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Uniqueness of entire functions and their derivatives

by Indrajit Lahiri (West Bengal)
and Gautam Kumar Ghosh (Bireswarpur)

Abstract. We study the uniqueness of entire functions which share a value or a
function with their first and second derivatives.

1. Introduction, definitions and results. Let f be a non-constant
meromorphic function in the open complex plane C. A meromorphic function
a = a(z) is called a small function of f if T (r, a) = S(r, f), where T (r, f)
is the Nevanlinna characteristic function of f and S(r, f) = o{T (r, f)} as
r → ∞ possibly outside a set of finite linear measure. Also we denote by
E(a; f) the set of distinct zeros of f − a.

The problem of uniqueness of meromorphic functions sharing values with
their derivatives is a special case of the uniqueness theory of meromorphic
functions. This problem was initiated by Rubel and Yang [4] with the fol-
lowing result.

Theorem A ([4]). Let f be a non-constant entire function. If f and f ′

share the values a and b counting multiplicities then f ≡ f ′.

Considering f = ee
z ∫ z

0 e
−et

(1− et) dt we see that f ′− 1 = ez(f − 1) and
so the condition that f and f ′ share two values is essential for Theorem A.
In 1986 Jank, Mues and Volkman [3] considered the problem of sharing a
single value by the derivatives of an entire function and proved the following
result.

Theorem B ([3]). Let f be a non-constant entire function and a (6= 0)
be a finite number. If E(a; f) = E(a; f ′) and E(a; f) ⊂ E(a; f ′′) then f ≡ f ′.

In 2002 Chang and Fang [1] extended Theorem B and proved the follow-
ing result.
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Theorem C ([1]). Let f be a non-constant entire function. If E(z; f) =
E(z; f ′) and E(z; f ′) ⊂ E(z; f ′′), then f ≡ f ′.

The purpose of the paper is to further extend Theorem C and prove the
following theorem.

Theorem 1.1. Let f be a non-constant entire function and a(z) =
αz + β, where α (6= 0) and β are constants. If E(a; f) ⊂ E(a; f ′) and
E(a; f ′) ⊂ E(a; f ′′), then either f = A exp{z} or

f = αz + β + (αz + β − 2α) exp
{
αz + β − 2α

α

}
,

where A is a non-zero constant.

Corollary 1.1. If in Theorem 1.1 we assume E(a; f) = E(a; f ′), then
f = A exp{z}, where A is a non-zero constant.

Let f , g, a and b be meromorphic functions in C. We denote by N(r, a; f |
g 6= b) the integrated counting functions of those zeros of f − a (counted
with multiplicities) which are not the zeros of g − b.

For the standard definitions and notations of value distribution theory
we refer the reader to [2].

2. Lemma. In this section we prove a lemma which is required to prove
the theorem.

Lemma 2.1. Let f be a transcendental entire function and a = a(z)
(6≡ 0,∞) be a non-constant small function of f such that E(a; f) ⊂ E(a; f ′)
and E(a; f ′) ⊂ E(a; f ′′). Then f = A exp{z} if and only if m(r, 1/(f − a)) =
S(r, f), where A is a non-zero constant.

Proof. Since the “only if” part easily follows from Nevanlinna’s three
small functions theorem, we prove the “if” part.

We suppose that

(2.1) m

(
r,

1
f − a

)
= S(r, f).

Let

φ =
f ′′ − f ′

f − a
and ψ =

(a− a′)f ′′ − a(f ′ − a′)
f − a

.

Also set E = {z : (a(z) − a′(z))(a(z) − a′′(z)) = 0}. Since a zero of f − a
which does not belong to E is a simple zero, it is not a pole of φ and ψ.
Hence N(r, φ) = S(r, f) and N(r, ψ) = S(r, f). Also for any positive integer
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p we get, by (2.1),

m

(
r,

f (p)

f − a

)
= m

(
r,
f (p) − a(p)

f − a
+

a(p)

f − a

)
≤ m

(
r,
f (p) − a(p)

f − a

)
+m

(
r,

1
f − a

)
+m(r, a(p)) +O(1)

= S(r, f).

Hence m(r, φ) = S(r, f) and m(r, ψ) = S(r, f). Therefore T (r, φ) = S(r, f)
and T (r, ψ) = S(r, f). We now consider the following two cases.

Case I. Let φ ≡ 0. Then f ′ ≡ f ′′ and so f = A exp{z} + B, where
A ( 6= 0) and B are constants. Hence f = f ′ + B. By (2.1) there exists
z1 such that a(z1) 6= ∞ and a(z1) = a(z1) + B and so B = 0. Therefore
f = A exp{z}.

Case II. Let φ 6≡ 0. Let z0 be a zero of f −a and z0 6∈ E. Then in some
neighbourhood of z0 we get

f = a(z0) + a1(z − z0) + a2(z − z0)2 + a3(z − z0)3 +O((z − z0)4),
f ′ = a1 + 2a2(z − z0) + 3a3(z −′ z0)2 +O((z − z0)3),
f ′′ = 2a2 + 6a3(z − z0) +O((z − z0)2),

where a1 = 2a2 = a(z0) and 6a3 = f (3)(z0).
So in some neighbourhood of z0 we obtain

φ =
(6a3 − 2a2)(z − z0) +O((z − z0)2)

a(z0)− a(z) + a1(z − z0 +O((z − z0)2)

=
(6a3 − 2a2)(z − z0) +O((z − z0)2)

(a1 − a′(z0) + o(1))(z − z0) +O((z − z0)2)

=
6a3 − 2a2 +O(z − z0)

a1 − a′(z0) + o(1) +O(z − z0)
.

Hence

(2.2) φ(z0) =
f (3)(z0)− a(z0)
a(z0)− a′(z0)

.

Also in some neighbourhood of z0 we get

ψ =
a′(z)a′(z0) + f (3)(z0)(a(z)− a′(z))− a(z)a(z0) +O(z − z0)

a(z0)− a′(z0) + o(1) +O(z − z0)
.

Hence

(2.3) ψ(z0) = f (3)(z0)− a(z0)− a′(z0).

From (2.2) and (2.3) we get

(2.4) {a(z0)− a′(z0)}φ(z0)− ψ(z0)− a′(z0) = 0.
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If (a− a′)φ− ψ − a′ 6≡ 0, then from (2.4) we get

N

(
r,

1
f − a

)
≤ N(r, 0; (a− a′)φ− ψ − a′) + S(r, f) = S(r, f),

which together with (2.1) implies T (r, f) = S(r, f), a contradiction. There-
fore

(2.5) (a− a′)φ− ψ ≡ a′.
First we suppose that ψ ≡ 0. Then from (2.5) and the definitions of φ

and ψ we get

(2.6) (a− a′) f
′′ − f ′

f − a
≡ a′

and

(2.7) (a− a′)f ′′ ≡ a(f ′ − a′).
From (2.6) and (2.7) we obtain f ≡ f ′ and so φ ≡ 0, which is a contradiction.

Next we suppose that ψ 6≡ 0. Then from (2.5) and the definitions of φ
and ψ we get

(a− a′) f
′′ − f ′

f − a
− (a− a′)f ′′ − a(f ′ − a′)

f − a
≡ a′.

This implies f ≡ f ′ and so φ ≡ 0, which is a contradiction. This proves the
lemma.

3. Proofs of the theorem and corollary. In this section we prove
the main result of the paper.

Proof of Theorem 1.1. First we suppose that f is a polynomial and
consider the following cases.

Case I. Let f = Az +B, where A ( 6= 0) and B are constants. If z0 is a
zero of f − a, then by the hypotheses z0 is also a zero of f ′ − a and f ′′ − a.
Hence A = a(z0) = 0, a contradiction.

Case II. Let f = Az2 +Bz+C, where A (6= 0), B and C are constants.
If f(z)−a(z) = 0 has two distinct roots, then E(a; f) ⊂ E(a; f ′) implies that
f ′(z) ≡ a(z). Again since E(a; f ′) ⊂ E(a; f ′′), we arrive at a contradiction.
So f(z)−a(z) = 0 has only one double root. Also E(a; f) ⊂ E(a; f ′) implies
that if this root is z0 then a(z0) = a′(z0) and so z0 = (α− β)/α. Since
f ′′(z0) = a(z0), we get α = 2A. Also f ′(z0) = a(z0) implies B = β and
f(z0) = a(z0) implies C = (α2 + β2)/2α. Therefore

f(z) =
α

2
z2 + βz +

α2 + β2

2α
and so f ′(z) ≡ a(z). Since E(a; f ′) ⊂ E(a; f ′′), we arrive at a contradiction.
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Case III. Let f be a polynomial of degree d (≥ 3). If z1, . . . , zn are the
roots of the equation f(z)− a(z) = 0, we can write

f(z) = a(z) +A(z − z1)p1 · · · (z − zn)pn ,

where p1 + · · ·+ pn = d and A (6= 0) is a constant.
Also by the hypotheses

f ′(z) = a(z) +B(z − z1)q1 · · · (z − zn)qnQ(z)

and
f ′′(z) = a(z) + C(z − z1)r1 · · · (z − zn)rnQ(z)R(z),

where Q, R are polynomials such that q1 + · · · + qn + degQ = d− 1,
r1 + · · ·+ rn + degQ+ degR = d− 2 and B ( 6= 0), C are constants.

First we suppose that C = 0. Then f ′′(z) ≡ a(z) and so

f(z) =
α2

6
z3 +

β

2
z2 + γz + δ and f ′(z) =

α

2
z2 + βz + γ,

where γ, δ are constants. Since E(a; f) ⊂ E(a; f ′), we see that f(z)−a(z) = 0
must have one multiple root, say z0. If its multiplicity is three, then by the
hypotheses we have a(z0) = a′(z0) = a′′(z0), which is impossible because
α 6= 0. So f(z) − a(z) = 0 has one double root and it is a root of a(z) −
a′(z) = 0. Hence z = (α− β)/α is a double root of f(z)− a(z) = 0. Also it
is a root of f ′(z)− a(z) = 0 and so γ = (α2 + β2)/2α. Hence

f ′(z)− a(z) =
α

2

(
z − α− β

α

)2

.

Since E(a; f) ⊂ E(a; f ′) and f(z) − a(z) = 0 has two distinct roots, we
arrive at a contradiction. Therefore C 6= 0.

Since E(a; f) ⊂ E(a; f ′), we see that the roots of f(z)−a(z) = 0 cannot
all be simple. By the hypotheses we see that a multiple root of f(z)−a(z) = 0
must be a root of a(z)− a′(z) = 0 and so it is (α− β)/α. If its multiplicity
is greater than two, then it is a root of a(z)−a′′(z) = 0 and so α = 0, which
is impossible. So z = (α− β)/α is a double root of f(z)−a(z) = 0. Without
loss of generality we put z1 = (α− β)/α and p1 = 2. Then z2, . . . , zn are all
simple roots of f(z)−a(z) = 0. Therefore d = n+1 and so q1 = · · · = qn = 1
and degQ = 0. Since E(a; f ′) ⊂ E(a; f ′′), we get rj ≥ 1 for j = 1, . . . , n.
Hence n+ degR ≤ r1 + · · ·+ rn + degR = n− 1, which is a contradiction.

Therefore f is a transcendental entire function. Let

ψ =
(a− a′)f ′′ − a(f ′ − a′)

f − a
.

If ψ ≡ 0, then
f ′′

f ′ − α
≡ 1 +

α

αz + β − α
.
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This gives on integration f ′ = α + A(αz + β − α) exp{z} and f = αz +
A(αz + β − 2α) exp{z} + B, where A (6= 0) and B are constants. Also
f ′′ = A(αz + β) exp{z}. Since E(a; f) ⊂ E(a; f ′) and E(a; f ′) ⊂ E(a; f ′′),
we see that f(z)− a(z) = 0 has the unique solution z0 = (2α−B)/α. Also
f(z) − (αz + B) = 0 has only one solution z1 = (2α− β)/α. Hence by
Nevanlinna’s three small functions theorem we get B = β. So

f = αz + β +A(αz + β − 2α) exp{z}.
Also since E(a; f) ⊂ E(a; f ′), it follows that α+A(αz0 + β − α) exp{z0} =
αz0 + β and so A = exp{(β − 2α)/α}. Therefore

f = αz + β + (αz + β − 2α) exp
{
αz + β − 2α

α

}
.

Now we suppose that ψ 6≡ 0. Then

f − a ≡ 1
ψ

[(a− a′)f ′′ − a(f ′ − a′)]

and so

(3.1)
[
1 + a

(
1
ψ

)′
+
a′

ψ

]
(f ′ − a) ≡ (a′ − a)

[
1 +

(
1
ψ

)′
(a− a′) +

2a′

ψ

]
+ (a′ − a)

[
1
ψ
−
(

1
ψ

)′]
(f ′′ − a′)− (a′ − a)

f ′′′

ψ
.

Let

∆ = 1 +
(

1
ψ

)′
(a− a′) +

2a′

ψ
≡ 0.

Then

(3.2) ψ2 + 2αψ ≡ ψ′(αz + β − α).

If ψ is transcendental, then from (3.2) we get

T (r, ψ) = m(r, ψ) +N(r, ψ) ≤ m(r, ψ′/ψ) +O(log r) = S(r, ψ),

a contradiction.
Hence ψ is a rational function. If ψ has a pole, then by the hypotheses

we see that z = (α− β)/α is the only pole of ψ. If p is its multiplicity, then
from (3.2) we get 2p = p. So ψ has no pole at all. If n is the degree of ψ,
then from (3.2) we get 2n = n and so n = 0. Hence ψ is a constant and from
(3.2) we get ψ = −2α. Therefore

(αz + β − α)f ′′ − (αz + β)(f ′ − α) + 2α(f − αz − β) ≡ 0.

Differentiating twice we get

f (4)

f (3)
= 1− α

αz + β − α
.
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On integration we obtain

f (3) =
A

αz + β − α
exp{z},

where A ( 6= 0) is a constant. This is impossible because f is entire. Therefore
∆ 6≡ 0 and so from (3.1) we get

1
f ′ − a

≡
1 + a

(
1
ψ

)′ + a′

ψ

(a′ − a)∆
−

1
ψ −

(
1
ψ

)′
∆

· f
′′ − a′

f ′ − a
+

1
ψ∆
· f ′′′

f ′ − a
.

Since T (r, ψ) = S(r, f) and f is transcendental, we get

(3.3) m

(
r,

1
f ′ − a

)
= S(r, f).

By the hypotheses we see that z = (α− β)/α is the only possible multiple
(actually double) zero of f ′ − a. So N(r, a; f ′ | f 6= a) ≤ N(r, 0;ψ) +
O(log r) = S(r, f). Therefore

N(r, a; f ′) = N(r, a; f) +N(r, a; f ′ | f 6= a) +O(log r)(3.4)
= N(r, a; f) + S(r, f).

Again since f is entire and

f = a+
f ′ − a′

ψ

[
(a− a′) f ′′

f ′ − a′
− a
]
,

we get

T (r, f) = m(r, f) ≤ m(r, f ′ − a′) + S(r, f)
≤ m(r, f ′) + S(r, f) = T (r, f ′) + S(r, f).

Also

T (r, f ′) = m(r, f ′) ≤ m(r, f) +m(r, f ′/f) = T (r, f) + S(r, f).

Therefore

(3.5) T (r, f) = T (r, f ′) + S(r, f).

From (3.3)–(3.5) we get

m

(
r,

1
f − a

)
= T (r, f)−N

(
r,

1
f − a

)
+ S(r, f)

= T (r, f ′)−N
(
r,

1
f − a

)
+ S(r, f)

= N

(
r,

1
f ′ − a

)
−N

(
r,

1
f − a

)
+ S(r, f)

= S(r, f).

Therefore by Lemma 2.1 we get f = A exp{z}. This proves the theorem.
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Proof of Corollary 1.1. If

f = (αz + β) + (αz + β − 2α) exp
{
αz + β − 2α

α

}
,

then we see that E(a; f) contains only one element but E(a; f ′) contains
infinitely many elements. This contradicts the hypothesis E(a; f) = E(a; f ′).
Therefore by Theorem 1.1 we get f = A exp{z}. This proves the corollary.
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