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On natural vector bundle morphisms
Tyo®! — ®%0T, over idp,

by A. NTyaMm and A. MBA (Yaoundé)

Abstract. Some properties and applications of natural vector bundle morphisms
T4 o®1 — ®10T4 over idr, are presented.

1. Introduction. Let Ty : M f — FM be a Weil functor. For any vec-
tor bundle (E, M, ) with the standard fibre V', the bundle (T4 E, T4 M, T )
is a well-defined vector bundle since T4 is product-preserving. One can con-
sider the following vector bundles:

®Ir: @IE — M,
TA(RIm) : Ty(®IE) — Ty M,
®g(TA7T) : ®ZTAE — Ty M.
Let S: M — ®IF be a tensor field of type (¢,s) and & : Ty(QLE) —

®LT 4 E a vector bundle morphism over id7, ar; then S:i=¢oT 4S5 is a tensor
field of the same type on (TAE,TAoM,Tsm). When & comes from a natural
vector bundle morphism T4 o ®1 — ®1 o T4 over idy,p and E = TM the
tangent bundle of a manifold M, one can define some interesting natural
operators @2 o T ~ (@10 T)T4 (see [4]) by using the canonical flow natural
equivalence k : Ty o T — T o T4 (see [7] for the case ¢ = 1).

The main result of this paper is Proposition 3.1 that reduces the research
of natural vector bundle morphisms T4 o ® — ®1 o0 T4 over idr, to that of

equivariant linear maps T4 (QIV) — @L(T4V).
2. Weil functor
2.1. Weil algebra
DEFINITION 2.1. A Weil algebra is a finite-dimensional quotient of the
algebra of germs &, = C°(RP,R) (p € N¥).
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We denote by M, the ideal of germs vanishing at 0; M, is the maximal
ideal of the local algebra &,.

ExAMPLE 2.1. (1) R is a Weil algebra since it is canonically isomorphic
to the quotient &,/ M,,.
(2) J§(RP,R) = &,/ Myt is a Weil algebra.

2.2. Covariant description of a Weil functor Ty : Mf — FM. We
write M f for the category of finite-dimensional differential manifolds and
mappings of class C°°; furthermore, F M is the category of fibred manifolds
and fibred manifold morphisms.

Let A =&,/ be a Weil algebra and consider a manifold M. In the set of
@ € C*°(RP, M) such that ¢(0) = z, one defines an equivalence relation R,
by: Rz if and only if [h]; o [¢]o — [h]z o [¢lo € I for any [h], € C°(M,R).

The equivalence class of ¢ is denoted by jap and is called the A-velocity
of p at 0; the class ja¢ depends only on the germ of ¢ at 0. The quotient set
is denoted by (T'AM), and the disjoint union of (TAM),, x € M, by TaM.

The mapping ma ar : TaM — M, jap — ¢(0), defines a bundle structure
on T4 M and for any differentiable mapping f : M — N, one defines a bundle
morphism Ta f : TaM — TaN (over f) by Taf(jap) = ja(f o).

The correspondence Ty : Mf — FM is a product-preserving bundle
functor ([4]).

ExamPLE 2.2. If A = Jg(RP,R), then T4 is equivalent to the functor T}
of (p,r)-velocities, and if A = & /M3, then T4 = T, the tangent functor.

2.3. The canonical flow natural equivalence k : TaoT — ToTy. Let Ty,
Tp be two Weil functors with A = &,/I, B = &,/J; let M be a manifold. For
any ¢ = jap € TATpM, there is a differentiable mapping @ : RP x R? — M
such that ¢(z) = jp®. in a neighbourhood of 0 € RP (see [4]). By this result,
one can define a natural equivalence

R:TAOTB —>TBOTA
as follows:
KJM(C) = jan

where 7 : RY — Ty M, t +— j,Pt. In particular, for Tg = T, we obtain the
canonical flow natural equivalence k : T4 o T — T o T4 associated to the
bundle functor T4.

3. Natural vector bundle morphisms 74 o ®1 — ®% 0Ty over idr,.
In this section, A = &£,/1 is a Weil algebra with M, > I D M;H, r minimal;
(q,5) € N?; V is a finite-dimensional real vector space.
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3.1. Preliminaries. We write VB for the subcategory of FM of vector
bundles and vector bundle morphisms; D is the subcategory of VB of vector
bundles with the standard fibre V' and morphisms of vector bundles which
are isomorphisms on fibres.

Let us consider the following vector spaces:

TA(@IV) :=Ty((®°V*) @ (®1V)),
RUTA(V)) = (@ (TAV)*) @ (RITAV).

If ¢ is a linear automorphism of V', one can consider the following linear
automorphisms:

Ta(®%9) =Ta(@ (¢™) ® (87 ¢)),
®4(Tap) = &° ((Tap)™") ® (&7 Tay)
respectively on Ty (®@1V) and @%(Ta(V)).

Finally, consider the functors T4 o ®%: D — VB and ®L 0Ty : D — VB
defined as follows:

{TA o ®1((E, M, 7)) = (Ta(®1E), TaM, Ta(21r)),
TA © ®g((f’ f)) = (TAfa TA(®gf))’

and

@10 Tu((f, 1)) = (Taf, @L(Taf))-

3.2. Natural vector bundle morphisms Ta o @% — ®% 0Ty over idr, .
Let us consider the representation p,sv : GL(V) — GL(®1V) given by
pgsv(w) = ®@%(u). Let Ay : GL(V) x V. — V, (u,z) — u(z), denote
the canonical linear action; the map TaA\y : TAGL(V) x TAV — T4V is
also a linear action, so there is a unique representation jy : TAGL(V) —
GL(TAV) defined by jyv(jae)(jan) = Tarv(jap, jan). The representation
Jerv © Tapgsy : TAGL(V) — GL(Ta(®%V)) will be denoted (pgs,v)1;
(pg.s,v)1 induces a left action of TAGL(V) on T4(®1V) defined by g-T =
(Pg.s,v)1(9)(T). The representations pg s 7,y and jy also induce a left action

of TAGL(V) on @IT4V defined by §-T = pg s 1,v (3v(9))(T). The particular
case Ty = J, (the bundle functor of (p,1)-velocities) is treated in [1].

{®g o TA((E, M, 7)) = (RUTAE), TAM, @1(Ta7)),

DEFINITION 3.1. A linear map 7 : T4(®%V) — ®1(T4V) is said to be
equivariant if it is TG L(V')-equivariant with respect to the previous actions,
i.e.

Pa,s, 14V (Jv(9)) © T =T 0 (pg,s,v)1(9)
for all g € TAGL(V).

DEFINITION 3.2. A natural vector bundle morphism T : Tao®1 — ®@10Ty
over idr, is a system of base-preserving vector bundle morphisms, 75 :
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Ta(®IE) — QLTaFE), for every D-object E, such that @I(Taf) o7 =
7 0 Ty(®%f) for each D-morphism f: F — F.
PROPOSITION 3.1. There is a bijective correspondence between the set of

all natural vector bundle morphisms T : Ty o ®E — ®R% o0 Ty over idp, and
the set of all equivariant linear maps TA(RIV) — QL(TAV).

Proof. Let ¢ : 71 (U) — U x V be a local trivialisation of a vector
bundle (E, M, ) and put
(1) 7B [yt -L a0 = (@ITap™") o (idr,u % 7) 0 Ta(®%p).

1° The right hand side of (1) does not depend on ¢: Indeed, let o1 :
~1(U) — U x V be another local trivialisation such that (@10~ 1)(x,t) =

( a(z) - t); one has
(

(

®3p1) 0 (R~ 1)(2,T) = (2, pgs,v (a()) - T),
Tap1 o Tap™")(T,1) = (%, jv(Taa(%)) - 1),
Ta(@p1) 0 Ta(@%™) (&, T) = (F, (pg,5v )1 (Taa(@)) - T),
®5(Tapr) o @4(Tap) (7, Th) = (T, pgs,mav (v (Taa(2)))) - T1).
2° 7 is a natural vector bundle morphism: Indeed, let f : E — E’ be a

D—morphism over f, ¢ : 71 (U) — U x V a local trivialisation of F, and
¢ (7)Y U') — U' x V alocal trivialisation of E’ such that f(U) C U’.

Let us put (¢' o f oo~ Y)(z,t) = (f(x),b(z) - t). For any (Z,T) € Ta(®%p) o
(Ta(®im)"H(Tal),

(@9U(Ta') 0 @UTaf) o 75 0 Ta (™) (&, T)
= (Taf(@), pg,srav (v (Tab(@)))) - 7(T))

and
(®1Tay') o Tpr 0 Ta(®1f) 0 Ta(®1p~")(7, T)

= (TAf(%)vF © (pq,s,V)l(TAb(f)) : T)§

but 7 is equivariant, hence @¥(Taf) o T = 7p o Ta(®1f). Furthermore,
TV —pt = T, Where pt is a one-point manifold.

3° The map ¥ : T +— 7 is obviously injective. The surjection can be shown
as follows: given a natural vector bundle morphism 7 : T4 o ® — ®% 0Ty
over idy,, define 7 : Ty (®1V) — @U(TaV) by T = Ty _pt.-

(i) For a linear automorphism ¢ of V, we have @1 (Tap)oT = ToT4(®@1¢p):
Indeed, ¢ is a D -morphism over idp, 0 @1 (Tap)oTy _pt = TvptoTa(®@%p)

(ii) TRm xv—rm = idp,gm X 7: Indeed, the projection pry : R x V' — V,
(x,t) — t, is a D-morphism (over R" — pt), hence

TA(prg) = pry : TAR™ x T4V — T4V
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is also a D-morphism. Moreover
®{(prg) = pry : R™ x (@1V) — &V,
then
Ta(®%(pry)) = pry : TAR™ x Ty (®EV) — Ta(®EV).

The relation ®2(T4(pry))omrm xy—grm = Ty —pt0Ta(®%(pry)) can be written
PI'y © TRmyxV—Rm = T O PIy, hence Trm xy _gm = idp,gm X T.

(iii) 7 is equivariant: Taking f(z,t) = (z,a(x)-t), wherea : RP — GL(V)
is C'°°, the relation

QUTAS) o TRexv—Rr = TRexV—Rp © TA(RLf)
is equivalent to
Pa.s,T4v (Jv (Taa(Z)))) o 7 =T o (pg,s,v 1 (Taa(Z)),

for T € TARP. But for g = jag € TAGL(V), one can write g = Tqa(x) with
a=gand T = ju(idgp).

(iv) ¥(F) = 7: Indeed, each local trivialisation ¢ : 7= 1(U) — U x V of a
vector bundle (E, M, ) is a D-morphism over idy, hence

@1 (Tap) o Tg), = Tuxv—v © Ta(®@lp) = (idr,u x T) o Ta(®1p),

by (ii), i.e. 7g|, = ¥(T)p|,, according to (1). =

4. Equivariant linear maps T4 (®1V) — @¥(T4V)

4.1. The case ¢ = s = 0. An equivariant linear map 7 : T4(®JV) —
®9(T4V) is simply a linear form 7 : TyR — R since (poov)1(9) = idr,r
and po,0,7,v(jv(9)) = idg. Moreover, each linear form i € A* defines an
equivariant linear map 7 : T (®3V) — ®3(T4V) by 7 = i.

4.2. The case g =1, s =0. A linear map 7 : T4V — T4V is equivariant
if and only if jy(g) o7 = Tojy(g) for any g € TAGL(V). For a fixed element
¢ € A, one can define an equivariant linear map 7. : ToV — T4V by

Te(u) =c-u="Ta(-)(c,u),
where - : R x V' — V is the multiplication map; moreover, 7. is a module
endomorphism over id 4.

PROPOSITION 4.1. Equivariant linear maps TaAV — TaV are 7., c € A.
Proof. Let Ty : Mf — FM be a Weil functor and Ta: VB — FM the
product-preserving gauge bundle functor on VB defined as follows:
Ta(E, M, 7) = (TAE, M,7a a0 Tar),
TA(f:f) = (f?TAf)
There is a bijective correspondence between the set of natural vector bundle
morphisms 7'y — T4 over id, and the set of natural transformations 74 —
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T4 over idp » by definition. Furthermore, the pair (A", V') associated to T
is (A, A). According to Theorem 2 of [5], natural transformations Ty — T4
over idr, correspond to module endomorphisms A — A over id 4; the induced
equivariant linear maps T4V — T4V are exactly the maps 7., c € A. n

REMARK 4.1. More generally, for ¢ € N and s = 0, one can construct
some equivariant linear maps T4 (®3V) — ®{(T4V) by using |2| for example.
For (gq,s) € N2, one can use [2] and the result below to construct some
equivariant linear maps T4 (®1V) — @L(T4V).

PROPOSITION 4.2. Let T : To(®V) — @F(TaV) be an equivariant linear
map. Then there is an equivariant linear map 7 : Ta(®@1V) — RLT4V)
(s € N) defined by

T(jASO)(jAnla s 7jA778) = ?(]A(SO * (7717 R 7778)))7
where @ : RP — @IV, m,....ns : RP =V are C° and

e (m,...,ns) R = @FV, 2= p(2)(m1(2), -, ns(2))-
Proof. See [1] for Ty =T, .

5. Applications

5.1. Prolongations of functions. Let (E, M, ) be a vector bundle; sec-
tions of ®8E = M x R are smooth functions on M. With such a function f,
one can associate the prolongation

toTaf :TaM — R,
where i : A — R is linear. In particular, assume that A = 5p//\/l£+1 =
Ji(RP,R); then the dual basis {e}; |a] < r} of {eq = j5(2%); o] < r}
induces the prolongations of functions: f(® = e* o T f, |a| < r (see [6] for
Ty =T7).

5.2. Prolongations of vector fields. Assume that E = TM is the tan-
gent bundle of M and let k : T4T — TT4 be the canonical flow natural
equivalence associated to T4 (|4]). For a natural vector bundle morphism
7: T4 — Ty and a smooth vector field X € X(M),

Kz © Trpg © TAX
is a smooth vector field on Ty M. If 7 comes from ¢ € A, one can write
karomra 0 TaX = (af(e) o Ty)m

where af(c) : TT4 — TT4 is the natural affinor given by [af(c)]ys = kas ©
TTM © /@X/[l and 74 : T ~» TTy the canonical flow operator induced by T4.
This means in particular that all linear natural operators : T' ~» T4 can be
found with natural vector bundle morphisms T4 o ®(1) — ®é oTy.
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5.3. Prolongations of tensor fields of type (q,s). One can use Proposition

4.2 to find natural vector bundle morphisms 7 : T4 o ®¢ — ®% 0 Ty4. For a
smooth tensor field p : M — QLT M,

@I (kar) ot o Tap

is a tensor field of the same type (see [7] for ¢ = 1). One defines in this way
a natural operator

A: Q10T ~ (®10T)Tx

by Anm(p) = @L(kar) o 7ra o Tagp.
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