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Integral transforms of functions with restricted derivatives

by Johnny E. Brown (West Lafayette, IN)

Abstract. We show that functions whose derivatives lie in a half-plane are preserved
under the Pommerenke, Chandra–Singh, Libera, Alexander and Bernardi integral trans-
forms. We determine precisely how these transforms act on such functions. We prove that
if the derivative of a function lies in a convex region then the derivative of its Pommerenke,
Chandra–Singh, Libera, Alexander and Bernardi transforms lie in a strictly smaller con-
vex region which can be determined. We also consider iterates of these transforms. Best
possible results are obtained.

1. Introduction. Let A(D) denote the class of functions f which are
analytic in the unit disk D and normalized by f(0) = 0 and f ′(0) = 1. The
classical family of univalent functions in A(D) is denoted by S. The following
are well-known integral transforms on A(D):

Af(z) =

z\
0

f(ζ)

ζ
dζ (Alexander transform [1]),

Lf(z) =
2

z

z\
0

f(ζ) dζ (Libera transform [9]),

Bcf(z) = (c + 1)

1\
0

tc−1f(tz) dt, c > −1 (Bernardi transform [2]).

The Alexander and Libera transforms are special cases of the Bernardi trans-
form with c = 0 and c = 1, respectively.

Biernacki [3] claimed that the Alexander transform preserved the class S,
however a counterexample to this was constructed by Krzyż and Lewan-
dowski [8]. Campbell and Singh [4] later showed that S is not preserved
under the Libera transform either. Hence it was of interest to determine
which subclasses of S and, more generally, of A(D) are preserved under
these and other transforms. It is known that the subclasses of S consisting
of convex, starlike and close-to-convex functions (denoted by K, S∗ and C,
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respectively) are each preserved under the Alexander and Libera transforms
and also under the Bernardi transform for c = 0, 1, . . . (see [2] for example).
Ruscheweyh and Sheil-Small [13] also proved these same results using the
theory of convolutions.

Another interesting integral transform was first introduced by Pom-
merenke [11]:

(1.1) Pf(z) =

z\
0

f(z1ζ) − f(z2ζ)

z1ζ − z2ζ
dζ,

for fixed |z1| ≤ 1 and |z2| ≤ 1. He proved that if f ∈ C(α) for 0 ≤ α ≤ 1, the
class of strongly close-to-convex functions of order α (i.e., |arg{f ′(z)/h′(z)}|
≤ πα/2 for some convex function h), then Pf ∈ C(α). Note that α = 0
and α = 1 correspond to the class of convex and close-to-convex func-
tions, respectively. Recall that a function f is close-to-convex of order α
if Re{f ′(z)/h′(z)} > α.

Later, and apparently unaware of this result, Chandra and Singh [5]
introduced a special case of the transform (1.1) defined by

(1.2) Pν1,ν2
f(z) =

1

eiν1 − eiν2

z\
0

f(teiν1) − f(teiν2)

t
dt,

where 0 ≤ ν1 < ν2 < 2π, and proved that convex, starlike and close-to-
convex functions of order α as well as strongly close-to-convex functions of
order α are all preserved under the transform Pν1,ν2

. Since integral trans-
forms tend to smooth functions these results are not too surprising. In this
paper we shall study these transforms on classes of functions in A(D) with
restricted derivatives.

A function f ∈ A(D) is said to be of bounded turning of order β, where
0 ≤ β < 1, if Re{f ′(z)} > β for all z ∈ D. We denote this class by Rβ. By
the Noshiro–Warschawski theorem we know that Rβ is a subclass of S and
is in fact a subclass of close-to-convex functions (see Duren [6]). It is easy
to see that the Bernardi transform maps Rβ into Rβ:

Re{(Bcf)′(z)} = (c + 1)

1\
0

tc Re{f ′(tz)} dt > (c + 1)

1\
0

tcβ dt = β.

It is also known for example that if f ∈ R0 then Af ∈ S∗ (see [14]).
Ponnusamy and Rønning [12] generalized Rβ and studied the Bernardi

transform of functions in A(D) whose derivatives lie in an arbitrary half-
plane. They defined this class of functions as

Pβ = {f ∈ A(D) : ∃α ∈ R, Re[eiα(f ′(z) − β)] > 0, ∀z ∈ D},

where β ∈ R, and proved a number of sharp results including finding the
largest β = β(c, γ) such that if f ∈ Pβ , then its Bernardi transform Bcf(z)
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is starlike of order γ, generalizing the result in [14]. We should point out
that unlike Rβ , the class Pβ may contain non-univalent functions, as can be
shown by the function f(z) = z + z2 which belongs to every Pβ for β < −1,
but does not belong to S.

We define the class of functions Rα
β as follows:

(1.3) Rα
β = {f ∈ A(D) : Re[eiα(f ′(z) − β)] > 0, ∀z ∈ D}.

It is clear that if f ∈ Rα
β then f ′(0) = 1 and so necessarily we must have

(1.4) (1 − β) cosα > 0.

Note that for a fixed β, we have Rα
β ⊂ Pβ . As above, it is easy to see that

the Bernardi transform also maps Rα
β into Rα

β . It is natural to ask if the
class Rα

β is preserved under the Chandra–Singh transform (1.2) and more
generally the Pommerenke transform (1.1). We prove that this is indeed the
case and also show that all these transforms actually map Rα

β into strictly
smaller subclasses which can be determined.

We can now state our main results.

Theorem 1. Let α, β ∈ R satisfy (1.4). If f ∈ Rα
β , then:

(a) Pf ∈ Rα
βP

, where

Pf(z) =

z\
0

f(z1ζ) − f(z2ζ)

z1ζ − z2ζ
dζ (z1, z2 ∈ D),

βP = 2β − 1 + (1 − β)
3 + δ

2 + 2δ
(1.5)

and δ = max{min{|z1|, |z2|}, |z1 + z2|/2}.

(b) Pν1,ν2
f ∈ Rα

β∗

, where

Pν1,ν2
f(z) =

1

eiν1 − eiν2

z\
0

f(teiν1) − f(teiν2)

t
dt (0 ≤ ν1 < ν2 < 2π),

(1.6) β∗ = 2β − 1 + (1 − β)ν/sin ν

and ν = 1
2 min{(ν2 −ν1), 2π− (ν2 −ν1)}∈(0, π/2]. This result is best

possible.

(c) Bcf ∈ Rα
βc

for c = 0, 1, . . . , where

Bcf(z) = (c + 1)

1\
0

tc−1f(tz) dt,

βc = 2β − 1 + (1 − β)γc(1.7)
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with γ0 = log 4 and

(1.8) γc = 2(c + 1)(−1)c

[

log 2 −
c

∑

k=1

(−1)k+1

k

]

, c = 1, 2, . . . ,

and 1 < γc < 2. This result is best possible.

Remark 1. If both z1 and z2 lie on |z| = 1, then the Pommerenke trans-
form (1.1) reduces to the Chandra–Singh transform (1.2). Consequently,
without loss of generality, we shall henceforth assume when referring to the
Pommerenke transform that at most one of z1 and z2 lies on |z| = 1. Thus
we then have 0 ≤ δ < 1.

The proof of Theorem 1 is given in the next section. We first state and
prove some applications.

Corollary 1. If f ∈ Rα
β , then:

(i) Pf ∈ Rα
βP

⊂ Rα
β , where βP is given by (1.5).

(ii) Pν1,ν2
f ∈ Rα

β∗

⊂ Rα
β , where β∗ is given by (1.6).

(iii) Bcf ∈ Rα
βc

⊂ Rα
β for c = 0, 1, . . . , where βc is given by (1.7).

Proof. Let α and β be fixed and let

β∗∗ = 2β − 1 + M(1 − β),

where M > 1 is fixed. We assert that Rα
β∗∗ ⊂ Rα

β . The corollary then follows
because if f ∈ Rα

β then from the theorem in each of the cases (i)–(iii) we

simply let M = (3 + δ)/(2 + 2δ), ν/sin ν, γc, respectively, to conclude that
the corresponding transform F belongs to Rα

β∗∗ .

To prove our assertion that Rα
β∗∗ ⊂ Rα

β we consider several cases. Suppose
F ∈ Rα

β∗∗ and recall that (1 − β) cosα > 0.

Case 1: −∞ < β < 1. In this case we have cos α > 0 and we obtain

β∗∗ = 2β − 1 + M(1 − β) > β.

Since F ∈ Rα
β∗∗ , i.e., Re{eiα[F ′(z) − β∗∗]} > 0, we obtain

Re{eiαF ′(z)} > β∗∗ cos α > β cos α,

which implies that F ∈ Rα
β .

Case 2: 1 < β < ∞. Here cos α < 0 and observe that β∗∗ < β. Thus we
have Re{eiαF ′(z)} > β∗∗ cosα > β cosα and hence F ∈ Rα

β .

In the above result, these transforms map Rα
β into strictly smaller sub-

classes, and since the values given by (1.6) and (1.7) are best possible,
the Chandra–Singh and Bernardi transforms do not map Rα

β into any class
smaller than the corresponding Rα

β∗∗ .
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If the derivative of an arbitrary function in A(D) lies in a region, then one
might expect that the region in which the derivative of its integral transform
lies should be related. We obtain the following result:

Theorem 2. Let f ∈ A(D) and let F be its Pommerenke, Chandra–

Singh or Bernardi transform with c = 0, 1, . . . . If ∆(f) = {f ′(z) : z ∈ D}
lies in a convex region Ω, then ∆(F ) = {F ′(z) : z ∈ D} also lies in Ω.

Proof. Note that f ∈ Rα
β if and only if f(rz)/r ∈ Rα

β for any 0 <
r < 1. Hence, without loss of generality, we may assume that Ω ⊂ C is
bounded. Furthermore, we may assume that Ω is a convex polygonal region.
Consequently, it is sufficient to prove the theorem when Ω is a bounded
convex polygonal region with m sides. Necessarily we have 1 ∈ Ω. Let f ∈
A(D) and suppose that ∆(f) = {f ′(z) : z ∈ D} ⊂ Ω.

Assume first that ∂Ω contains no horizontal segments. Because Ω may
be obtained as the intersection of m closed half-planes, each containing 1,
it follows that

f ∈

m
⋂

j=1

R
αj

βj

for suitable choices of αj and βj , each satisfying (1 − βj) cos αj > 0. To see
this, we let Lj be the line bounding a side of Ω, βj its intersection with the
real axis and µj (0 < µj < π) the angle Lj makes with the positive real
axis. If βj > 1, choose αj = 3π/2 − µj , while if βj < 1, set αj = π/2 − µj.
Hence f ∈ R

αj

βj
for each j and by Corollary 1 the same holds for F . Thus

F ∈
⋂m

j=1 R
αj

βj
and so we conclude that ∆(F ) ⊂ Ω.

If a side of Ω is a horizontal segment then we construct a larger convex
polygonal region containing all non-horizontal sides of Ω but replace each
horizontal side by two non-horizontal sides as follows. Let 0 < ε < 1 and
define the convex set Ω(ε) to be bounded by all the lines bounding Ω except
the horizontal lines. Each horizontal line is to be replaced by two intersecting
lines. In particular, if say Ω is bounded by the horizontal line Lh through
the vertices ω1 = a + iλ and ω2 = b + iλ with a < b and λ > 0, then instead

of bounding Ω(ε) by Lh, we bound it by the two lines L
(1)
h and L

(2)
h which

pass through the pair ω1 and ωε = (b + a)/2+ i[λ+ε(b−a)] and the pair ω2

and ωε, respectively. With this construction, it is clear that Ω ⊂ Ω(ε) for
all 0 < ε < 1 and that Ω(ε) has no horizontal lines bounding it. A similar
construction holds for λ < 0. Apply the above argument to Ω(ε) and let
ε → 0 to complete the proof of the theorem.

Remark 2. It should be pointed out that by Corollary 1, since the
transforms map Rα

β strictly into itself, we actually have ∆(F ) ⊂ Ω′ ⊂ Ω,
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where Ω′ is a convex region strictly inside Ω. The convex region Ω′ can be
determined, once Ω is known.

Finally, we consider iterates of integral transforms. Because these inte-
gral transforms map Rα

β into strictly smaller subclasses the following result
obtains:

Theorem 3. If f is an arbitrary function in Rα
β and Tf is its Pom-

merenke, Chandra–Singh or Bernardi transform with c = 0, 1, . . . , then

lim
n→∞

T
(n)f(z) = z,

where T
(n) = T ◦ · · · ◦ T is the nth iterate of T and the convergence is

uniform on compact subsets in D.

We shall also prove this theorem in the next section.

2. Proof of the main results. We begin with a few preliminaries about
the class Rα

β . Assume throughout that α and β are fixed and satisfy (1.4).
It is clear that the function K defined by

(2.1) K(z) = e−iα[Az + B log(1 − z)],

where

(2.2) A = −λ cos α + i sinα, B = −(1 + λ) cos α, λ = 1 − 2β

belongs to the class Rα
β and so it is non-empty. The class Rα

β is convex: if
f, g ∈ Rα

β then tf + (1 − t)g ∈ Rα
β for all 0 ≤ t ≤ 1. It is also rotationally

invariant: f ∈ Rα
β if and only if e−iµf(eiµz) ∈ Rα

β for µ ∈ R.
The Carathéodory class P consists of all functions p which are analytic

in D with Re p(z) > 0 and normalized by p(0) = 1. Observe that g ∈ Rα
β if

and only if

(2.3) p(z) =
eiα(g′(z) − β) − i(1 − β) sinα

(1 − β) cosα

belongs to P. From this and the distortion theorems for p ∈ P (see [6]
or [7] for example), we see that if g ∈ Rα

β , then |g′(z)| and hence |g(z)| are
bounded on all compact sets in D, and so the normalization for functions
in Rα

β makes it a compact family.
The extreme points of the Carathéodory class P are well-known [7]:

(2.4) E(P) =

{

1 + xz

1 − xz
: |x| = 1

}

.

From (2.3) and (2.4) it follows that the extreme points for the class Rα
β are

precisely

(2.5) E(Rα
β ) = {xK(xz) : |x| = 1}

where K is defined by (2.1) and (2.2).



Integral transforms 91

We will make use of the following result, essentially due to Marx [10].

Lemma 1. If

H(θ, µ) = Im

{

−e−iθ log
1 − ei(θ+µ)

1 − ei(θ−µ)

}

, 0 ≤ θ, µ ≤ π,

then

min
0≤θ≤π

H(θ, µ) =

{

µ, 0 ≤ µ ≤ π/2,

π − µ, π/2 < µ ≤ π.

Proof. Observe that if θ 6= µ then

H(θ, µ) =
sin θ

2
log

1 − cos(θ + µ)

1 − cos(θ − µ)
− γ cos θ,

where

γ =

{

µ, 0 ≤ µ < θ ≤ π,

µ − π, 0 ≤ θ < µ ≤ π.

After a calculation we obtain

∂H

∂θ
=

cos θ

2
log

1 − cos(θ + µ)

1 − cos(θ − µ)
+

sin θ sinµ

cos θ − cos µ
+ γ sin θ.

A further calculation leads to

∂

∂µ

(

∂H

∂θ

)

=
sin θ

(cos θ − cosµ)2
(2 cos θ cos µ − cos2 θ − 1)(2.6)

≤ −
(sin θ)(1 − |cos θ|)2

(cos θ − cos µ)2
.

Consequently, for fixed 0 ≤ θ0 ≤ π, the function ∂H/∂θ is non-increasing
with µ.

Suppose first that 0 ≤ θ0 < µ ≤ π. Then

∂H

∂θ
(θ0, µ) ≥

∂H

∂θ
(θ0, π) = 0,

and so for 0 ≤ θ < µ ≤ π, we see that H is a non-decreasing function of θ
and thus

H(θ, µ) ≥ H(0, µ) = π − µ.

Next, if 0 ≤ µ < θ0 ≤ π then

∂H

∂θ
(θ0, µ) ≤

∂H

∂θ
(θ0, 0) = 0.

In this case, H is a non-increasing function of θ and hence for 0 ≤ µ < θ ≤ π
we get

H(θ, µ) ≥ H(π, µ) = µ.

Thus if θ 6= µ then H(θ, µ) ≥ min{µ, (π−µ)} and the function is unbounded
as θ → µ. This proves the lemma.
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It should be pointed out that there is a typo in formula (65) in Marx [10].
It should read:

∂

∂φ

(

4 sinφ
∂p(φ, θ)

∂θ

)

=
(2 sin θ)(2 cos θ cos φ − cos2 θ − 1)

(cos θ − cos φ)2
.

Fortunately, his conclusion that the function on the left is non-positive still
holds as our (2.6) shows.

Lemma 2. If

Φ(ζ1, ζ2) =
1

ζ2 − ζ1
log

1 − ζ1

1 − ζ2

and ζ1, ζ2 ∈ D (ζ1 6= ζ2), then

Re Φ(ζ1, ζ2) ≥
3 + δ

4 + 4δ

where δ = max{min{|ζ1|, |ζ2|}, |ζ1 + ζ2|/2}.

Proof. Let ω(t) = ζ1 + (ζ2 − ζ1)t, 0 ≤ t ≤ 1, be the line segment from
ζ1 to ζ2 in D. It follows that |ω(t)| ≤ δ for 0 ≤ t ≤ 1/2 or 1/2 ≤ t ≤ 1. To
see this, suppose say δ = |ζ1|; then

|ω(1/2)| = |ζ1 + ζ2|/2 ≤ |ζ1| = |ω(0)| = δ

and hence |ω(t)| ≤ δ for 0 ≤ t ≤ 1/2. The proof of the other cases follows a
similar pattern. Using this we conclude that

Re Φ(ζ1, ζ2) = Re

{

1

ζ2 − ζ1

ζ2\
ζ1

1

1 − z
dz

}

= Re

1\
0

1

1 − ω(t)
dt

≥

1\
0

1

1 + |ω(t)|
dt ≥

1

2
·
1

2
+

1

2
·

1

1 + δ
=

3 + δ

4 + 4δ
.

We can now prove the main results.

Proof of Theorem 1. We consider each transform separately.

(a) Let F = Pf . Now for fixed z0 ∈ D we have

Re{eiαF ′(z0)} = Re

{

eiα f(z1z0) − f(z2z0)

z1z0 − z2z0

}

.

The linear functional

L(f) = eiα f(z1z0) − f(z2z0)

z1z0 − z2z0

attains its minimum real part over the set of extreme points of Rα
β . (This

follows e.g. from Thm. 4.5, p. 44, in [7] by observing that −minRe{L(f)}
= maxRe{J(f)}, where J(f) = −L(f).) Consequently,

Re{eiαF ′(z0)} ≥ min
|x|=1

Re

{

eiα K(xz1z0) − K(xz2z0)

xz1z0 − xz2z0

}

,
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where K is given by (2.1). Using (2.1) and (2.2) we obtain

Re{eiαF ′(z0)} ≥ min
|x|=1

Re

{

A + B
1

(xz1z0 − xz2z0)
log

1 − xz1z0

1 − xz2z0

}

.

The above function is analytic in the variable z = xz0 and hence by the
minimum principle and Lemma 2 we may conclude that

Re{eiαF ′(z0)} > (2β − 1) cosα + 2(1 − β)(cosα) min
|z|=1

Re{Φ({zz1}, {zz2})}

≥ (2β − 1) cosα + 2(1 − β)(cosα)
3 + δ

4 + 4δ
= βP cos α.

Thus for any z0 ∈ D, we get Re{eiα[F ′(z0)−βP]} > 0 and so F = Pf ∈ Rα
βP

.

(b) Let F = Pν1,ν2
f . Note that the function F ∈ Rα

β∗

if and only if

G(z) = e−iµF (eiµz) ∈ Rα
β∗

for any µ ∈ R. Hence we see that

(2.7) G(z) =
1

ei(ν1+µ) − ei(ν2+µ)

z\
0

f(sei(ν1+µ)) − f(sei(ν2+µ))

s
ds.

If ν = (ν2 − ν1)/2 then setting µ = −(ν1 + ν2)/2 in (2.7) gives

G(z) =
1

eiν − e−iν

z\
0

f(seiν) − f(se−iν)

s
ds.

On the other hand, if ν = π− (ν2 − ν1)/2, set µ = π− (ν1 + ν2)/2 to obtain
the same form of G(z). Thus it is sufficient to show that if f ∈ Rα

β , then
G ∈ Rα

β∗

where

(2.8) G(z) =
1

eiν − e−iν

z\
0

f(seiν) − f(se−iν)

s
ds

with 0 < ν ≤ π/2 and

β∗ = 2β − 1 + (1 − β)
ν

sin ν
.

For fixed 0 < ν ≤ π/2 we see from (2.8) that

Re{eiαG′(z)} = Re

{

eiα

2i sin ν

f(zeiν) − f(ze−iν)

z

}

.

Now fix z0 ∈ D and consider the linear functional on A(D) defined by

L(f) =
eiα

2i sin ν

f(z0e
iν) − f(z0e

−iν)

z0
.

The minimum real part of L is achieved at an extreme point of Rα
β . Hence

Re{eiαG′(z0)} ≥ min
|x|=1

Re {L(xK(xz))},
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where K is given by (2.1). A calculation shows that

{L(xK(xz))} = A +
B

2i sin ν

1

xz0
log

1 − eiνxz0

1 − e−iνxz0
.

This is an analytic function of ω = xz0. By (2.2) it follows from the minimum
principle and symmetry that

Re{eiαG′(z0)} ≥ min
|x|=1

Re{L(xK(xz))}

> (2β − 1) cos α +
(1 − β) cosα

sin ν
min

0≤θ≤π
H(θ, ν)

where

H(θ, ν) = Im

{

−e−iθ log
1 − ei(θ+ν)

1 − ei(θ−ν)

}

.

We may now apply Lemma 1 with µ = ν and 0 < ν ≤ π/2 to see that

Re{eiαG′(z0)} ≥ (2β − 1) cos α + (1 − β)(cosα)
ν

sin ν
= β∗ cos α.

Hence Re{eiα[G′(z0) − β∗]} > 0 for any z0 ∈ D and so G ∈ Rα
β∗

.

To show that β∗ is best possible, consider the function f = K defined
in (2.1) and let z = −r. A calculation gives

Re{eiαG′(−r)} =

[

2β − 1 +
1 − β

sin ν
Im

{

1

r
log

1 + reiν

1 + re−iν

}]

cos α

and hence

lim
r→1

Re{eiα[G′(−r) − β∗]} = 0.

(c) Let F = Bcf . For z0 ∈ D arbitrary but fixed, the linear functional

L(f) = (c + 1)
T1
0 eiαtcf ′(tz0) dt assumes its minimum real part over the set

of extreme points of Rα
β and hence

(2.9) Re{eiαF ′(z0)} ≥ min
|x|=1

Re
{

(c + 1)

1\
0

eiαtcK ′(xtz0) dt
}

where K is given by (2.1) and (2.2). Next, by the minimum principle, we
see that

min
|x|=1

1\
0

Re

{

tc

1 − txz0

}

dt > min
−π<θ≤π

1\
0

Re

{

tc

1 − teiθ

}

dt

≥

1\
0

tc

1 + t
dt = (−1)c

[

log 2 −
c

∑

k=1

(−1)k+1

k

]

.
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Using (2.9) and this estimate we obtain after a calculation

Re{eiαF ′(z0)}

>

{

2β − 1 + 2(1 − β)(c + 1)(−1)c

[

log 2 −
c

∑

k=1

(−1)k+1

k

]}

cosα

= {2β − 1 + (1 − β)γc} cos α = βc cos α.

(If c = 0, then
T1
0 Re{1/(1 − teiθ)} dt ≥ log 2 and from (2.9) we get the above

result with γ0 = log 4.) Thus Re{eiα[F ′(z0)−βc]} > 0 and hence we conclude
that F ∈ Rα

βc
. Because

1

2(c + 1)
=

1\
0

tc

2
dt <

1\
0

tc

1 + t
dt <

1\
0

tc dt =
1

c + 1

and
1\
0

tc

1 + t
dt = (−1)c

[

log 2 −
c

∑

k=1

(−1)k+1

k

]

=
γc

2(c + 1)

we must have

1 < γc < 2.

To show that βc is best possible we consider the function f = K given
by (2.1) and let z = −r:

Re{eiαF ′(−r)} = (c + 1)

1\
0

Re{eiαK ′(−tr)} dt

=

[

2β − 1 + 2(1 − β)(c + 1)

1\
0

tc

1 + rt
dt

]

cosα.

Using this and (1.7) we let r → 1 to find that Re{eiα[F ′(−r) − βc]} → 0,
and hence βc is best possible. This completes the proof of Theorem 1.

Proof of Theorem 3. Fix α and β satisfying (1.4). By Corollary 1, we
conclude that each of the transforms P, Pν1,ν2

and Bc (for c = 0, 1, . . .)
maps Rα

β into Rα
β∗∗ , where

(2.10) β∗∗ = 2β − 1 + M(1 − β) = β(2 − M) + M − 1

and

M =
3 + δ

2 + 2δ
, M =

ν

sin ν
or M = γc,

respectively. Recall that 0 ≤ δ < 1 (see Remark 1) and 0 < ν ≤ π/2.
Consequently, in each case we have 1 < M < 2. Now let

F0 = f, F1 = Tf, . . . , Fn = (T ◦ · · · ◦T)f,
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where T is the Pommerenke transform P, the Chandra–Singh transform
Pν1,ν2

or the Bernardi transform Bc. For convenience, set x = 2 − M
in (2.10). From Corollary 1, we may apply an induction argument to show
that Fn ∈ Rα

β(n) ⊂ Rα
β where

β(n) = βxn + 1 − xn.

Let ε > 0 be given. It suffices to show that |Fn(z) − z| < ε for all
|z| ≤ r < 1 and all n > N(ε). Since Fn ∈ Rα

β(n), it follows from (2.3) that

(2.11) F ′
n(z) = e−iα{p(z) − 1}(1 − β(n)) cosα + 1

for some p ∈ P. Using (2.11) and the estimate |p(reiθ)| ≤ (1+ r)/(1− r) for
any p ∈ P, we obtain

|Fn(z) − z| =
∣

∣

∣

z\
0

[e−iα{p(ζ) − 1}(1 − β(n)) cosα] dζ
∣

∣

∣

=
∣

∣

∣
ze−iα(1 − β(n)) cosα

1\
0

{p(tz) − 1} dt
∣

∣

∣

≤ r(1 − β(n)) cosα

1\
0

{

2

1 − rt

}

dt

= xn{−2(1 − β)(cosα) log(1 − r)}.

Hence, since 0 < x < 1, by choosing n sufficiently large we obtain the desired
estimate, and this completes the proof of Theorem 3.

3. Remarks. (1) Our results show that the Pommerenke, Chandra–
Singh and Bernardi transforms map Rα

β into strictly smaller classes. It is
not too difficult to see that these transforms map K, S∗ and C into smaller
classes but these subclasses are not given explicitly as we have for Rα

β . It
is known however that the Alexander transform maps S∗ one-to-one and
onto K, i.e., f ∈ S∗ if and only if Af ∈ K. This is in fact Alexander’s
original theorem in [1].

(2) The search for invariant subclasses under these transforms stemmed
from the fact that S was not preserved under L or A. The Chandra–Singh
transform does not preserve S either. In fact, simply consider the spirallike
function in S given in [8]:

f(z) =
z

(1 − iz)1−i
,

where the principal branch of (1 − iz)1−i is chosen. If we let ν1 = 0 and
ν2 = π and apply (1.2) to this f , then

F (z) = P0,πf(z) =
1

2
{ei Log(1−iz) − ei Log(1+iz)}.
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A check shows that for all k ∈ N, we get F (zk) = 0 where

zk = i
1 − e−2πk

1 + e−2πk
.

This shows that the Chandra–Singh transform of the univalent function f
is of infinite valence.
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[8] J. Krzyż and Z. Lewandowski, On the integral of univalent functions, Bull. Acad.

Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 447–448.
[9] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc.

16 (1965), 755–758.
[10] A. Marx, Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1933), 40–

67.
[11] Ch. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc.

114 (1965), 176–186.
[12] S. Ponnusamy and F. Rønning, Integral transforms of functions with the derivative

in a halfplane, Israel J. Math. 114 (1999), 177–188.
[13] S. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the
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