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Universal divisors for Hardy spaes in the polydiskby Michał Jasiczak (Pozna«)Abstrat. We show that for an interpolating sequene in the polydisk one an on-strut a universal divisor for Hardy spaes.1. Introdution. It is a remarkable fat in one variable Hardy spaetheory that given a funtion f ∈ Hp(D), one an �nd another funtion
g ∈ Hp with no zeros in D suh that f = Bg. Here B stands for the Blashkeprodut for the zero set of f . What is important here is that B depends onlyon the zeros of f , not on f itself. That is why the Blashke produts arealled universal divisors for the Hardy spae. Let us emphasize that theBlashke produt is a produt of automorphisms of the unit disk.The situation in several variables is more involved. No suh result isknown for a general domain D ⊂ C

n. However, in some ases one an try toobtain similar results. Importantly, for this idea to work one needs the groupof automorphisms of D to at transitively on D. In C
n, n > 1, there is onlyone domain with this property and C2 boundary�the unit ball B (f. [9℄).The question of existene of universal divisors in Hardy spaes in the aseof the unit ball was investigated in [3℄. It was shown that one an onstrutsuh divisors for a disrete set Z ⊂ B, under the assumption that Z is aninterpolating sequene for Hardy spaes.In this paper we study another standard domain in C

n, the polydisk. Weprove the following fat:Theorem 1. If Z is an interpolating sequene for H∞(Dn) in the poly-disk , then there is a universal divisor (of dimension n + 2) for Z and any
Hp with 2 < p < ∞.The next de�nition spei�es what we mean by a universal divisor.Definition 1. We shall say that B = (B1, . . . , BN ) ∈ (H∞)N is auniversal divisor (of dimension N) for Z and the spae Hp if B|Z = 0 and2000 Mathematis Subjet Classi�ation: Primary 32A35; Seondary 32A10, 32A60.Key words and phrases: Hardy spae, polydisk, interpolating sequene, universal di-visor, Carleson measure. [71℄ © Instytut Matematyzny PAN, 2007



72 M. Jasizakfor any funtion f ∈ Hp with f |Z = 0, there is F ∈ (Hp)N suh that(1) f =

N∑

j=1

FjBj .The polydisk has a transitive group of automorphisms. Let Φz, z =
(z1, . . . , zn) ∈ D

n, denote the biholomorphism
Φz(ζ) =

(
z1 − ζ1

1 − z1ζ1
, . . . ,

zn − ζn

1 − znζn

)
.We shall use the terminology from [3℄.Definition 2. Let Z be a sequene of points in D
n. We shall say thata C

N -valued bounded holomorphi funtion B = (B1, . . . , BN ) is an N -strongly de�ning funtion for Z if(i) B|Z = 0,(ii) there are n funtions among the Bi, B̃ := (B1, . . . , Bn) say, suhthat for all z ∈ Z, B̃ = Mz · Φz for some Mz ∈ H∞ ⊗ Mn suh that
‖Mz‖ ≤ δ−1 on D

n,

‖M−1
z ‖ ≤ δ−1 on {‖Φz‖ < δ},(iii) for eah ε > 0 there is η > 0 suh that

ζ ∈
⋂

z∈Z

{|Φz| ≥ ε} ⇒ |B(ζ)| ≥ η.

One says that B̃ is equivalent to Φz near eah z ∈ Z. The meaning ofuniform equivalene is lear.Theorem 1 will be proved one we show that:Theorem 2. If B is an N -strongly de�ning funtion for Z in D
n, then

B is a universal divisor for Z in Hp(Dn) for 2 < p < ∞.Theorem 3. If Z is an interpolating sequene in D
n, then there existsan (n + 2)-strongly de�ning funtion for Z.Denote by I(Z) the ideal of all holomorphi funtions f in D

n with
f |Z = 0. Observe that ondition (1) means that Hp ∩ I(Z) = Hp · B.Corollary 1. Assume that Z1,Z2 are interpolating sequenes in D

n.The following onditions are equivalent :(i) Z1 ⊂ Z2,(ii) I(Z2) ∩ Hp ⊂ I(Z1) ∩ Hp for all 2 < p < ∞,(iii) I(Z2) ∩ Hp ⊂ I(Z1) ∩ Hp for some 2 < p < ∞,(iv) |B2(z)| ≤ CK |B1(z)|, where B1, B2 are the divisors assoiated with
Z1,Z2, respetively. The onstant CK is the same for all z from theompat subset K ⊂ D

n.



Hardy spaes in the polydisk 73Proof. The impliations (i)⇒(ii)⇒(iii) are obvious. To prove (iii)⇒(iv)observe that if B2 is the divisor for Z2, then B2 ∈ Hp for any 1 < p < ∞and onsequently B2|Z1
= 0. Therefore B2 = FB1 for some F ∈ Hp⊗Mn+2.Sine evaluation at a point is ontinuous on Hp, we have (iv).Observe now that if we assume (iv), then B2(ζ) = 0 for any ζ ∈ Z1.Consequently, we have

ζ ∈ D
n ∩

⋂

ε>0

⋃

z∈Z2

{|Φz(ζ)| ≤ ε} = Z2.Corollary 2. If I(Z1)∩Hp = I(Z2)∩Hp for some p with 2 < p < ∞,then Z1 = Z2 whenever Z1,Z2 are interpolating sequenes in D
n.2. Notation

• Z = {zk}k∈N � a sequene in D
3,

• dA = dA1dA2dA3 � the area measure in D
3,

• dm = dm1dm2dm3 � the normalized Lebesgue measure on T
3,

• dΩ = dΩ1dΩ2dΩ3,
• dΩi = log 1

|zi|
dAi, i = 1, 2, 3,

• E � the spae of all di�erential forms with oe�ients from C∞(D3),
• Eq � the spae of all (0, q)-di�erential forms with oe�ients from

C∞(D3),
• Λl � the exterior algebra generated by e1, . . . , el,
• ∩ � denotes also the produt in Λl,
• Λl

1 � the linear subspae of Λl spanned by e1, . . . , el,
• Λl

2 � the linear subspae of Λl spanned by ei ∩ ej, 1 ≤ i, j ≤ l,
• Hp = Hp(Dn) � the Hardy spae in the polydisk,
• C(A, B) � a onstant whih depends only on A and B and sometimeson n,
• A . B � means that there exists a onstant C suh that A ≤ CBand the onrete value of C is of no importane for the proof.3. Methods and proofs. Observe that if Z = ∅, then the problem isatually the Hp orona problem. On the other hand, the Gleason problem,i.e. the problem of �nding, for a given funtion f ∈ Hp with f(0) = 0,funtions F1, . . . , Fn ∈ Hp suh that f = z1F1 + · · · + znFn, has a trivialsolution in the polidysk (and the standard solution in the ase of the unitball). The main idea behind the proof in [3℄ is to make use of these twoobservations. We adapt this onstrution to the setting of the polydisk.More spei�ally, the �rst step is to solve the Hp orona problem o�some neighbourhood of Z. What is important here is that we have to dealessentially with the problem for H∞ funtions. Then we solve the Gleasonproblem at 0 ∈ D

n and use the fat that the automorphisms of D
n at



74 M. Jasizaktransitively to obtain the solution in a neighbourhood of Z. The next stepis to glue these two solutions together in a standard way. Analysis of theorresponding Koszul omplex leads to some ∂-problem in D
n. The shemeof solving the equations whih one enounters here was desribed in [7℄. Thisinvolves solving higher order ∂-equations in the spirit of Wol�'s proof of theorona theorem and the tehnique whih is sometimes alled the projetionmethod for the polydisk.As for the �language� of the proof, we keep the notation introdued in [4℄.This makes the proofs not only muh more transparent, but also easy togeneralize to higher dimensions. The style of the paper is rather onise, dueto the fat that the ore of the onstrution is the same as in [3℄. The readeris invited to onsult the papers [1℄, [3℄, [4℄, [5℄, [7℄ for the details omittedhere.

E ⊗ Λl is an algebra under the multipliation
(∑

I

γIe
I
)
∩

(∑

J

δJeJ
)

:=
∑

I,J

γI ∧ δJeI ∩ eJ ,where ∩ on the right hand side stands for the produt in the exterior al-gebra Λl, while ∧ is the wedge produt in E . Assume now that B is an N -strongly de�ning funtion for Z. We write B = B1e1+ · · ·+BNeN and intro-due the operator δB on E⊗ΛN by δBf = B∪f . The bilinear operator ∪, theinner multipliation in Λl, is de�ned on the generators in the following way:
ei ∪ (ei1 ∩ · · · ∩ eim)

=

{
(−1)ij+1ei1 ∩ · · · ∩ êij ∩ · · · ∩ em if ij = i,
0 if ij 6= i for 1 ≤ j ≤ m,and is extended in an obvious way to E ⊗Λl. Similarly, we extend ∂ to E ⊗Λ(f. [4℄).The Koszul omplex, i.e. E ⊗ Λ equipped with ∂ and δB, is a doubledi�erential omplex. This means that ∂2 = δ2

B = 0 and ∂δB = δB∂, sine
B = B1e1 + · · · + BNeN is holomorphi.Apart from ∂ we also use the operators ∂1, ∂2, ∂3 : Eq ⊗ Λ → Eq+1 ⊗ Λ.First we prove the existene of a strongly de�ning funtion for Z. Atu-ally, it is enough to mimi the argument from [3℄. This is the reason why weonly sketh it. However, at some point we will be slightly more areful.Proof of Theorem 3. Assume that Z is an interpolating sequene in thepolydisk. To prove the existene of a strongly de�ning funtion for Z onehas to hek whether the onstrution from [3℄ works in the setting of thepolydisk.The �rst step is to show that for any �nite interpolating sequene S ⊂ D

nwith |S| = m, there exist funtions βm
j ∈ H∞(Dn), j = 1, . . . , m, suh that
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βm

j (zk) = δjk and
m∑

j=1

|βm
j (z)|2 ≤ C2,with a onstant C independent of n, z and m. The argument is the same asin [1℄ and is independent of the domain.This implies that if Z is an interpolating sequene in D

n, then thereexists a sequene (βj)j∈N of H∞ funtions with βj(zk) = δjk suh that(2) ∞∑

j=1

|βj(z)|2 ≤ C2,with the same onstant. To show this one onsiders the Banah spae
H∞(Dn, l2) onsisting of bounded holomorphi funtions on D

n with val-ues in l2 and the norm
‖f‖H∞(Dn,l2) := sup

z∈Dn

( ∞∑

k=1

|fk(z)|2
)1/2

.Sine this is a dual spae, the sequene (β1
1 , 0, 0, . . . ), (β2

1 , β
2
2 , 0, . . . ), . . . hasa weak-∗ onvergent subsequene. Denote by β = (βj)j∈N the weak-∗ limit ofthis subsequene. Naturally, β satis�es (2) and βj(zk) = δjk for j, k ∈ N. In-deed, weak-∗ onvergene implies that for eah j, the sequene βn

j onvergespointwise.To onlude the proof of the theorem, it is enough to de�ne
Hk = βk

∏

i6=k

(1 − βi), Bi =
∑

k

HkΦ
i
zk

, 1 ≤ i ≤ n,

Bn+1 =
∏

k

(1 − βk), Bn+2 =
∏

k

(1 − Hk).Observe that ∑∞
k=1 |Hk(z)| ≤ C, with the onstant independent of z. Theproof of Theorem 2.2 in [3℄ will show that we have onstruted a stronglyde�ning funtion for Z of dimension n+2, one we prove the next lemma.Lemma 1. Let H ∈ H∞(Dn, l1) and assume that H(z) = 0 for some

z ∈ D
n. Then there exists α ∈ H∞(Dn, l1) ⊗ ΛN

1 suh that H = α ∪ Φz and
‖α‖H∞(Dn,l1)⊗Λn

1
≤ C‖H‖H∞(Dn,l1).Proof. Write H = (H1, H2, . . . ). When z = 0 we may write, for eah k,

Hk(z) = zn
Hk(z1, . . . , zn) − Hk(z1, . . . , zn−1, 0)

zn
+ · · · + z1

Hk(z1, 0, . . . , 0)

z1

= z1αk1 + · · · + znαkn,with trivial estimates showing that indeed ‖α‖H∞(Dn,l1)⊗ΛN
1
≤C‖H‖H∞(Dn,l1).The general ase follows by omposition with automorphisms of D

n.



76 M. JasizakThe same argument would atually show that for an Hp funtion f ,
1 < p < ∞, with f(z) = 0 for some z ∈ D

n there exists Fz ∈ Hp ⊗ Λn
1 suhthat f = Fz ∪Φz and ‖Fz‖Hp⊗Λn

1
. ‖f‖Hp . However, we need Fz with theseproperties to be de�ned in a di�erent manner (f. Proposition 4.2 in [3℄ andLemma 6 below).Fix now a number δ > 0. Its value follows from the proofs below. Let

χ : R+ → [0, 1] be a smooth ut-o� funtion satisfying χ(t) = 1 for t < 1/2and χ(t) = 0 if t > 1. De�ne γ := G + (1 − χZ)H, where H = fb and
b =

N∑

j=1

Bj

|B|2
ejis de�ned only on the set {|B| > 0}, and

G =
∑

z∈Z

χ

(
|Φz|

2

δ2

)
Gz, Gz =

n∑

j=1

(tM−1
z Fz)jej .De�ne χZ to be the funtion

∑

z∈Z

χz(·) :=
∑

z∈Z

χ

(
|Φz(·)|

2

δ2

)
.

Observe that for eah ε > 0, b is bounded in {|B| > ε}. Let ω0 = γ and
ωr = b ∩ ∂ωr−1 = b ∩ (∂b)r−1 ∩ ∂γfor r > 0. Observe that ωr is well-de�ned in D

n. Indeed, in the set⋃
z∈Z{|Φz|

2 < δ2/2} we have ∂γ = 0. By ondition (iii) of the de�nitionof the de�ning funtion, this implies that the support of ωr is ontained inthe set {|B| > ε} for some non-zero ε. Furthermore, taking γs(z) := γ(sz)and bs for s < 1, we may assume that ωr belongs to Er−1 ⊗ Λr+1.Lemma 2. Let K be any (not neessarily linear) ∂-solving operator. De-�ne
η = ω0 − δBK(ω1 − δBK(ω2 − · · ·))

= ω0 − δBK(ω1 − δBK(ω2 − · · · − δBK(ωn−1 − δBKωn) . . .)).Then ∂η = 0 and δBη = f .Proof. First of all observe that δBη = δBω0 = f . As for the �rst propertynotie that
∂η = ∂ω0 − δB∂K(ω1 − δBK(ω2 − · · · ))

= ∂ω0 − δBω1 + δ2
BK(ω2 − · · · )

= ∂ω0 − δB(b ∩ ∂ω0) = 0,



Hardy spaes in the polydisk 77sine δB∂γ = ∂δBγ = ∂f = 0. For this argument to work we must show that
ω1 − δBK(ω2 − · · · ) is ∂-losed. Observe that
∂(ω1 − δBK(ω2 − · · · )) = ∂ω1 − δB∂K(ω2 − δBK(. . . )) = ∂ω1 − δBω2 = 0if ω2 − δBK(. . . ) is ∂-losed. Thus, an indution argument ompletes theproof.In other words, η is holomorphi and satis�es B1η1 + · · · + BNηN = f .What still has to be proved is that η may be hosen to belong to Hp⊗Λl

1. Toshow this, one �rst solves the problem for Bs, with s < 1, �nding appropriate
ηs satisfying ‖ηs‖Hp ≤ C with bound independent of s. A normal familyargument gives the existene of η ∈ Hp ⊗ Λl

1 suh that δBη = f .We will restrit our attention to the ase n = 3. The general ase anbe proved analogously. Lemma 2 shows that the problem in D
3 amounts tosolving the following equations in C

3:
∂η3 = ω3,(3)
∂η2 = ω2 − δBη3,(4)
∂η1 = ω1 − δBη2.(5) Let us reall the onept of a Carleson measure in the polydisk [5℄. For

z = reiθ0 , let Iz denote the ar {eiθ : |θ − θ0| < 1 − r}. Let U be anyopen onneted subset of T
n. Set S(U) := {z ∈ D

n : Iz1
× · · · × Izn ⊂ U}.Equivalently, S(U) =

⋃
I1×···×In⊂U S(I1) × · · · × S(In). We shall onsiderpositive measures µ on D
n satisfying µ(S(U)) . |U |. It was indiated in [5℄that this is the orret generalization of the notion of Carleson measure forthe polydisk. This means for instane that suh a measure is bounded onthe Lp(Tn) spae [5℄, i.e.(6) ( \

Dn

|F |p dµ
)1/p

≤
( \

Tn

|f |p dm
)1/p

,for any f ∈ Lp, 1 < p < ∞. Here F stands for the n-harmoni extensionof f . Therefore, suh measures are alled Carleson measures on D
n.Additionally, we onsider positive measures on D

n satisfying µ(S(U)) .

|U |α for some 0 < α ≤ 1 and all them Carleson measures of order α, orsimply α-Carleson measures (f. [2℄).If f is an Lp(Tn) funtion, then f̃ stands for the Poisson extension of |f |.We abuse the notation in an aepted manner and write f̃ also if f ∈ Hp.Proposition 1.(i) There exists η3 ∈ E2 ⊗ ΛN satisfying
∂η3 = ω3



78 M. Jasizaksuh that
η3 = ∂1∂2u12 + ∂1∂3u13 + ∂2∂3u23and ‖u12‖Lp , ‖u13‖Lp , ‖u23‖Lp ≤ C, with a onstant whih dependson ‖B‖H∞⊗ΛN

1
, ‖f‖Lp and ‖f̃‖Lp but not on s.(ii) There exists η2 ∈ E1 ⊗ ΛN satisfying

∂η2 = ω2 − δBη3suh that
η2 = ∂1u1 + ∂2u2 + ∂3u3with ‖u1‖Lp , ‖u2‖Lp , ‖u3‖Lp ≤ C(δ, ‖B‖H∞⊗ΛN

1
, ‖f‖Lp , ‖f̃‖Lp).(iii) There exists η1 ∈ E0 ⊗ ΛN satisfying

∂η1 = ω1 − δBη2with ‖η1‖Lp . C(δ, ‖B‖H∞⊗ΛN
1

, ‖f‖Lp, ‖f̃‖Lp).Observe that Proposition 1(iii) together with a normal family argumentgives the proof of Theorem 2.Proof of Proposition 1(i). It is enough to solve the equation ∂1∂2∂3u =
ω3 and de�ne u12 = u, u13 = 0, u23 = 0. Thus, Proposition 1(i) is a onse-quene of the following lemma:Lemma 3. Suppose g ∈ C3(D3) satis�es :(i) |g|2dΩ is an α = 1 − 2/p-Carleson measure,(ii) \

D3

|h| · |∂1∂2∂3g| dΩ . 1,

(iii) ∑

i6=j, j 6=k, i6=k

\
D3

|∂ih| · |∂j∂kg| dΩ . 1,

(iv) ∑

i6=j, j 6=k, i6=k

\
D3

|∂i∂jh| · |∂kg| dΩ . 1,

for any h ∈ Hq with ‖h‖Lq = 1. Then the equation(7) ∂3u

∂z1∂z2∂z3
= ghas a solution u ∈ C∞(D3) with ‖u‖Lp(T3) ≤ C.Proof. Let u be a C∞(D3) solution to (7). Any C∞(D3) solution is of theform u+v, where v belongs to C∞(D3) and is ∂1∂2∂3-losed. By duality, wehave

inf
v∈Hp(D3)

‖u + v‖Lp ≤ sup
{∣∣∣
\

T3

uh dm
∣∣∣ : h ∈ Hq, ‖h‖Hq ≤ 1

}
.



Hardy spaes in the polydisk 79For a �xed h, by Green's theorem, we have
∣∣∣
\

T3

uh dm
∣∣∣ = c

∣∣∣
\

D3

∆1∆2∆3(uh) dΩ
∣∣∣ = c

∣∣∣
\

D3

∂1∂2∂3(hg) dΩ
∣∣∣.It is enough to estimate the right-hand side of the above equality by ‖h‖Hq .It follows from assumptions (ii)�(iv) that we have to deal with the expressioninvolving |g|dΩ only. We will work in R

2
+ ×R

2
+ ×R

2
+. For x ∈ R

3 let Γ (x) =
Γ (x1)×Γ (x2)×Γ (x3) denote the produt one. For a funtion h ∈ H1 de�nethe funtion

Ah(x) =

( \
Γ (x)

∣∣∣∣
∂3h

∂z1∂z2∂z3

∣∣∣∣
2

dA

)1/2

and sets Oj = {x ∈ R
3 : Ah(x) > 2j}. Let Fj denote the set of all points

z ∈ R
2
+ × R

2
+ × R

2
+ suh that |Rz ∩ Oj | > |Rz|/2 and |Rz ∩ Oj+1| ≤ |Rz|/2,where Rz is the retangle entred at (x1, x2, x3) with side lengths 2y1, 2y2and 2y3, respetively. De�ne also Ωj =

⋃
z∈Fj

Rz.Obviously (f. [7℄ and [8℄), we have\
R2

+
×R2

+
×R2

+

∣∣∣∣
∂3h

∂z1∂z2∂z3

∣∣∣∣|g|y1y2y3 dx dy =
∑

j

\
Fj

∣∣∣∣
∂3h

∂z1∂z2∂z3

∣∣∣∣|g|y1y2y3 dx dy

≤
∑

j

( \
Fj

∣∣∣∣
∂3h

∂z1∂z2∂z3

∣∣∣∣
2

y1y2y3 dx dy

)1/2( \
Fj

|g|2y1y2y3 dx dy
)1/2

,

whih an be estimated by (reall that 2 < p < ∞)
( \

R2
+
×R2

+
×R2

+

|g|2y1y2y3 dx dy
)1/p

×

(∑

j

|Oj|
q(1/2−1/p)

( \
Ωj\Oj+1

\
Γ (x)

∣∣∣∣
∂3h

∂z1∂z2∂z3

∣∣∣∣
2

dx dy

)q/2)1/q

≤
(∑

j

2q(j+1)|Oj |
q/2 · |Oj|

q(1/2−1/p)
)1/q

. ‖h‖Hq .

The last inequality is a onsequene of results in [10℄ (again 2 < p < ∞).Let us reall that, by the results in [5℄, if both |g|2dΩ and |∂1∂2∂3g|dΩare Carleson measures, and the inequalities
∑

i6=j, j 6=k, i6=k

\
D3

|∂if | · |∂j∂kg| dΩ . 1,

∑

i6=j, j 6=k, i6=k

\
D3

|∂i∂jf | · |∂kg| dΩ . 1



80 M. Jasizakhold for any H1 funtion f of norm 1, then the equation (7) is solvable withsup-norm ontrol of the solution.The symbol D will denote any onstant oe�ient di�erential operator(..d.o.) (di�erentiation with respet to z1, z2, z3). We write D
i for a ..d.o.of order ≤ i.Lemma 4. Assume that F1, F2, F3 are bounded , holomorphi funtionsin D

3. Measures of the form(8) |Di1F1D
i2F2D

i3F3|
2dΩsatisfy the Carleson ondition on D

3, provided 0 ≤ i1 + i2 + i3 ≤ 3.Proof. We will deal only with
|∂1F1|

2|∂2F2|
2|∂3F3|

2dΩ,where F1, F2, F3 are bounded and holomorphi in D
3.Let U be an open onneted subset of T

2. We will �rst show that themeasure
µ = |∂1F1|

2|∂2F2|
2 log

1

|z1|
log

1

|z2|
dAis a Carleson measure on D

2, i.e. µ(S(U)) . |U |. Let us reall a deomposi-tion from [5℄. Let I be the projetion of U onto the �rst variable, and J ontothe seond variable. Fix x1 ∈ I and 0 ≤ y1 ≤ d(x1, I
c). When y1 > 0, let

{Jx1,y1,l}l denote the olletion of maximal disjoint intervals ontained in Jsuh that (x1−y1, x1 +y1)×Jx1,y1,l ⊂ U . To prove that µ is a Carleson mea-sure, it is enough to show that |∂1(F1∂2F2)|
2dΩ is a Carleson measure, sineby the results in [5℄ the measure |∂1∂2F2|

2dΩ has this property. Following [5℄(f. also [6℄) one obtains\
S(U)

|∂2(F2∂1F1)|
2y2 dy2 dx2 y1 dy1 dx1

≤

(
2 +

C

α
1/2
0

+
∞∑

m=1

αm−1

(
2 +

C

α
1/2
m

))
|U | ‖F1‖

2
∞‖F2‖

2
∞,whih yields the onlusion, if the sequene αm has been hosen properly.If U is an open onneted subset of T

3, then one onsiders a similardeomposition. Namely, let V be the projetion of U onto the �rst two vari-ables. Then V is open and onneted. Let I be the projetion of V ontothe �rst variable. For eah 0 ≤ y1 ≤ d(x1, I
c) hoose a maximal family

{Jx1,y1,l}l of open intervals suh that (x1−y1, x1+y1)×Jx1,y1,l ⊂ U . For any
x2 ∈

⋃
l Jx1,y1,l and 0 ≤ y2 ≤ d(x2, (J

x2

x1,y1,l)
c) hoose a maximal family of in-tervals suh that (x1 − y1, x1 + y1)× (x2 − y2, x2 + y2)×Kx1,y1,x2,y2,l,m ⊂ U .



Hardy spaes in the polydisk 81The proof an be ompleted as in [5℄. We omit the rather tehnial de-tails.Observe that
ω3 = fb ∩ (∂b)2 ∩ ∂((1 − χZ)b) + b ∩ (∂b)2 ∩ ∂G.Thus, there exists a ξ with ‖ξ‖L∞ . 1 suh that ∂1∂2∂3ξ = b ∩ (∂b)2 ∩

∂((1 − χZ)b)�this follows from the results in [7℄, whih we have alreadyited. Consequently, ∂1∂2∂3(fξ) = fb∩(∂b)2∩∂((1−χZ)b) and to ompletethe proof of Proposition 1(i) it is enough to show that b∩ (∂b)2 ∩ ∂G an bewritten as a sum of expressions satisfying the assumptions of Lemma 3.Before we show this fat, we formulate a ouple of observations.Lemma 5. There exists a funtion D ∈ H∞(D3), whih is equivalent to
Φz near eah z ∈ Z, suh that(9) |DΦz| . |D′D|on the set {|Φz| < δ}, z ∈ Z. Consequently ,

∑

z∈Z

|Dχz| . |D′D|.

Here D
′ stands for a ..d.o. of order not greater than the order of D.Proof. De�ne a funtion D by

D :=
∞∑

k=1

Φzk
β2

k .The fat that D is equivalent to Φz near z ∈ Z an be shown as in [1℄.Diret omputations show (9). Indeed, �rst one shows that |Dmz| . |DΦz| in
{|Φz| < δ}, and then uses the formula D = mzΦz, whih holds in {|Φz| < δ},to prove (9) indutively. Here mz stands for an H∞ matrix whih is uniformlyinvertible near z.The other inequality follows from the fat that the sets {|Φz1

| < δ} and
{|Φz2

| < δ} are disjoint provided z1 6= z2.Lemma 6. Denote by f̃ the Poisson extension of |f |. Then
|DFz(ζ)| . f̃(z) . f̃(ζ)for ζ ∈ {|Φz| < δ}.Proof. The proof is left to the reader (f. [3℄).The fat that |b ∩ (∂b)2 ∩ ∂G|2dΩ is an (1 − 2/p)-Carleson measure isnow almost obvious. Indeed, eah term whih appears in |b∩ (∂b)2∩∂G|2dΩ



82 M. Jasizakis of the form (or an be estimated by)
|F∂1F1∂2F2∂3F3|

2dΩ,where F1, F2, F3 are bounded holomorphi funtions in D
3 and F is a Poissonextension of an Lp funtion with 2 < p < ∞.Take now any Hq funtion h and observe that\

D3

|∂2∂3h| |f̃ | |∂1D|2|∂2D| |∂3D| dΩ

.
\

D2

\
T

|∂2∂3h| |f̃ | |∂2D| |∂3D| dm1 dΩ2 dΩ3 =: I,

beause |∂1D|2 log 1
|z1|

dA1 is Carleson measure on the unit disk with a Car-leson norm bounded by ‖D‖2
L∞ and f̃∂2∂3h(·, z2, z3) belongs to h1 for eah�xed z2 and z3. Thus

I .
\
T

( \
T2

|h|q dm2 dm3

)1/q(\
D2

|f̃ |2|∂2D|2|∂3D|2 dΩ2 dΩ3

)1/p
dm1

.
\
T

(\
T2

|h|q dm2 dm3

)1/q(\
T2

|f̃ |2 dm2 dm3

)1/p
dm1 ≤ ‖h‖Hq‖f̃‖

2/p
L2 .

This follows from the fat that |∂2D|2|∂3D|2dΩ2dΩ3 is a Carleson measureon the bidisk with Carleson norm uniformly bounded for z1 ∈ D (see theproof of Lemma 3). Similar arguments also show that\
D3

|∂3h| |f̃ | |∂1D|2|∂2D|2|∂3D| dΩ . ‖h‖Hq ,\
D3

|∂1∂2∂3h| |f̃ | |∂1D| |∂2D| |∂3D| dΩ . ‖h‖Hq .

This ompletes the proof of Proposition 1(i).Proof of Proposition 1(ii). Observe that
δBη3 = δB(∂1∂2u12 + ∂1∂3u13 + ∂2∂3u23)

= ∂1∂2δBu12 + ∂1∂3δBu13 + ∂2∂3δBu23.As a result, to omplete the proof, it is enough to solve the equation(10) ∂1∂2v12 + ∂1∂3v13 + ∂2∂3v23 = ω2,with Lp ontrol of the solution.Lemma 7. Fix 1 ≤ i 6= j ≤ 3 and suppose that g ∈ C2(D
3
) satis�es :(i) |g|2dΩidΩj is an α = 1 − 2/p-Carleson measure,



Hardy spaes in the polydisk 83(ii) The funtions : \
D2

|h| |∂i∂jg| dΩi dΩj ,\
D2

(|∂ih| |∂jg| + |∂jh| |∂ig|) dΩi dΩj ,\
D2

|∂i∂jh| |g| dΩi dΩjbelong to L1(Tk) with the norm . ‖h‖Hq , where h is any Hq funtionin D
3. Then there exists v suh that

∂2v

∂zi∂zj
= g,with ‖v‖Lp . C.Proof. Repeating the argument from Lemma 3 we are led to onsider∣∣∣

\
T3

hv dm
∣∣∣ =

∣∣∣
\
T

\
D2

∆i∆j(hv) dΩj dΩi dmk

∣∣∣

≤
\
T

∣∣∣
\

D2

∂i∂j(hg) dΩi dΩj

∣∣∣ dmk.The last expression an be estimated by assumptions and using similar ar-guments to those in the proof of Lemma 3 by ‖h‖Hq . This yields the onlu-sion.Observe that eah term of ω2 satis�es the assumptions of the previouslemma. This an be shown as in the proof of Proposition 1(i). Consequently,we an solve the equation (10) with ontrol of the Lp norm. Lemma 3 in [7℄says that we an modify v12 − δBu12, v13 − δBu13, v23 − δBu23 with ontrolof the Lp norm to �nd a solution u12, u13, u23 to the equation
∂1∂2u12 + ∂1∂3u13 + ∂2∂3u23 = ω2 − δBη3satisfying

u12 − u13 + u23 = 0.One heks easily that for η2 = ∂2u12 + ∂3u13 we have ∂η2 = ω2 − δBη3.Proof of Proposition 1(iii). Again we have
δBη2 = δB(∂1u1 + ∂2u2 + ∂3u3)

= ∂1δBu1 + ∂2δBu2 + ∂3δBu3.Therefore, to solve the equation ∂η1 = ω1 − δBη2 one needs to solve theequations ∂η = ω1 only. This is ahieved in two steps. First one proeeds asin the one variable ase, and then one orrets the solution making use ofLemma 2 in [7℄.
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