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Meromorphic functions sharing three values

with finite weight

by Abhijit Banerjee (Kalyani)

Abstract. Using the idea of weighted sharing we prove some theorems on uniqueness
of meromorphic functions that share three values, which improve and supplement some re-
sults of Yi. Also we solve a problem recently raised by the present author [Austral. J. Math.
Anal. Appl. 3 (2006)]. Examples are provided to show that some results are sharp.

1. Introduction and definitions. Let f and g be two nonconstant
meromorphic functions defined in the open complex plane C. If for some a ∈
C∪{∞}, f and g have the same set of a-points with the same multiplicities
then we say that f and g share the value a CM (counting multiplicities).
If we do not take the multiplicities into account, then f and g are said to
share the value a IM (ignoring multiplicities). The notation T (r) denotes
the maximum of T (r, f) and T (r, g) .

We use I to denote any set of 0 < r < ∞ of infinite linear measure,
not necessarily the same at each occurrence. Though we do not explain the
standard notation of value distribution theory because it is available in [3]
we explain some notations which will be needed in the following.

Definition 1.1. Let s be a positive integer. We denote by N(r, a; f |=s)
the reduced counting function of those a-points of f whose multiplicity is
exactly s, for a ∈ C ∪ {∞}.

Definition 1.2 ([4, 5]). Let s be a positive integer and a ∈ C ∪ {∞}.
We denote by N(r, a; f | ≥s) the counting function of those a-points of f
whose multiplicities are greater than or equal to s, where each a-point is
counted only once.

Ozawa [8] and Ueda [10] dealt with the problem of uniqueness of entire
and meromorphic functions that share three distinct values. G. Brosch [2]
improved the earlier results and proved the following theorem.
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Theorem A ([2]). Let f and g share 0, 1,∞ CM. If

lim sup
r→∞

r∈I

2N(r, 0; f) + 2N(r,∞; f) − m(r, 1; g)

T (r, f)
< 1

then either f ≡ g or fg ≡ 1.

During the last few years a considerable amount of work has been devoted
to the uniqueness problem for meromorphic functions sharing three values
(cf. [7], [9], [11]–[13], [16]).

In 1998 H. X. Yi improved all the previous results and proved the fol-
lowing three theorems.

Theorem B ([14]). Let f and g share 1,∞, 0 CM. If

lim sup
r→∞

r∈I

N(r, 0; f |=1) + N(r,∞; f |=1) − 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Theorem C ([14]). Let f and g share 1,∞ CM and 0 IM. If

(1.1) lim sup
r→∞

r∈I

3N(r, 0; f) + 2N(r,∞; f) − m(r, 1; g)

T (r, f)
< 1

then either f ≡ g or fg ≡ 1.

Theorem D ([14]). Let f and g share 0,∞ IM and 1 CM. If

(1.2) lim sup
r→∞

r∈I

3N(r, 0; f) + 3N(r,∞; f) − m(r, 1; g)

T (r, f)
< 1

then either f ≡ g or fg ≡ 1.

To state the next results we have to introduce the notion of gradation of
sharing known as weighted sharing.

Definition 1.3 ([4, 5]). Let k be a nonnegative integer or infinity. For
a ∈ C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f where an
a-point of multiplicity m is counted m times if m ≤ k and 1 + k times
if m > k. If Ek(a; f) = Ek(a; g), we say that f, g share the value a with

weight k.

The definition implies that if f, g share a value a with weight k then z0

is an a-point of f with multiplicity m (≤ k) if and only if it is an a-point
of g with multiplicity m (≤ k), and z0 is an a-point of f with multiplicity
m (> k) if and only if it is an a-point of g with multiplicity n (> k), where
m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with
weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers
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p with 0 ≤ p < k. Also we note that f, g share a value a IM or CM if and
only if f, g share (a, 0) or (a,∞) respectively.

In 2001 with the notion of weighted sharing of values the following two
results were proved in [4].

Theorem E ([4]). Let f and g be two nonconstant meromorphic func-

tions sharing (0, 1), (∞, 0) and (1,∞). If

N(r, 0; f |=1) + 4N(r,∞; f) < (λ + o(1))T (r)

for r ∈ I and 0 < λ < 1/2 then either f ≡ g or fg ≡ 1.

Theorem F ([4]). Let f and g be two nonconstant meromorphic func-

tions sharing (0, 1), (∞,∞) and (1,∞). If

N(r, 0; f |=1) + N(r,∞; f |=1) < (λ + o(1))T (r)

for r ∈ I and 0 < λ < 1/2 then either f ≡ g or fg ≡ 1.

Also in 2003 with the same notion of weighted sharing of values, improv-
ing Theorems C and D, Lahiri proved the following two theorems.

Theorem G ([6]). Let f and g share (0, 0), (1, 2), (∞,∞). If condition

(1.1) holds then either f ≡ g or fg ≡ 1.

Theorem H ([6]). Let f and g share (0, 0), (1, 2), (∞, 0)). If condition

(1.2) holds then either f ≡ g or fg ≡ 1.

Recently in [1] the present author has improved Theorem H by relaxing
the condition (1.2). In the same paper the author has also raised the problem
of relaxing condition (1.1) in Theorem G. In this paper we will solve this
last problem.

In 2003 Yi [15] improved Theorems E and F by proving the following
three theorems.

Theorem I ([15]). Let f and g share (0, 1), (∞, 0), (1, 5). If

(1.3) lim sup
r→∞

r∈I

N(r, 0; f |=1) + 3N(r,∞; f) − 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Theorem J ([15]). Let f and g share (0, 1), (∞, 0), (1, 3). If

(1.4) lim sup
r→∞

r∈I

N(r, 0; f |=1) + 4N(r,∞; f) − 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.
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Theorem K ([15]). Let f and g share (0, 1), (∞, 2), (1, 6). If

lim sup
r→∞

r∈I

N(r, 0; f |=1) + N(r,∞; f |=1) − 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

In this paper we will improve Theorems I and J by weakening the con-
ditions (1.3) and (1.4). We will also investigate the question of further re-
duction of the weight of the value 1 in Theorem K.

We now state some more definitions.

Definition 1.4. Let f and g be two nonconstant meromorphic functions
such that f and g share (a, k) where a ∈ C ∪ {∞}. Let z0 be an a-point of
f with multiplicity p, and an a-point of g with multiplicity q. We denote by
NL(r, a; f) (resp. NL(r, a; g)) the counting function of those a-points of f

and g where p > q (resp. q > p), and by N
(k+1
E (r, a; f) the counting function

of those a-points of f and g where p = q ≥ k + 1. Each point in these
counting functions is counted only once. In the same way we can define

N
(k+1
E (r, a; g). Clearly N

(k+1
E (r, a; f) ≡ N

(k+1
E (r, a; g).

Definition 1.5 ([4, 5]). Let f , g share a value a IM. We denote by
N∗(r, a; f, g) the reduced counting function of those a-points of f whose
multiplicities differ from the multiplicities of the corresponding a-points
of g. Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +
NL(r, a; g).

2. Lemmas. In this section we present some lemmas which will be
needed later on. Henceforth we shall denote by H, φ1, φ2, φ3 the following
four functions:

H =
f ′′

f ′
−

2f ′

f − 1
−

g′′

g′
+

2g′

g − 1
,

φ1 =
f ′

f(f − 1)
−

g′

g(g − 1)
=

(

f ′

f − 1
−

g′

g − 1

)

−

(

f ′

f
−

g′

g

)

,

φ2 =
f ′

f − 1
−

g′

g − 1
, φ3 =

f ′

f
−

g′

g
.

Lemma 2.1 ([4, 6]). If f, g share (0, 0), (1, 0), (∞, 0) then

(i) T (r, f) ≤ 3T (r, g) + S(r, f),
(ii) T (r, g) ≤ 3T (r, f) + S(r, g).

Lemma 2.1 shows that S(r, f) = S(r, g) and we denote their common
value by S(r).
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Lemma 2.2 ([14]). Let f , g share (0, 0), (1, 0), (∞, 0) and suppose H ≡ 0.
Then f, g share (0,∞), (1,∞), (∞,∞).

Lemma 2.3 ([5]). Let f , g share (1, 1) and H 6≡ 0. Then

N(r, 1; f |=1) = N(r, 1; g |=1) ≤ N(r, H) + S(r, f) + S(r, g).

Lemma 2.4 ([6]). Let f , g share (0, 0),(1, 0),(∞, 0) and H 6≡ 0. Then

N(r, H) ≤ N∗(r, 0; f, g) + N∗(r,∞; f, g) + N∗(r, 1; f, g)

+ N0(r, 0; f ′) + N0(r, 0; g′),

where N0(r, 0; f ′) is the reduced counting function of those zeros of f ′ which

are not the zeros of f(f − 1) and N0(r, 0; g′) is similarly defined.

Lemma 2.5. Let f and g be two nonconstant meromorphic functions

sharing (1, k), where 2 ≤ k < ∞. Then

N(r, 1; f |=2) + 2N(r, 1; f |=3) + · · · + (k − 1)N(r, 1; f |=k)

+kNL(r, 1; f)+(k+1)NL(r, 1; g)+kN
(k+1
E (r, 1; f) ≤ N(r, 1; g)−N(r, 1; g).

Proof. Let z0 be a 1-point of f of multiplicity p, and a 1-point of g of
multiplicity q. We denote by N1(r), N2(r) and N3(r) the counting functions
of those 1-points of f and g when k + 1 ≤ q < p, k + 1 ≤ q = p and
k+1 ≤ p < q respectively. Each point in these counting functions is counted
q − k times.

Since f , g share (1, k), we have

(2.1) N(r, 1; g) − N(r, 1; g)

= N(r, 1; f |=2) + 2N(r, 1; f |=3) + · · ·

+ (k − 1)N(r, 1; f |=k) + (k − 1)NL(r, 1; f)

+ (k − 1)NL(r, 1; g) + (k − 1)N
(k+1
E (r, 1; f)

+ N1(r) + N2(r) + N3(r).

Also we note that

N1(r) ≥ NL(r, 1; f),(2.2)

N2(r) ≥ N
(k+1
E (r, 1; f),(2.3)

N3(r) ≥ 2NL(r, 1; g),(2.4)

Using (2.2)–(2.4) in (2.1) we deduce that

N(r, 1; g) − N(r, 1; g) ≥ N(r, 1; f |=2) + 2N(r, 1; f |=3) + · · ·

+ (k − 1)N(r, 1; f |=k) + kNL(r, 1; f)

+ (k + 1)NL(r, 1; g) + kN
(k+1
E (r, 1; f).

This proves the lemma.
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Lemma 2.6. Let f , g share (0, l), (∞, m), (1, k), where 2 ≤ k < ∞, and

suppose H 6≡ 0. Then

T (r, f) ≤ N(r, 0; f) + N(r, 0; g) + N∗(r, 0; f, g) + N(r,∞; f)

+ N(r,∞; g) + N∗(r,∞; f, g)

− m(r, 1; g) − N(r, 1; f |=3) − · · · − (k − 2)N(r, 1; f |=k)

− (k − 2)NL(r, 1; f)

− (k − 1)NL(r, 1; g) − (k − 1)N
(k+1
E (r, 1; f) + S(r).

Proof. By the second fundamental theorem we get

(2.5) T (r, f) + T (r, g)

≤ N(r, 0; f) + N(r,∞; f) + N(r, 0; g) + N(r,∞; g)

+ N(r, 1; f) + N(r, 1; g) − N0(r, 0; f ′) − N0(r, 0; g′)

+ S(r, f) + S(r, g).

Using Lemmas 2.3–2.5 we see that

(2.6) N(r, 1; f) + N(r, 1; g)

= N(r, 1; f |=1) + N(r, 1; f |=2) + N(r, 1; f |=3)

+ · · · + N(r, 1; f |=k) + N
(k+1
E (r, 1; f)

+ NL(r, 1; f) + NL(r, 1; g) + N(r, 1; g)

≤ N∗(r, 0; f, g) + N∗(r,∞; f, g) + NL(r, 1; f) + NL(r, 1; g)

+ N(r, 1; f |=2) + · · · + N(r, 1; f |=k) + N
(k+1
E (r, 1; f)

+ NL(r, 1; f) + NL(r, 1; g) + T (r, g) − m(r, 1; g)

+ O(1) − N(r, 1; f |=2) − 2N(r, 1; f |=3) − · · ·

− (k − 1)N(r, 1; f |=k) − kN
(k+1
E (r, 1; f) − kNL(r, 1; f)

− (k + 1)NL(r, 1; g) + N0(r, 0; f ′) + N0(r, 0; g′) + S(r)

≤ N∗(r, 0; f, g) + N∗(r,∞; f, g) + T (r, g) − m(r, 1; g)

− N(r, 1; f |=3) − 2N(r, 1; f |=4) − · · ·

− (k − 2)N(r, 1; f |=k) − (k − 2)NL(r, 1; f)

− (k − 1)NL(r, 1; g) − (k − 1)N
(k+1
E (r, 1; f)

+ N0(r, 0; f ′) + N0(r, 0; g′) + S(r)

From (2.5) and (2.6) the lemma follows.
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Lemma 2.7. Let f, g share (0, 1), (1, 2), (∞, 1). If f 6≡ g and N(r,∞;
f | ≥2) = N(r,∞; g | ≥2) = S(r) then N(r, a; f | ≥2) = N(r, a; g | ≥2) = S(r)
for a = 0, 1.

Proof. We prove N(r, a; f | ≥2) = S(r) for a = 0, 1 because the case of g
is similar.

We suppose that N(r, a; f) 6= S(r) for a = 0, 1 because otherwise the
assertion is trivial. Since f 6≡ g, it follows that φi 6≡ 0 for i = 2, 3. Now

N(r, 0; f | ≥2) ≤ N(r, 0; φ2)(2.7)

≤ T (r, φ2) + O(1) = N(r,∞; φ2) + S(r)

≤ N(r, 1; f | ≥3) + N(r,∞; f | ≥2) + S(r)

= N(r, 1; f | ≥3) + S(r).

Again

2N(r, 1; f | ≥3) ≤ N(r, 1; f | ≥3) + N(r, 1; f | ≥2)(2.8)

≤ N(r, 0; φ3) ≤ N(r,∞; φ3) + S(r)

≤ N(r, 0; f | ≥2) + N(r,∞; f | ≥2) + S(r)

= N(r, 0; f | ≥2) + S(r).

From (2.7) and (2.8) we get N(r, 0; f | ≥2) = S(r) and hence from (2.8) we
get N(r, 1; f | ≥2) = S(r). This proves the lemma.

Lemma 2.8. Let f, g share (0, 1), (1, 1), (∞, 2). If f 6≡ g and N(r, 1;
f | ≥2) = N(r, 1; g | ≥2) = S(r) then N(r, a; f | ≥2) = N(r, a; g | ≥2) = S(r)
for a = 0,∞.

Proof. We prove N(r, a; f | ≥2) = S(r) for a = 0,∞ because the case of
g is similar.

We suppose that N(r, a; f) 6= S(r) for a = 0,∞ because otherwise the
assertion is trivial. Since f 6≡ g, it follows that φi 6≡ 0 for i = 1, 2. Now

2N(r,∞; f | ≥3) ≤ N(r,∞; f | ≥3) + N(r,∞; f | ≥2)(2.9)

≤ N(r, 0; φ1) ≤ N(r,∞; φ1) + S(r)

≤ N(r, 0; f | ≥2) + N(r, 1; f | ≥2) + S(r)

= N(r, 0; f | ≥2) + S(r).

Again

N(r, 0; f | ≥2) ≤ N(r, 0; φ2) = N(r,∞; φ2) + S(r)(2.10)

≤ N(r,∞; f | ≥3) + N(r, 1; f | ≥2) + S(r)

= N(r,∞; f | ≥3) + S(r).

From (2.9) and (2.10) we get N(r,∞; f | ≥3) = S(r). Then from (2.10) we get
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N(r, 0; f | ≥2) = S(r) and hence using (2.9) we have N(r,∞; f | ≥2) = S(r).
This proves the lemma.

Lemma 2.9. Let f , g share (0, 1), (1, m), (∞, k) and N(r, 0; f | ≥2) =
N(r, 0; g | ≥2) = S(r). If f 6≡ g and mk − 1 > 0 then N(r, a; f | ≥2) =
N(r, a; g | ≥2) = S(r) for a = 1,∞.

Proof. We prove N(r, a; f | ≥2) = S(r) for a = 1,∞ because the case of
g is similar.

We suppose that N(r, a; f) 6= S(r) for a = 1,∞ because otherwise the
assertion is trivial. Since f 6≡ g, it follows that φi 6≡ 0 for i = 1, 3. Now

(2.11) mN(r, 1; f | ≥m + 1)

≤ (m − 1)N(r, 1; f | ≥ 1 + m) + N(r, 1; f | ≥2)

≤ N(r, 0; φ3) ≤ N(r,∞; φ3) + S(r)

≤ N(r,∞; f | ≥ k + 1) + N(r, 0; f | ≥2) + S(r)

= N(r,∞; f | ≥ k + 1) + S(r).

Also

(2.12) kN(r,∞; f | ≥ k + 1)

≤ (k − 1) N(r,∞; f | ≥ k + 1) + N(r,∞; f | ≥2)

≤ N(r, 0; φ1) ≤ N(r,∞; φ1) + S(r)

≤ N(r, 1; f | ≥m + 1) + N(r, 0; f | ≥2) + S(r)

= N(r, 1; f | ≥m + 1) + S(r).

From (2.11) and (2.12) we get (m − 1/k)N(r, 1; f | ≥m + 1) ≤ S(r), i.e.
N(r, 1; f | ≥m + 1) = S(r). Then from (2.12) we obtain N(r,∞; f | ≥2) =
S(r). Again from (2.11) we get N(r, 1; f | ≥2) = S(r). This completes the
proof of the lemma.

Lemma 2.10 ([15]). Let f , g share (0, 1), (∞, 0), (1, k) where k ≥ 2 is a

positive integer or infinity. Then

N(r, 0; f | ≥2) ≤ N(r,∞; f) + N(r, 1; f | ≥ k + 1) + S(r),

N(r, 1; f | ≥ k + 1) ≤
2

k − 1
N(r,∞; f) + S(r).

Lemma 2.11. Let f , g share (0, 1), (1, 1), (∞, 1) and N(r, a; f | ≥2) =
S(r), where a = 0, 1,∞ and H 6≡ 0. Then

T (r, f) ≤ 2N(r, 0; f |=1) + 2N(r,∞; f |=1) − m(r, 1; g) + S(r).

Proof. By the second fundamental theorem and Lemmas 2.3 and 2.4 we
see that



Meromorphic functions sharing three values 65

T (r, f) + T (r, g) ≤ 2N(r, 0; f |=1) + 2N(r, 0; f | ≥2) + 2N(r,∞; f |=1)

+ 2N(r,∞; f | ≥2) + N(r, 1; f |=1) + N(r, 1; g)

− N0(r, 0; f ′) − N0(r, 0; g′) + S(r)

≤ 2N(r, 0; f |=1) + 2N(r,∞; f |=1) + N(r, 0; f | ≥2)

+ N(r,∞; f | ≥2) + N(r, 1; f | ≥2) + T (r, g)

− m(r, 1; g) + O(1) + S(r),

i.e.

T (r, f) ≤ 2N(r, 0; f |=1) + 2N(r,∞; f |=1) − m(r, 1; g) + S(r).

3. Theorems. In this section we state the main theorems of the paper.

Theorem 3.1. Let f and g be two nonconstant meromorphic functions

sharing (0, 0), (∞,∞), (1, 2). If

(3.1) lim sup
r→∞

r∈I

3N(r, 0; f) + 2N(r,∞; f) − m(r, 1; g) − NL(r, 1; g)

T (r, f)
< 1

then either f ≡ g or fg ≡ 1.

Theorem 3.2. Let f and g be two nonconstant meromorphic functions

sharing (0, 1), (∞, 0), (1, 5). If

(3.2) lim sup
r→∞

r∈I

N(r, 0; f |=1) + 3N(r,∞; f) − 1
2m(r, 1; g) − 1

2NL(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Theorem 3.3. Let f and g be two nonconstant meromorphic functions

sharing (0, 1), (∞, 0), (1, 3). If

(3.3) lim sup
r→∞

r∈I

N(r, 0; f |=1) + 4N(r,∞; f) − 1
2m(r, 1; g) − 1

2NL(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Theorem 3.4. Let f and g be two nonconstant meromorphic functions

sharing (0, 1), (∞, 1), (1, 2). If N(r,∞; f | ≥2) = N(r,∞; g | ≥2) = S(r) and

(3.4) lim sup
r→∞

r∈I

N(r, 0; f |=1) + N(r,∞; f |=1) − 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.



66 A. Banerjee

Theorem 3.5. Let f and g be two nonconstant meromorphic functions

sharing (0, 1), (∞, 2), (1, 1). If N(r, 1; f | ≥2) = N(r, 1; g | ≥2) = S(r) and

lim sup
r→∞

r∈I

N(r, 0; f |=1) + N(r,∞; f |=1) − 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Theorem 3.6. Let f and g be two nonconstant meromorphic functions

sharing (0, 1), (∞, k), (1, m), where mk − 1 > 0. If N(r, 0; f | ≥2) = N(r, 0;
g | ≥2) = S(r) and

lim sup
r→∞

r∈I

N(r, 0; f |=1) + N(r,∞; f |=1) − 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Example 1. Let f = (1 − ez)3, g = 3(ez − 1)/e2z. Clearly f, g share
(0, 0), (∞,∞) and (1,∞). Here NL(r, 1; g) = 0. Also T (r, f) = 3T (r, ez) +
O(1), T (r, g) = 2T (r, ez) + O(1) and N(r, 0; f) ∼ T (r, ez), N(r,∞; f) = 0,
N(r, 1; g) ∼ 2T (r, ez) but neither f ≡ g nor fg ≡ 1. So the condition (3.1)
in Theorem 3.1 is sharp.

Example 2. Let f = ez − e2z, g = e−z − e−2z. Clearly f, g share
(0,∞), (∞,∞) and (1,∞). Here N(r, 0; f |=1) ∼ T (r, ez), N(r,∞; f) = 0,
NL(r, 1; g) = 0. Again T (r, f) = 2T (r, ez)+O(1), T (r, g) = 2T (r, ez)+O(1),
N(r, 1; g) ∼ 2T (r, ez) but neither f ≡ g nor fg ≡ 1. So the conditions (3.2)
and (3.3) in Theorems 3.2 and 3.3 respectively are sharp.

Example 3. Let f = e2z/(ez − 1), g = 1/ez(1 − ez). It is easy to
see that f , g share (0,∞), (∞,∞) and (1,∞). Also here N(r, 0; f | ≥2) =
N(r, 0; g | ≥2) = N(r, 1; f | ≥2) = N(r, 1; g | ≥2) = N(r,∞; f | ≥2)=N(r,∞;
g | ≥2) = 0. Also T (r, f) = 2T (r, ez) + O(1), T (r, g) = 2T (r, ez) + O(1),
N(r,∞; f |=1) ∼ T (r, ez), N(r, 0; f |=1) = 0, N(r, 1; g) ∼ 2T (r, ez) but nei-
ther f ≡ g nor fg ≡ 1. So the condition (3.4) in Theorems 3.4–3.6 is the
best possible.

Example 4. Let f = ez + 1, g = e−z + 1.

Example 5. Let f = 1/(1 − ez), g = ez/(1 − ez).

From Examples 4–5 it is also easy to see that condition (3.4) in Theorems
3.4–3.6 is the best possible.

4. Proofs of the theorems

Proof of Theorem 3.1. Since f , g share (0, 0), (∞,∞), it follows that
N∗(r,∞; f, g)≡0 and N∗(r, 0; f, g)≤N(r, 0; f). Suppose H 6≡ 0. Then from
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Lemma 2.6, for k = 2 we get

T (r, f) ≤ 3N(r, 0; f) + 2N(r,∞; f) − NL(r, 1; g) − m(r, 1; g) + S(r),

which contradicts (3.1). So H ≡ 0. Hence by Lemma 2.2, f and g share
(0,∞), (1,∞), (∞,∞). So NL(r, 1; g) ≡ 0. Now by Theorem A the theorem
follows.

Proof of Theorem 3.2. Since f , g share (0, 1), (∞; 0), we have N∗(r, 0;
f, g) ≤ N(r, 0; f | ≥2) and N∗(r,∞; f, g) ≤ N(r,∞; f). Suppose H 6≡ 0.
Then from Lemmas 2.6 and 2.10 we get, for k = 5,

T (r, f) ≤ 2N(r, 0; f) + N(r, 0; f | ≥2) + 3N(r,∞; f) − 3N(r, 1; f | ≥6)

− NL(r, 1; g) − m(r, 1; g) + S(r)

= 2N(r, 0; f |=1) + 3N(r, 0; f | ≥2) + 3N(r,∞; f)

− 3N(r, 1; f | ≥6) − NL(r, 1; g) − m(r, 1; g) + S(r)

≤ 2N(r, 0; f |=1) + 6N(r,∞; f) − NL(r, 1; g) − m(r, 1; g) + S(r),

which contradicts (3.2). So H ≡ 0. Hence by Lemma 2.2, f and g share
(0,∞), (1,∞), (∞,∞). So NL(r, 1; g) ≡ 0. Now by Theorem B the theorem
follows.

Proof of Theorem 3.3. We omit the proof since it can be carried out
along the lines of the proof of Theorem 3.2.

Proof of Theorem 3.4. Suppose H 6≡ 0. Then f 6≡ g. So from Lemmas
2.7 and 2.11 and the assumption of the theorem we derive a contradiction.
So H ≡ 0. Hence the theorem follows from Lemma 2.2 and Theorem B.

Proof of Theorem 3.5. We omit the proof since using Lemmas 2.8 and
2.11 the proof can be carried out along the lines of the proof of Theo-
rem 3.4.

Proof of Theorem 3.6. Use Lemmas 2.9 and 2.11 and proceed in the
same manner as in the proof of Theorem 3.4.

5. Some remarks. In 2003 Yi proved the following theorems.

Theorem L ([15]). Let f and g be two nonconstant meromorphic func-

tions sharing (0, 0), (∞, 1), (1, 5). If

lim sup
r→∞

r∈I

3N(r, 0; f) + N(r,∞; f |=1) − 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.
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Theorem M ([15]). Let f and g be two nonconstant meromorphic func-

tions sharing (0, 0), (∞, 1), (1, 3). If

lim sup
r→∞

r∈I

4N(r, 0; f) + N(r,∞; f |=1) − 1
2m(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

As a consequence of Theorems 3.2 and 3.3 we improve Theorems L
and M.

Theorem 5.1. Let f and g be two nonconstant meromorphic functions

sharing (0, 0), (∞, 1), (1, 5). If

lim sup
r→∞

r∈I

3N(r, 0; f) + N(r,∞; f |=1) − 1
2m(r, 1; g) − 1

2NL(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Proof. Let

(5.1) F = 1/f, G = 1/g.

It is clear that

(5.2) T (r, f) = T (r, F ) + O(1)

and

(5.3) m(r, 1; g) = m(r, 1; G) + O(1)

From the given condition and by (5.1)–(5.3) we get

lim sup
r→∞

r∈I

N(r, 0; F |=1) + 3N(r,∞; F ) − 1
2m(r, 1; G) − 1

2NL(r, 1; G)

T (r, F )
<

1

2

Since f , g share (0, 0), (∞, 1) and (1, 5), from (5.1) it follows that F , G share
(0, 1), (∞, 0) and (1, 5). So by Theorem 3.2 we get F ≡ G or FG ≡ 1, from
which the theorem follows.

Theorem 5.2. Let f and g be two nonconstant meromorphic functions

sharing (0, 0), (∞, 1), (1, 3). If

lim sup
r→∞

r∈I

4N(r, 0; f) + N(r,∞; f |=1) − 1
2m(r, 1; g) − 1

2NL(r, 1; g)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Proof. Use Theorem 3.3 and proceed in the same manner as in the proof
of Theorem 5.1.
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