Hence

$$f'(z) - a(z) = \frac{\alpha}{2} \left(z - \frac{\alpha - \beta}{\alpha} \right)^2.$$

Since $E(a; f) \subset E(a; f')$ and f(z) - a(z) = 0 has two distinct roots, we arrive at a contradiction. Therefore $C \neq 0$.

Since $E(a; f) \subset E(a; f')$, we see that the roots of f(z) - a(z) = 0 cannot all be simple. By the hypotheses we see that a multiple root of f(z)-a(z) = 0must be a root of a(z) - a'(z) = 0 and so it is $(\alpha - \beta)/\alpha$. If its multiplicity is greater than two, then it is a root of a(z) - a''(z) = 0 and so $\alpha = 0$, which is impossible. So $z = (\alpha - \beta)/\alpha$ is a double root of f(z) - a(z) = 0. Without loss of generality we put $z_1 = (\alpha - \beta)/\alpha$ and $p_1 = 2$. Then z_2, \ldots, z_n are all simple roots of f(z) - a(z) = 0. Therefore d = n+1 and so $q_1 = \cdots = q_n = 1$ and deg Q = 0. Since $E(a; f') \subset E(a; f'')$, we get $r_j \ge 1$ for $j = 1, \ldots, n$. Hence $n + \deg R \le r_1 + \cdots + r_n + \deg R = n - 1$, which is a contradiction.

Therefore f is a transcendental entire function. Let

$$\psi = \frac{(a - a')f'' - a(f' - a')}{f - a}$$

If $\psi \equiv 0$, then

$$\frac{f''}{f'-\alpha} \equiv 1 + \frac{\alpha}{\alpha z + \beta - \alpha}$$

This gives on integration $f' = \alpha + A(\alpha z + \beta - \alpha) \exp\{z\}$ and $f = \alpha z + A(\alpha z + \beta - 2\alpha) \exp\{z\} + B$, where $A \neq 0$ and B are constants. Also $f'' = A(\alpha z + \beta) \exp\{z\}$. Since $E(a; f) \subset E(a; f')$ and $E(a; f') \subset E(a; f'')$, we see that f(z) - a(z) = 0 has the unique solution $z_0 = (2\alpha - B)/\alpha$. Also $f(z) - (\alpha z + B) = 0$ has only one solution $z_1 = (2\alpha - \beta)/\alpha$. Hence by Nevanlinna's three small functions theorem we get $B = \beta$. So

$$f = \alpha z + \beta + A(\alpha z + \beta - 2\alpha) \exp\{z\}.$$

Also since $E(a; f) \subset E(a; f')$, it follows that $\alpha + A(\alpha z_0 + \beta - \alpha) \exp\{z_0\} = \alpha z_0 + \beta$ and so $A = \exp\{(\beta - 2\alpha)/\alpha\}$. Therefore

$$f = \alpha z + \beta + (\alpha z + \beta - 2\alpha) \exp\left\{\frac{\alpha z + \beta - 2\alpha}{\alpha}\right\}.$$

Now we suppose that $\psi \neq 0$. Then

$$f-a \equiv \frac{1}{\psi} \left[(a-a')f'' - a(f'-a') \right]$$

and so

(3.1)
$$\left[1 + a \left(\frac{1}{\psi}\right)' + \frac{a'}{\psi} \right] (f' - a) \equiv (a' - a) \left[1 + \left(\frac{1}{\psi}\right)' (a - a') + \frac{2a'}{\psi} \right]$$
$$+ (a' - a) \left[\frac{1}{\psi} - \left(\frac{1}{\psi}\right)' \right] (f'' - a') - (a' - a) \frac{f'''}{\psi}.$$

Let

$$\Delta = 1 + \left(\frac{1}{\psi}\right)'(a - a') + \frac{2a'}{\psi} \equiv 0.$$

Then

(3.2)
$$\psi^2 + 2\alpha\psi \equiv \psi'(\alpha z + \beta - \alpha).$$

If ψ is transcendental, then from (3.2) we get

$$T(r,\psi) = m(r,\psi) + N(r,\psi) \le m(r,\psi'/\psi) + O(\log r) = S(r,\psi),$$

a contradiction.

Hence ψ is a rational function. If ψ has a pole, then by the hypotheses we see that $z = (\alpha - \beta)/\alpha$ is the only pole of ψ . If p is its multiplicity, then from (3.2) we get 2p = p. So ψ has no pole at all. If n is the degree of ψ , then from (3.2) we get 2n = n and so n = 0. Hence ψ is a constant and from (3.2) we get $\psi = -2\alpha$. Therefore

$$(\alpha z + \beta - \alpha)f'' - (\alpha z + \beta)(f' - \alpha) + 2\alpha(f - \alpha z - \beta) \equiv 0.$$

Differentiating twice we get

$$\frac{f^{(4)}}{f^{(3)}} = 1 - \frac{\alpha}{\alpha z + \beta - \alpha}.$$

On integration we obtain

$$f^{(3)} = \frac{A}{\alpha z + \beta - \alpha} \exp\{z\},$$

where $A \neq 0$ is a constant. This is impossible because f is entire. Therefore $\Delta \neq 0$ and so from (3.1) we get

$$\frac{1}{f'-a} \equiv \frac{1+a\left(\frac{1}{\psi}\right)'+\frac{a'}{\psi}}{(a'-a)\Delta} - \frac{\frac{1}{\psi}-\left(\frac{1}{\psi}\right)'}{\Delta} \cdot \frac{f''-a'}{f'-a} + \frac{1}{\psi\Delta} \cdot \frac{f'''}{f'-a}.$$

Since $T(r, \psi) = S(r, f)$ and f is transcendental, we get

(3.3)
$$m\left(r,\frac{1}{f'-a}\right) = S(r,f).$$

By the hypotheses we see that $z = (\alpha - \beta)/\alpha$ is the only possible multiple (actually double) zero of f' - a. So $N(r, a; f' \mid f \neq a) \leq N(r, 0; \psi) + O(\log r) = S(r, f)$. Therefore

(3.4)
$$N(r, a; f') = N(r, a; f) + N(r, a; f' \mid f \neq a) + O(\log r)$$
$$= N(r, a; f) + S(r, f).$$

Again since f is entire and

$$f = a + \frac{f' - a'}{\psi} \left[(a - a') \frac{f''}{f' - a'} - a \right],$$

we get

$$T(r, f) = m(r, f) \le m(r, f' - a') + S(r, f)$$

$$\le m(r, f') + S(r, f) = T(r, f') + S(r, f).$$

Also

$$T(r, f') = m(r, f') \le m(r, f) + m(r, f'/f) = T(r, f) + S(r, f).$$

Therefore

(3.5)
$$T(r,f) = T(r,f') + S(r,f).$$

From (3.3)-(3.5) we get

$$\begin{split} m\bigg(r,\frac{1}{f-a}\bigg) &= T(r,f) - N\bigg(r,\frac{1}{f-a}\bigg) + S(r,f) \\ &= T(r,f') - N\bigg(r,\frac{1}{f-a}\bigg) + S(r,f) \\ &= N\bigg(r,\frac{1}{f'-a}\bigg) - N\bigg(r,\frac{1}{f-a}\bigg) + S(r,f) \\ &= S(r,f). \end{split}$$

Therefore by Lemma 2.1 we get $f = A \exp\{z\}$. This proves the theorem.

Proof of Corollary 1.1. If

$$f = (\alpha z + \beta) + (\alpha z + \beta - 2\alpha) \exp\left\{\frac{\alpha z + \beta - 2\alpha}{\alpha}\right\},\$$

then we see that E(a; f) contains only one element but E(a; f') contains infinitely many elements. This contradicts the hypothesis E(a; f) = E(a; f'). Therefore by Theorem 1.1 we get $f = A \exp\{z\}$. This proves the corollary.

References

- J. Chang and M. Fang, Uniqueness of entire functions and fixed points, Kodai Math. J. 25 (2002), 309–320.
- [2] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [3] G. Jang, E. Mues und L. Volkman, Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen, Complex Variables Theory Appl. 6 (1986), 51–71.
- [4] L. A. Rubel and C. C. Yang, Values shared by an entire function and its derivative, in: Complex Analysis (Kentucky, 1976), Lecture Notes in Math. 599, Springer, 1977, 101–103.

Department of Mathematics University of Kalyani West Bengal 741235, India E-mail: indr9431@dataone.in Department of Mathematics G.M.S.M. Mahavidyalaya Bireswarpur, South 24 Parganas, India E-mail: g80g@rediffmail.com

Received 4.10.2008 and in final form 14.1.2009 (1933)

246