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On natural vector bundle morphisms
TA ◦ ⊗qs → ⊗qs ◦ TA over idTA

by A. Ntyam and A. Mba (Yaoundé)

Abstract. Some properties and applications of natural vector bundle morphisms
TA ◦ ⊗q

s → ⊗q
s ◦ TA over idTA are presented.

1. Introduction. Let TA :Mf → FM be a Weil functor. For any vec-
tor bundle (E,M, π) with the standard fibre V , the bundle (TAE, TAM,TAπ)
is a well-defined vector bundle since TA is product-preserving. One can con-
sider the following vector bundles:

⊗qsπ : ⊗qsE →M,

TA(⊗qsπ) : TA(⊗qsE)→ TAM,

⊗qs(TAπ) : ⊗qsTAE → TAM.

Let S : M → ⊗qsE be a tensor field of type (q, s) and Φ : TA(⊗qsE) →
⊗qsTAE a vector bundle morphism over idTAM ; then S̃ := Φ◦TAS is a tensor
field of the same type on (TAE, TAM,TAπ). When Φ comes from a natural
vector bundle morphism TA ◦ ⊗qs → ⊗qs ◦ TA over idTAM and E = TM the
tangent bundle of a manifold M , one can define some interesting natural
operators ⊗qs ◦ T  (⊗qs ◦ T )TA (see [4]) by using the canonical flow natural
equivalence κ : TA ◦ T → T ◦ TA (see [7] for the case q = 1).

The main result of this paper is Proposition 3.1 that reduces the research
of natural vector bundle morphisms TA ◦ ⊗qs → ⊗qs ◦ TA over idTA

to that of
equivariant linear maps TA(⊗qsV )→ ⊗qs(TAV ).

2. Weil functor

2.1. Weil algebra

Definition 2.1. A Weil algebra is a finite-dimensional quotient of the
algebra of germs Ep = C∞0 (Rp,R) (p ∈ N∗).
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We denote byMp the ideal of germs vanishing at 0;Mp is the maximal
ideal of the local algebra Ep.

Example 2.1. (1) R is a Weil algebra since it is canonically isomorphic
to the quotient Ep/Mp.

(2) Jr0 (Rp,R) = Ep/Mr+1
p is a Weil algebra.

2.2. Covariant description of a Weil functor TA : Mf → FM. We
write Mf for the category of finite-dimensional differential manifolds and
mappings of class C∞; furthermore, FM is the category of fibred manifolds
and fibred manifold morphisms.

Let A = Ep/I be a Weil algebra and consider a manifold M . In the set of
ϕ ∈ C∞(Rp,M) such that ϕ(0) = x, one defines an equivalence relation Rx
by: ϕRxψ if and only if [h]x ◦ [ψ]0− [h]x ◦ [ϕ]0 ∈ I for any [h]x ∈ C∞x (M,R).

The equivalence class of ϕ is denoted by jAϕ and is called the A-velocity
of ϕ at 0; the class jAϕ depends only on the germ of ϕ at 0. The quotient set
is denoted by (TAM)x and the disjoint union of (TAM)x, x ∈M , by TAM .

The mapping πA,M : TAM →M , jAϕ 7→ ϕ(0), defines a bundle structure
on TAM and for any differentiable mapping f : M → N , one defines a bundle
morphism TAf : TAM → TAN (over f) by TAf(jAϕ) = jA(f ◦ ϕ).

The correspondence TA : Mf → FM is a product-preserving bundle
functor ([4]).

Example 2.2. If A = Jr0 (Rp,R), then TA is equivalent to the functor T rp
of (p, r)-velocities, and if A = E1/M2

1, then TA = T , the tangent functor.

2.3. The canonical flow natural equivalence κ : TA ◦T → T ◦TA. Let TA,
TB be two Weil functors with A = Ep/I, B = Eq/J ; letM be a manifold. For
any ζ = jAϕ ∈ TATBM , there is a differentiable mapping Φ : Rp ×Rq →M
such that ϕ(z) = jBΦz in a neighbourhood of 0 ∈ Rp (see [4]). By this result,
one can define a natural equivalence

κ : TA ◦ TB → TB ◦ TA
as follows:

κM (ζ) = jBη,

where η : Rq → TAM , t 7→ jAΦ
t. In particular, for TB = T , we obtain the

canonical flow natural equivalence κ : TA ◦ T → T ◦ TA associated to the
bundle functor TA.

3. Natural vector bundle morphisms TA ◦⊗qs → ⊗qs ◦TA over idTA
.

In this section, A = Ep/I is a Weil algebra withMp ⊃ I ⊃Mr+1
p , r minimal;

(q, s) ∈ N2; V is a finite-dimensional real vector space.
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3.1. Preliminaries. We write VB for the subcategory of FM of vector
bundles and vector bundle morphisms; D is the subcategory of VB of vector
bundles with the standard fibre V and morphisms of vector bundles which
are isomorphisms on fibres.

Let us consider the following vector spaces:

TA(⊗qsV ) := TA((⊗s V ∗)⊗ (⊗q V )),
⊗qs(TA(V )) := (⊗s (TAV )∗)⊗ (⊗q TAV ).

If ϕ is a linear automorphism of V , one can consider the following linear
automorphisms:

TA(⊗qs ϕ) := TA(⊗s(tϕ−1)⊗ (⊗q ϕ)),

⊗qs(TAϕ) := ⊗s (t(TAϕ)−1)⊗ (⊗q TAϕ)

respectively on TA(⊗qsV ) and ⊗qs(TA(V )).
Finally, consider the functors TA ◦ ⊗qs : D → VB and ⊗qs ◦ TA : D → VB

defined as follows:{
TA ◦ ⊗qs((E,M, π)) = (TA(⊗qsE), TAM,TA(⊗qsπ)),
TA ◦ ⊗qs((f, f)) = (TAf, TA(⊗qsf)),

and {
⊗qs ◦ TA((E,M, π)) = (⊗qs(TAE), TAM,⊗qs(TAπ)),
⊗qs ◦ TA((f, f)) = (TAf,⊗qs(TAf)).

3.2. Natural vector bundle morphisms TA ◦ ⊗qs → ⊗qs ◦ TA over idTA
.

Let us consider the representation ρq,s,V : GL(V ) → GL(⊗qsV ) given by
ρq,s,V (u) = ⊗qs(u). Let λV : GL(V ) × V → V , (u, x) 7→ u(x), denote
the canonical linear action; the map TAλV : TAGL(V ) × TAV → TAV is
also a linear action, so there is a unique representation jV : TAGL(V ) →
GL(TAV ) defined by jV (jAϕ)(jAη) = TAλV (jAϕ, jAη). The representation
j⊗q

sV
◦ TAρq,s,V : TAGL(V ) → GL(TA(⊗qsV )) will be denoted (ρq,s,V )1;

(ρq,s,V )1 induces a left action of TAGL(V ) on TA(⊗qsV ) defined by g̃ · T =
(ρq,s,V )1(g̃)(T ). The representations ρq,s,TAV and jV also induce a left action
of TAGL(V ) on ⊗qsTAV defined by g̃ ·T̃ = ρq,s,TAV (jV (g̃))(T̃ ). The particular
case TA = J1

p (the bundle functor of (p, 1)-velocities) is treated in [1].

Definition 3.1. A linear map τ : TA(⊗qsV ) → ⊗qs(TAV ) is said to be
equivariant if it is TAGL(V )-equivariant with respect to the previous actions,
i.e.

ρq,s,TAV (jV (g̃)) ◦ τ = τ ◦ (ρq,s,V )1(g̃)

for all g̃ ∈ TAGL(V ).

Definition 3.2. A natural vector bundle morphism τ : TA◦⊗qs → ⊗qs◦TA
over idTA

is a system of base-preserving vector bundle morphisms, τE :
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TA(⊗qsE) → ⊗qs(TAE), for every D-object E, such that ⊗qs(TAf) ◦ τE =
τF ◦ TA(⊗qsf) for each D-morphism f : E → F .

Proposition 3.1. There is a bijective correspondence between the set of
all natural vector bundle morphisms τ : TA ◦ ⊗qs → ⊗qs ◦ TA over idTA

and
the set of all equivariant linear maps TA(⊗qsV )→ ⊗qs(TAV ).

Proof. Let ϕ : π−1(U) → U × V be a local trivialisation of a vector
bundle (E,M, π) and put

(1) τE |[TA(⊗q
sπ)]−1(TAU)= (⊗qsTAϕ−1) ◦ (idTAU × τ) ◦ TA(⊗qsϕ).

1◦ The right hand side of (1) does not depend on ϕ: Indeed, let ϕ1 :
π−1(U)→ U ×V be another local trivialisation such that (ϕ1 ◦ϕ−1)(x, t) =
(x, a(x) · t); one has

(⊗qsϕ1) ◦ (⊗qsϕ−1)(x, T ) = (x, ρq,s,V (a(x)) · T ),
(TAϕ1 ◦ TAϕ−1)(x̃, t̃) = (x̃, jV (TAa(x̃)) · t̃),
TA(⊗qsϕ1) ◦ TA(⊗qsϕ−1)(x̃, T̃ ) = (x̃, (ρq,s,V )1(TAa(x̃)) · T̃ ),
⊗qs(TAϕ1) ◦ ⊗qs(TAϕ)−1(x̃, T1) = (x̃, ρq,s,TAV (jV (TAa(x̃)))) · T1).

2◦ τ is a natural vector bundle morphism: Indeed, let f : E → E′ be a
D-morphism over f , ϕ : π−1(U) → U × V a local trivialisation of E, and
ϕ′ : (π′)−1(U ′) → U ′ × V a local trivialisation of E′ such that f(U) ⊂ U ′.
Let us put (ϕ′ ◦ f ◦ ϕ−1)(x, t) = (f(x), b(x) · t). For any (x̃, T̃ ) ∈ TA(⊗qsϕ) ◦
(TA(⊗qsπ))−1(TAU),

(⊗qs(TAϕ′) ◦ ⊗qs(TAf) ◦ τE ◦ TA(⊗qsϕ−1)(x̃, T̃ )

= (TAf(x̃), ρq,s,TAV (jV (TAb(x̃)))) · τ(T̃ ))

and

(⊗qsTAϕ′) ◦ τE′ ◦ TA(⊗qsf) ◦ TA(⊗qsϕ−1)(x̃, T̃ )

= (TAf(x̃), τ ◦ (ρq,s,V )1(TAb(x̃)) · T̃ );

but τ is equivariant, hence ⊗qs(TAf) ◦ τE = τE′ ◦ TA(⊗qsf). Furthermore,
τV→pt = τ , where pt is a one-point manifold.

3◦ The map Ψ : τ 7→ τ is obviously injective. The surjection can be shown
as follows: given a natural vector bundle morphism τ : TA ◦ ⊗qs → ⊗qs ◦ TA
over idTA

, define τ : TA(⊗qsV )→ ⊗qs(TAV ) by τ = τV→pt.
(i) For a linear automorphism ϕ of V , we have ⊗qs(TAϕ)◦τ = τ ◦TA(⊗qsϕ):

Indeed, ϕ is a D -morphism over idpt, so ⊗qs(TAϕ)◦τV→pt = τV→pt◦TA(⊗qsϕ).
(ii) τRm×V→Rm = idTARm × τ : Indeed, the projection pr2 : Rm× V → V,

(x, t) 7→ t, is a D-morphism (over Rm → pt), hence

TA(pr2) = pr2 : TARm × TAV → TAV
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is also a D-morphism. Moreover

⊗qs(pr2) = pr2 : Rm × (⊗qsV )→ ⊗qsV,
then

TA(⊗qs(pr2)) = pr2 : TARm × TA(⊗qsV )→ TA(⊗qsV ).

The relation ⊗qs(TA(pr2))◦τRm×V→Rm = τV→pt◦TA(⊗qs(pr2)) can be written
pr2 ◦ τRm×V→Rm = τ ◦ pr2, hence τRm×V→Rm = idTARm × τ .

(iii) τ is equivariant : Taking f(x, t) = (x, a(x)·t), where a : Rp → GL(V )
is C∞, the relation

⊗qs(TAf) ◦ τRp×V→Rp = τRp×V→Rp ◦ TA(⊗qsf)

is equivalent to

ρq,s,TAV (jV (TAa(x̃)))) ◦ τ = τ ◦ (ρq,s,V )1(TAa(x̃)),

for x̃ ∈ TARp. But for g̃ = jAg ∈ TAGL(V ), one can write g̃ = TAa(x̃) with
a = g and x̃ = jA(idRp).

(iv) Ψ(τ) = τ : Indeed, each local trivialisation ϕ : π−1(U)→ U ×V of a
vector bundle (E,M, π) is a D-morphism over idU , hence

⊗qs(TAϕ) ◦ τE|U = τU×V→U ◦ TA(⊗qsϕ) = (idTAU × τ) ◦ TA(⊗qsϕ),

by (ii), i.e. τE|U = Ψ(τ)E|U , according to (1).

4. Equivariant linear maps TA(⊗qsV )→ ⊗qs(TAV )

4.1. The case q = s = 0. An equivariant linear map τ : TA(⊗0
0V ) →

⊗0
0(TAV ) is simply a linear form τ : TAR → R since (ρ0,0,V )1(g̃) = idTAR

and ρ0,0,TAV (jV (g̃)) = idR. Moreover, each linear form i ∈ A∗ defines an
equivariant linear map τ : TA(⊗0

0V )→ ⊗0
0(TAV ) by τ = i.

4.2. The case q = 1, s = 0. A linear map τ : TAV → TAV is equivariant
if and only if jV (g̃)◦τ = τ ◦ jV (g̃) for any g̃ ∈ TAGL(V ). For a fixed element
c ∈ A, one can define an equivariant linear map τ c : TAV → TAV by

τ c(u) = c · u = TA(·)(c, u),
where · : R × V → V is the multiplication map; moreover, τ c is a module
endomorphism over idA.

Proposition 4.1. Equivariant linear maps TAV → TAV are τ c, c ∈ A.
Proof. Let TA :Mf → FM be a Weil functor and T̃A : VB → FM the

product-preserving gauge bundle functor on VB defined as follows:{
T̃A(E,M, π) = (TAE,M, πA,M ◦ TAπ),
T̃A(f, f) = (f, TAf).

There is a bijective correspondence between the set of natural vector bundle
morphisms TA → TA over idTA

and the set of natural transformations T̃A →
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T̃A over idTA
, by definition. Furthermore, the pair (A′, V ′) associated to T̃A

is (A,A). According to Theorem 2 of [5], natural transformations T̃A → T̃A
over idTA

correspond to module endomorphisms A→ A over idA; the induced
equivariant linear maps TAV → TAV are exactly the maps τ c, c ∈ A.

Remark 4.1. More generally, for q ∈ N and s = 0, one can construct
some equivariant linear maps TA(⊗q0V )→ ⊗q0(TAV ) by using [2] for example.
For (q, s) ∈ N2, one can use [2] and the result below to construct some
equivariant linear maps TA(⊗qsV )→ ⊗qs(TAV ).

Proposition 4.2. Let τ : TA(⊗q0V )→ ⊗q0(TAV ) be an equivariant linear
map. Then there is an equivariant linear map τ : TA(⊗qsV ) → ⊗qs(TAV )
(s ∈ N) defined by

τ(jAϕ)(jAη1, . . . , jAηs) = τ(jA(ϕ ∗ (η1, . . . , ηs))),

where ϕ : Rp → ⊗qsV, η1, . . . , ηs : Rp → V are C∞ and

ϕ ∗ (η1, . . . , ηs) : Rp → ⊗q0V, z → ϕ(z)(η1(z), . . . , ηs(z)).

Proof. See [1] for TA = T 1
p .

5. Applications

5.1. Prolongations of functions. Let (E,M, π) be a vector bundle; sec-
tions of ⊗0

0E = M ×R are smooth functions on M . With such a function f ,
one can associate the prolongation

i ◦ TAf : TAM → R,

where i : A → R is linear. In particular, assume that A = Ep/Mr+1
p =

Jr0 (Rp,R); then the dual basis {e∗α; |α| ≤ r} of {eα = jr0(z
α); |α| ≤ r}

induces the prolongations of functions: f (α) = e∗α ◦ TAf , |α| ≤ r (see [6] for
TA = T r1 ).

5.2. Prolongations of vector fields. Assume that E = TM is the tan-
gent bundle of M and let κ : TAT → TTA be the canonical flow natural
equivalence associated to TA ([4]). For a natural vector bundle morphism
τ : TA → TA and a smooth vector field X ∈ X(M),

κM ◦ τTM ◦ TAX
is a smooth vector field on TAM . If τ comes from c ∈ A, one can write

κM ◦ τTM ◦ TAX = (af(c) ◦ TA)M

where af(c) : TTA → TTA is the natural affinor given by [af(c)]M = κM ◦
τTM ◦ κ−1

M and TA : T  TTA the canonical flow operator induced by TA.
This means in particular that all linear natural operators : T  TTA can be
found with natural vector bundle morphisms TA ◦ ⊗1

0 → ⊗1
0 ◦ TA.
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5.3. Prolongations of tensor fields of type (q, s). One can use Proposition
4.2 to find natural vector bundle morphisms τ : TA ◦ ⊗qs → ⊗qs ◦ TA. For a
smooth tensor field ϕ : M → ⊗qsTM ,

⊗qs(κM ) ◦ τTM ◦ TAϕ
is a tensor field of the same type (see [7] for q = 1). One defines in this way
a natural operator

A : ⊗qs ◦ T  (⊗qs ◦ T )TA
by AM (ϕ) = ⊗qs(κM ) ◦ τTM ◦ TAϕ.
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