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Hölder regularity for solutions to
complex Monge–Ampère equations

by Mohamad Charabati (Toulouse)

Abstract. We consider the Dirichlet problem for the complex Monge–Ampère equa-
tion in a bounded strongly hyperconvex Lipschitz domain in Cn. We first give a sharp
estimate on the modulus of continuity of the solution when the boundary data is continu-
ous and the right hand side has a continuous density. Then we consider the case when the
boundary value function is C1,1 and the right hand side has a density in Lp(Ω) for some
p > 1, and prove the Hölder continuity of the solution.

1. Introduction. Let Ω be a bounded pseudoconvex domain in Cn.
Given ϕ ∈ C(∂Ω) and 0 ≤ f ∈ L1(Ω). We consider the Dirichlet problem

Dir(Ω,ϕ, f) :


u ∈ PSH(Ω) ∩ C(Ω̄),

(ddcu)n = fβn in Ω,
u = ϕ on ∂Ω,

where PSH(Ω) is the set of plurisubharmonic (psh) functions in Ω. Here we
write d = ∂+ ∂̄ and dc = (i/4)(∂̄−∂); then ddc = (i/2)∂∂̄ and (ddc·)n stands
for the complex Monge–Ampère operator.

If u ∈ C2(Ω) is a plurisubharmonic function, then

(ddcu)n = det

(
∂2u

∂zj∂z̄k

)
βn,

where β = (i/2)
∑n

j=1 dzj ∧ dz̄j is the standard Kähler form in Cn.
In their seminal work, Bedford and Taylor proved that the complex

Monge–Ampère operator can be extended to the set of bounded plurisub-
harmonic functions (see [BT76], [BT82]). Moreover, it is invariant under
holomorphic changes of coordinates. We refer the reader to [BT76], [De89],
[Kl91], [Ko05] for more details on its properties.
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The Dirichlet problem was studied extensively in the last decades by
many authors. When Ω is a bounded strongly pseudoconvex domain with
smooth boundary and f ∈ C(Ω̄), Bedford and Taylor had showed that
Dir(Ω,ϕ, f) has a unique continuous solution U := U(Ω,ϕ, f). Further-
more, it was proved in [BT76] that U ∈ Lipα(Ω̄) when ϕ ∈ Lip2α(∂Ω) and
f1/n ∈ Lipα(Ω̄) (0 < α ≤ 1). In the nondegenerate case, i.e. 0 < f ∈ C∞(Ω̄)
and ϕ ∈ C∞(∂Ω), Caffarelli, Kohn, Nirenberg and Spruck [CK+85] proved
that U ∈ C∞(Ω̄). However a simple example of Gamelin and Sibony shows
that the solution is not, in general, better than C1,1-smooth when f ≥ 0
and f is smooth (see [GS80]). Krylov proved that if ϕ ∈ C3,1(∂Ω) and
f1/n ∈ C1,1(Ω̄), f ≥ 0, then U ∈ C1,1(Ω̄) (see [Kr89]).

For B-regular domains, Błocki [Bł96] proved the existence of a continuous
solution to the Dirichlet problem Dir(Ω,ϕ, f) when 0 ≤ f ∈ C(Ω̄).

For a strongly pseudoconvex domain with smooth boundary, Kołodziej
[Ko98] demonstrated that Dir(Ω,ϕ, f) still admits a unique continuous so-
lution under the milder assumption f ∈ Lp(Ω), for p > 1. Recently Guedj,
Kołodziej and Zeriahi studied the Hölder continuity of the solution when
0 ≤ f ∈ Lp(Ω), for some p > 1, is bounded near the boundary (see [GKZ08]).

For the complex Monge–Ampère equation on a compact Kähler manifold,
the Hölder continuity of the solution was proved earlier by Kołodziej [Ko08]
(see also [DD+14]).

A viscosity approach to the complex Monge–Ampère equation has been
developed in [EGZ11] and [Wan12].

In this paper, we consider the more general case where Ω is a bounded
strongly hyperconvex Lipschitz domain (the boundary does not need to be
smooth).

Our first result gives a sharp estimate for the modulus of continuity of
the solution in terms of the modulus of continuity of the data ϕ, f .

Theorem A. Let Ω ⊂ Cn be a bounded strongly hyperconvex Lipschitz
domain, ϕ ∈ C(∂Ω) and 0 ≤ f ∈ C(Ω̄). Assume that ωϕ is the modulus of
continuity of ϕ, and ωf1/n is the modulus of continuity of f1/n. Then the
modulus of continuity of the unique solution U to Dir(Ω,ϕ, f) satisfies the
estimate

ωU(t) ≤ η(1 + ‖f‖1/n
L∞(Ω̄)

) max{ωϕ(t1/2), ωf1/n(t), t1/2},

where η is a positive constant depending on Ω.

Here we will use an alternative description of the solution given by Propo-
sition 3.2 to get optimal control for the modulus of continuity of this solution
in a strongly hyperconvex Lipschitz domain. This result was suggested by
E. Bedford [Be88] and proved in the case of strictly convex domains with
f = 0 [Be82].
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Our second result concerns the Hölder continuity of the solution when
f ∈ Lp(Ω), p > 1.

Theorem B. Let Ω b Cn be a bounded strongly hyperconvex Lipschitz
domain. Assume that ϕ ∈ C1,1(∂Ω) and f ∈ Lp(Ω) for some p > 1. Then the
unique solution U to Dir(Ω,ϕ, f) is α-Hölder continuous on Ω̄ for any 0 <
α < 1/(nq+ 1) where 1/p+ 1/q = 1. Moreover, if p ≥ 2, then the solution U

is α-Hölder continuous on Ω̄ for any 0 < α < min{1/2, 2/(nq + 1)}.

In [GKZ08] the Hölder continuity of the solution is obtained when ϕ ∈
C1,1(∂Ω) and f ∈ Lp(Ω), for p > 1, is bounded near the boundary. Recently,
N. C. Nguyen [N14] proved that the solution is Hölder continuous when the
density f satisfies a growth condition near the boundary of Ω.

2. Preliminaries. We recall that a hyperconvex domain is a domain
in Cn admitting a bounded plurisubharmonic exhaustion function. Let us
define the class of hyperconvex domains which will be considered in this
paper.

Definition 2.1. A bounded domain Ω ⊂ Cn is called a strongly hyper-
convex Lipschitz (briefly SHL) domain if there exists a neighborhood Ω′ of Ω̄
and a Lipschitz plurisubharmonic defining function ρ : Ω̄′ → R such that

(1) ρ < 0 in Ω and ∂Ω = {ρ = 0},
(2) there exists a constant c > 0 such that ddcρ ≥ cβ in Ω in the weak

sense of currents.

Example 2.2.

(1) Let Ω be a strictly convex domain, that is, there exists a Lipschitz
defining function ρ such that ρ− c|z|2 is convex for some c > 0. It is
clear that Ω is a strongly hyperconvex Lipschitz domain.

(2) A smooth strictly pseudoconvex bounded domain is a SHL domain
(see [HL84]).

(3) The nonempty finite intersection of strictly pseudoconvex bounded
domains with smooth boundary in Cn is a bounded SHL domain.
In fact, it is sufficient to set ρ = max{ρi}. More generally a finite
intersection of SHL domains is a SHL domain.

(4) The domain

Ω = {z = (z1, . . . , zn) ∈ Cn : |z1|+ · · ·+ |zn| < 1} (n ≥ 2)

is a bounded strongly hyperconvex Lipschitz domain in Cn with non-
smooth boundary.

(5) The unit polydisc in Cn (n ≥ 2) is hyperconvex with Lipschitz bound-
ary but it is not strongly hyperconvex Lipschitz.
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Remark 2.3. Any bounded SHL domain is B-regular in the sense of
Sibony ([Sib87], [Bł96]).

Let Ω ⊂ Cn be a bounded domain. If u ∈ PSH(Ω) then ddcu ≥ 0 in the
sense of currents. We define

(2.1) ∆Hu :=
n∑

j,k=1

hjk̄
∂2u

∂zk∂z̄j

for every positive definite Hermitian matrix H = (hjk̄). We can view ∆Hu
as a positive Radon measure in Ω.

The following lemma is elementary and important for what follows (see
[Gav77]).

Lemma 2.4 ([Gav77]). Let Q be a n× n nonnegative Hermitian matrix.
Then

(detQ)1/n = inf{tr(HQ) : H ∈ H+
n and detH = n−n},

where H+
n denotes the set of all positive Hermitian n× n matrices.

Example 2.5. We calculate ∆H(|z|2) for every matrix H ∈ H+
n with

detH = n−n:

∆H(|z|2) =
n∑

j,k=1

hjk̄δkj̄ = trH.

Using the inequality of arithmetic and geometric means, we have

1 = (det I)1/n ≤ trH,

hence ∆H(|z|2) ≥ 1 for every matrix H ∈ H+
n with detH = n−n.

The following result is well known (see [Bł96]), but we will give here an
alternative proof using ideas from the theory of viscosity due to Eyssidieux,
Guedj and Zeriahi [EGZ11].

Proposition 2.6. Let u ∈ PSH(Ω) ∩ L∞(Ω) and 0 ≤ f ∈ C(Ω). Then
the following conditions are equivalent:

(1) ∆Hu ≥ f1/n in the weak sense of distributions, for any H ∈ H+
n with

detH = n−n.
(2) (ddcu)n ≥ fβn in the weak sense of currents in Ω.

Proof. First, suppose that u ∈ C2(Ω). Then by Lemma 2.4 the inequality

∆Hu =
n∑

j,k=1

hjk̄
∂2u

∂zj∂z̄k
≥ f1/n, ∀H ∈ H+

n , detH = n−n,

is equivalent to (
det

(
∂2u

∂zj∂z̄k

))1/n

≥ f1/n.
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The latter means that
(ddcu)n ≥ fβn.

(1)⇒(2). Let (ρε) be the standard family of regularizing kernels with
supp ρε ⊂ B(0, ε) and

	
B(0,ε) ρε = 1. Then the sequence uε = u∗ρε decreases

to u, and we see that (1) implies ∆Huε ≥ (f1/n)ε. Since uε is smooth, we
use the first case and get (ddcuε)

n ≥ ((f1/n)ε)
nβn, hence by applying the

convergence theorem of Bedford and Taylor [BT82, Theorem 7.4] we obtain
(ddcu)n ≥ fβn.

(2)⇒(1). Fix x0 ∈ Ω, and let q be a C2-function in a neighborhood B of
x0 such that u ≤ q in this neighborhood and u(x0) = q(x0).

First step: We will show that ddcqx0 ≥ 0. Indeed, for every small enough
ball B′ ⊂ B centered at x0, we have

u(x0)− q(x0) ≥ 1

V (B′)

�

B′

(u− q) dV,

therefore
1

V (B′)

�

B′

q dV − q(x0) ≥ 1

V (B′)

�

B′

u dV − u(x0) ≥ 0.

Since q is C2-smooth and the radius of B′ tends to 0, it follows from [H94,
Proposition 3.2.10] that ∆qx0 ≥ 0. For every positive definite Hermitian
matrixH with detH = n−n, we make a linear change of complex coordinates
T such that tr(HQ) = tr(Q̃) where Q̃ = (∂2q̃/∂wj∂w̄k) and q̃ = q ◦ T−1.
Then

∆Hq(x0) = tr(HQ) = tr(Q̃) = ∆q̃(y0).

Hence ∆Hq(x0) ≥ 0 for every H ∈ H+
n with detH = n−n, so ddcqx0 ≥ 0.

Second step: We claim that (ddcq)nx0 ≥ f(x0)βn. Suppose that there
exists a point x0 ∈ Ω and a C2-function q which satisfies u ≤ q in a neigh-
borhood of x0 and u(x0) = q(x0) such that (ddcq)nx0 < f(x0)βn. We put

qε(x) = q(x) + ε(‖x− x0‖2 − r2/2)

for 0 < ε� 1 small enough; we see that

0 < (ddcqε)nx0 < f(x0)βn.

Since f is lower semicontinuous on Ω, there exists r > 0 such that

(ddcqε)nx ≤ f(x)βn, x ∈ B(x0, r).

Then (ddcqε)n ≤ fβn ≤ (ddcu)n in B(x0, r) and qε = q + εr2/2 ≥ q ≥ u
on ∂B(x0, r), hence qε ≥ u on B(x0, r) by the comparison principle. But
qε(x0) = q(x0)− εr2/2 = u(x0)− εr2/2 < u(x0), a contradiction.
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Hence, from the first part of the proof, we get ∆Hq(x0) ≥ f1/n(x0) for
every point x0 ∈ Ω and every C2-function q in a neighborhood of x0 such
that u ≤ q in this neighborhood and u(x0) = q(x0).

Assume that f > 0 and f ∈ C∞(Ω). Then there exists g ∈ C∞(Ω) such
that∆Hg = f1/n. Hence ϕ = u−g is∆H -subharmonic (by [H94, Proposition
3.2.10′]), from which it follows that ∆Hϕ ≥ 0 and ∆Hu ≥ f1/n.

In case f > 0 is merely continuous, we observe that

f = sup{w : w ∈ C∞, f ≥ w > 0},
so (ddcu)n ≥ fβn ≥ wβn. Since w > 0 is smooth, we have ∆Hu ≥ w1/n.
Therefore, we get ∆Hu ≥ f1/n.

In the general case 0 ≤ f ∈ C(Ω), we observe that uε(z) = u(z) + ε|z|2
satisfies

(ddcuε)n ≥ (f + εn)βn,

and so
∆Hu

ε ≥ (f + εn)1/n.

Letting ε converge to 0, we get ∆Hu ≥ f1/n for all H ∈ H+
n with detH =

n−n.

As a consequence of Proposition 2.6, we give an alternative description
of the classical Perron–Bremermann family of subsolutions to the Dirichlet
problem Dir(Ω,ϕ, f).

Definition 2.7. We denote by V(Ω,ϕ, f) the family of subsolutions of
Dir(Ω,ϕ, f), that is,

V(Ω,ϕ, f) = {v ∈ PSH(Ω) ∩ C(Ω̄) : v|∂Ω ≤ ϕ and

∆Hv ≥ f1/n for all H ∈ H+
n with detH = n−n}.

Remark 2.8. We observe that V(Ω,ϕ, f) 6= ∅. Indeed, let ρ be as in
Definition 2.1 and A,B > 0 large enough; then Aρ−B ∈ V(Ω,ϕ, f).

Furthermore, the family V(Ω,ϕ, f) is stable under finite maximum, that
is, if u, v ∈ V(Ω,ϕ, f) then max(u, v) ∈ V(Ω,ϕ, f).

3. The Perron–Bremermann envelope. Bedford and Taylor [BT76]
proved that the unique solution to Dir(Ω,ϕ, f) in a bounded strongly pseu-
doconvex domain with smooth boundary is given as the Perron–Bremermann
envelope

u = sup{v : v ∈ B(Ω,ϕ, f)},
where B(Ω,ϕ, f) = {v ∈ PSH(Ω) ∩ C(Ω̄) : v|∂Ω ≤ ϕ and (ddcv)n ≥ fβn}.

Thanks to Proposition 2.6, we get the following corollary:

Corollary 3.1. V(Ω,ϕ, f) = B(Ω,ϕ, f).
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Hence we get an alternative description of the Perron–Bremermann en-
velope in a bounded SHL domain. More precisely, we consider the upper
envelope

U(z) = sup{v(z) : v ∈ V(Ω,ϕ, f)}.
Proposition 3.2. Let Ω ⊂ Cn be a bounded strongly hyperconvex Lip-

schitz domain, 0 ≤ f ∈ C(Ω̄) and ϕ ∈ C(∂Ω). Then the Dirichlet problem
Dir(Ω,ϕ, f) has a unique solution U. Moreover the solution is given by

U = sup{v : v ∈ V(Ω,ϕ, f)},
where V is defined in Definition 2.7 and ∆H is the Laplacian associated to
a positive definite Hermitian matrix H as in (2.1).

Proof. The uniqueness follows from the comparison principle [BT76]. Our
domain Ω is B-regular in the sense of Sibony, therefore the existence of the
solution follows from [Bł96, Theorem 4.1]. The description of the solution
given in the proposition follows from Corollary 3.1 and [Bł96, Theorem 4.1].

Remark 3.3. Let ϕ1, ϕ2 ∈ C(∂Ω) and f1, f2 ∈ C(Ω̄). Then the solutions
U1 = U(Ω,ϕ1, f1), U2 = U(Ω,ϕ2, f2) satisfy the stability estimate

(3.1) ‖U1 − U2‖L∞(Ω̄) ≤ d2‖f1 − f2‖1/nL∞(Ω̄)
+ ‖ϕ1 − ϕ2‖L∞(∂Ω),

where d := diam(Ω). Indeed, fix z0 ∈ Ω and define

v1(z) = ‖f1 − f2‖1/nL∞(Ω̄)
(|z − z0|2 − d2) + U2(z),

v2(z) = U1(z) + ‖ϕ1 − ϕ2‖L∞(∂Ω).

It is clear that v1, v2 ∈ PSH(Ω)∩C(Ω̄). Hence, by the comparison principle,
we get v1 ≤ v2 on Ω̄. Then we conclude that

U2 − U1 ≤ d2‖f1 − f2‖1/nL∞(Ω̄)
+ ‖ϕ1 − ϕ2‖L∞(∂Ω).

Reversing the roles of U1 and U2, we get the inequality (3.1).
We will need in Section 5 an estimate, proved by Błocki [Bł93], for the

Ln-L1 stability of solutions to the Dirichlet problem Dir(Ω,ϕ, f):

(3.2) ‖U1 − U2‖Ln(Ω) ≤ λ(Ω)‖ϕ1 − ϕ2‖L∞(∂Ω) +
r2

4
‖f1 − f2‖1/nL1(Ω)

,

where r = min{r′ > 0 : Ω ⊂ B(z0, r
′) for some z0 ∈ Cn}.

4. The modulus of continuity of the Perron–Bremermann enve-
lope. Recall that a real function ω on [0, l], 0 < l < ∞, is called a modu-
lus of continuity if ω is continuous, subadditive, nondecreasing and satisfies
ω(0) = 0. In general, ω fails to be concave; we denote by ω̄ the minimal con-
cave majorant of ω. The following property of ω̄ is well known (see [Kor82]
and [Ch14]).
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Lemma 4.1. Let ω be a modulus of continuity on [0, l] and ω̄ be the
minimal concave majorant of ω. Then ω(ηt) < ω̄(ηt) < (1 + η)ω(t) for any
t > 0 and η > 0.

4.1. Modulus of continuity of the solution. Now, we will start the
first step to establish an estimate for the modulus of continuity of the solution
to Dir(Ω,ϕ, f). For this purpose, it is natural to investigate the relation
between the modulus of continuity of U and the modulus of continuity of a
subbarrier and a superbarrier. We prove the following:

Proposition 4.2. Let Ω ⊂ Cn be a bounded SHL domain, ϕ ∈ C(∂Ω)
and 0 ≤ f ∈ C(Ω̄). Suppose that there exist v ∈ V(Ω,ϕ, f) and w ∈ SH(Ω)∩
C(Ω̄) such that v = ϕ = −w on ∂Ω. Then there is a constant C > 0
depending on diam(Ω) such that the modulus of continuity of U satisfies

ωU(t) ≤ C max{ωv(t), ωw(t), ωf1/n(t)}.

Proof. Set g(t) := max{ωv(t), ωw(t), ωf1/n(t)} and d := diam(Ω). As
v = ϕ = −w on ∂Ω, for all z ∈ Ω̄ and ξ ∈ ∂Ω we have

−g(|z − ξ|) ≤ v(z)− ϕ(ξ) ≤ U(z)− ϕ(ξ) ≤ −w(z)− ϕ(ξ) ≤ g(|z − ξ|).
Hence

(4.1) |U(z)− U(ξ)| ≤ g(|z − ξ|), ∀z ∈ Ω̄, ∀ξ ∈ ∂Ω.
Fix a point z0 ∈ Ω. For any vector τ ∈ Cn with small enough norm, we set
Ω−τ := {z − τ : z ∈ Ω} and define in Ω ∩Ω−τ the function

v1(z) = U(z + τ) + g(|τ |)|z − z0|2 − d2g(|τ |)− g(|τ |),
which is a well defined psh function in Ω ∩Ω−τ and continuous on Ω̄ ∩ Ω̄−τ .
By (4.1), if z ∈ Ω̄ ∩ ∂Ω−τ we can see that

(4.2) v1(z)− U(z) ≤ g(|τ |) + g(|τ |)|z − z0|2 − d2g(|τ |)− g(|τ |) ≤ 0.

Moreover, we assert that ∆Hv1 ≥ f1/n in Ω ∩ Ω−τ for all H ∈ H+
n with

detH = n−n. Indeed, we have

∆Hv1(z) ≥ f1/n(z + τ) + g(|τ |)∆H(|z − z0|2) ≥ f1/n(z + τ) + g(|τ |)
≥ f1/n(z + τ) + |f1/n(z + τ)− f1/n(z)| ≥ f1/n(z)

for all H ∈ H+
n with detH = n−n. Hence, by the above properties of v1, we

find that

Vτ (z) =

{
U(z), z ∈ Ω̄ \Ω−τ ,
max(U(z), v1(z)), z ∈ Ω̄ ∩Ω−τ ,

is a well defined function and belongs to PSH(Ω) ∩ C(Ω̄). It is clear that
∆HVτ ≥ f1/n for all H ∈ H+

n with detH = n−n. We claim that Vτ = ϕ
on ∂Ω. If z ∈ ∂Ω \ Ω−τ then Vτ (z) = U(z) = ϕ(z). On the other hand
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z ∈ ∂Ω ∩Ω−τ , and by (4.2) we get Vτ (z) = max(U(z), v1(z)) = U(z) = ϕ(z).
Consequently, Vτ ∈ V(Ω,ϕ, f) and this implies that

Vτ (z) ≤ U(z), ∀z ∈ Ω̄.
Then for all z ∈ Ω̄ ∩Ω−τ we have

U(z + τ) + g(|τ |)|z − z0|2 − d2g(|τ |)− g(|τ |) ≤ U(z).

Hence,
U(z + τ)− U(z) ≤ (d2 + 1)g(|τ |)− g(|τ |)|z − z0|2 ≤ Cg(|τ |).

Reversing the roles of z + τ and z, we get
|U(z + τ)− U(z)| ≤ Cg(|τ |), ∀z, z + τ ∈ Ω̄.

Thus, finally,
ωU(|τ |) ≤ C max{ωv(|τ |), ωw(|τ |), ωf1/n(|τ |)}.

Remark 4.3. Let Hϕ be the harmonic extension of ϕ in a bounded SHL
domain Ω. We can replace w in the last proposition by Hϕ. It is known in
the classical harmonic analysis (see [Ai10]) that the harmonic extension Hϕ

does not have, in general, the same modulus of continuity of ϕ.
Let us define, for small positive t, the modulus of continuity

ψα,β(t) = (− log(t))−αtβ

with α ≥ 0 and 0 ≤ β < 1. It is clear that ψα,0 is weaker than Hölder
continuity and ψ0,β is Hölder continuity. It was shown in [Ai02] that ωHϕ(t) ≤
cψ0,β(t) for some c > 0 if ωϕ(t) ≤ c1ψ0,β(t) for β < β0, where β0 < 1 depends
only on n and the Lipschitz constant of the defining function ρ. Moreover,
a similar result was proved in [Ai10] for the modulus of continuity ψα,0(t).
However, the same argument of Aikawa gives ωHϕ(t) ≤ cψα,β(t) for some
c > 0 if ωϕ(t) ≤ c1ψα,β(t) for α ≥ 0 and 0 ≤ β < β0 < 1.

This leads us to the conclusion that if there exists a barrier v to the
Dirichlet problem such that v = ϕ on ∂Ω and ωv(t) ≤ λψα,β(t) with α, β as
above, then the last proposition gives

ωU ≤ λ1 max{ψα,β(t), ωf1/n(t)},
where λ1 > 0 depends on λ and diam(Ω).

4.2. Construction of barriers. In this subsection, we will construct
a subsolution to the Dirichlet problem with boundary value ϕ and estimate
its modulus of continuity.

Proposition 4.4. Let Ω ⊂ Cn be a bounded SHL domain, assume that
ϕ ∈ C(∂Ω) and 0 ≤ f ∈ C(Ω̄). Then there exists a subsolution v ∈ V(Ω,ϕ, f)
such that v = ϕ on ∂Ω and the modulus of continuity of v satisfies

ωv(t) ≤ λ(1 + ‖f‖1/n
L∞(Ω̄)

) max{ωϕ(t1/2), t1/2},

where λ > 0 depends on Ω.
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Observe that we do not assume any smoothness on ∂Ω.

Proof. First of all, fix ξ ∈ ∂Ω. We claim that there exists vξ ∈ V(Ω,ϕ, f)
such that vξ(ξ) = ϕ(ξ). It is sufficient to prove that there exists a constant
C > 0 depending on Ω such that for every point ξ ∈ ∂Ω and ϕ ∈ C(∂Ω),
there is a function hξ ∈ PSH(Ω) ∩ C(Ω̄) satisfying

(1) hξ(z) ≤ ϕ(z), ∀z ∈ ∂Ω,
(2) hξ(ξ) = ϕ(ξ),
(3) ωhξ(t) ≤ Cωϕ(t1/2).

Assume this is true. We fix z0 ∈ Ω and write K1 := supΩ̄ f
1/n ≥ 0. Hence

∆H(K1|z − z0|2) = K1∆H |z − z0|2 ≥ f1/n, ∀H ∈ H+
n , detH = n−n.

We also set K2 := K1|ξ − z0|2. Then for the continuous function

ϕ̃(z) := ϕ(z)−K1|z − z0|2 +K2,

we have hξ such that (1)–(3) hold.
Then the desired function vξ ∈ V(Ω,ϕ, f) is given by

vξ(z) = hξ(z) +K1|z − z0|2 −K2.

Thus hξ(z) ≤ ϕ̃(z) = ϕ(z) −K1|z − z0|2 + K2 on ∂Ω, so vξ(z) ≤ ϕ on ∂Ω
and vξ(ξ) = ϕ(ξ).

Moreover, it is clear that

∆Hvξ = ∆Hhξ +K1∆H(|z − z0|2) ≥ f1/n, ∀H ∈ H+
n , detH = n−n.

Furthermore, using the hypothesis on hξ, we can control the modulus of
continuity of vξ:

ωvξ(t) = sup
|z−y|≤t

|vξ(z)− vξ(y)| ≤ ωhξ(t) +K1ω|z−z0|2(t)

≤ Cωϕ̃(t1/2) + 4d3/2K1t
1/2

≤ Cωϕ(t1/2) + 2dK1(C + 2d1/2)t1/2

≤ (C + 2d1/2)(1 + 2dK1) max{ωϕ(t1/2), t1/2},
where d := diam(Ω). Hence, we conclude that

ωvξ(t) ≤ λ(1 +K1) max{ωϕ(t1/2), t1/2},

where λ := (C + 2d1/2)(1 + 2d) is a positive constant depending on Ω.
Now we will construct hξ ∈ PSH(Ω) ∩ C(Ω̄) which satisfies the three

conditions above. Let B > 0 be large enough such that the function

g(z) = Bρ(z)− |z − ξ|2

is psh in Ω. Let ω̄ϕ be the minimal concave majorant of ωϕ and define

χ(x) = −ω̄ϕ((−x)1/2),
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which is a convex nondecreasing function on [−d2, 0]. Now fix r > 0 so small
that |g(z)| ≤ d2 in B(ξ, r) ∩Ω and define for z ∈ B(ξ, r) ∩ Ω̄ the function

h(z) = χ ◦ g(z) + ϕ(ξ).

It is clear that h is a continuous psh function on B(ξ, r) ∩ Ω and we see
that h(z) ≤ ϕ(z) if z ∈ B(ξ, r) ∩ ∂Ω and h(ξ) = ϕ(ξ). Moreover by the
subadditivity of ω̄ϕ and Lemma 4.1 we have

ωh(t) = sup
|z−y|≤t

|h(z)− h(y)|

≤ sup
|z−y|≤t

ω̄ϕ
[∣∣|z − ξ|2 − |y − ξ|2 −B(ρ(z)− ρ(y))

∣∣1/2]
≤ sup
|z−y|≤t

ω̄ϕ[(|z − y|(2d+B1))1/2] ≤ C.ωϕ(t1/2),

where C := 1 + (2d+B1)1/2 depends on Ω.
Recall that ξ ∈ ∂Ω and fix 0 < r1 < r and γ1 ≥ d/r1 such that

−γ1ω̄ϕ[(|z − ξ|2 −Bρ(z))1/2] ≤ inf
∂Ω

ϕ− sup
∂Ω

ϕ

for z ∈ ∂Ω ∩ ∂B(ξ, r1). Set γ2 = inf∂Ω ϕ. Then

γ1(h(z)− ϕ(ξ)) + ϕ(ξ) ≤ γ2 for z ∈ ∂B(ξ, r1) ∩ Ω̄.
Now set

hξ(z) =

{
max[γ1(h(z)− ϕ(ξ)) + ϕ(ξ), γ2], z ∈ Ω̄ ∩B(ξ, r1),
γ2, z ∈ Ω̄ \B(ξ, r1),

which is a well defined psh function on Ω, continuous on Ω̄ and such that
hξ(z) ≤ ϕ(z) for all z ∈ ∂Ω. Indeed, on ∂Ω ∩B(ξ, r1) we have

γ1(h(z)−ϕ(ξ))+ϕ(ξ) = −γ1ω̄ϕ(|z−ξ|)+ϕ(ξ) ≤ −ω̄ϕ(|z−ξ|)+ϕ(ξ) ≤ ϕ(z).

Hence it is clear that hξ satisfies the three conditions above.
We have just proved that for each ξ ∈ ∂Ω, there is a vξ ∈ V(Ω,ϕ, f) with

vξ(ξ) = ϕ(ξ) and

ωvξ(t) ≤ λ(1 +K1) max{ωϕ(t1/2), t1/2}.
Set

v(z) = sup{vξ(z) : ξ ∈ ∂Ω}.

Since 0 ≤ ωv(t) ≤ λ(1 + K1) max{ωϕ(t1/2), t1/2}, we see that ωv(t) con-
verges to zero when t converges to zero. Consequently, v ∈ C(Ω̄) and v =
v∗ ∈ PSH(Ω). Thanks to Choquet’s lemma, we can choose a nondecreasing
sequence (vj), where vj ∈ V(Ω,ϕ, f), converging to v almost everywhere.
This implies that

∆Hv = lim
j→∞

∆Hvj ≥ f1/n, ∀H ∈ H+
n , detH = n−n.
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It is clear that v(ξ) = ϕ(ξ) for any ξ ∈ ∂Ω. Finally, v ∈ V(Ω,ϕ, f), v = ϕ
on ∂Ω and ωv(t) ≤ λ(1 +K1) max{ωϕ(t1/2), t1/2}.

Remark 4.5. If we assume that Ω has a smooth boundary and ϕ is
C1,1-smooth, then it is possible to construct a Lipschitz barrier v to the
Dirichlet problem Dir(Ω,ϕ, f) (see [BT76, Theorem 6.2]).

Corollary 4.6. Under the same assumption of Proposition 4.4, there
exists a plurisuperharmonic function ṽ ∈ C(Ω̄) such that ṽ = ϕ on ∂Ω and

ωṽ(t) ≤ λ(1 + ‖f‖1/n
L∞(Ω̄)

) max{ωϕ(t1/2), t1/2},

where λ > 0 depends on Ω.

Proof. We can perform the same construction as in the proof of Propo-
sition 4.4 for the function ϕ1 = −ϕ ∈ C(∂Ω); then we get v1 ∈ V(Ω,ϕ1, f)

such that v1 = ϕ1 on ∂Ω and ωv1(t) ≤ λ(1 + ‖f‖1/n
L∞(Ω̄)

) max{ωϕ(t1/2), t1/2}.
Hence, we set ṽ = −v1 which is a plurisuperharmonic function on Ω, con-
tinuous on Ω̄ and satisfying ṽ = ϕ on ∂Ω and

ωṽ(t) ≤ λ(1 + ‖f‖1/n
L∞(Ω̄)

) max{ωϕ(t1/2), t1/2}.

4.3. Proof of Theorem A. Thanks to Proposition 4.4, we have a sub-
solution v ∈ V(Ω,ϕ, f) with v = ϕ on ∂Ω and

ωv(t) ≤ λ(1 + ‖f‖1/n
L∞(Ω̄)

) max{ωϕ(t1/2), t1/2}.

From Corollary 4.6, we get w ∈ PSH(Ω) ∩ C(Ω̄) such that w = −ϕ on ∂Ω
and

ωw(t) ≤ λ(1 + ‖f‖1/n
L∞(Ω̄)

) max{ωϕ(t1/2), t1/2},

where λ > 0 is a constant. Applying Proposition 4.2 we obtain the required
result, that is,

ωU(t) ≤ η(1 + ‖f‖1/n
L∞(Ω̄)

) max{ωϕ(t1/2), ωf1/n(t), t1/2},

where η > 0 depends on Ω.

Corollary 4.7. Let Ω be a bounded SHL domain in Cn. Let ϕ ∈
C0,α(∂Ω) and 0 ≤ f1/n ∈ C0,β(Ω̄), 0 < α, β ≤ 1. Then the solution U to
the Dirichlet problem Dir(Ω,ϕ, f) belongs to C0,γ(Ω̄) for γ = min(β, α/2).

The following example illustrates that the estimate of ωU in Theorem A
is optimal.

Example 4.8. Let ψ be a concave modulus of continuity on [0, 1] and

ϕ(z) = −ψ[
√

(1 + <z1)/2] for z = (z1, . . . , zn) ∈ ∂B ⊂ Cn.
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It is easy to show that ϕ ∈ C(∂B) with modulus of continuity

ωϕ(t) ≤ Cψ(t)

for some C > 0.
Let v(z) = −(1 + <z1)/2 ∈ PSH(B) ∩ C(B̄) and χ(λ) = −ψ(

√
−λ) be a

convex increasing function on [−1, 0]. Hence we see that

u(z) = χ ◦ v(z) ∈ PSH(B) ∩ C(B̄)

and satisfies (ddcu)n = 0 in B and u = ϕ on ∂B. The modulus of continuity
of U has the estimate

C1ψ(t1/2) ≤ ωU(t) ≤ C2ψ(t1/2)

for C1, C2 > 0. Indeed, let z0 = (−1, 0, . . . , 0) and z = (z1, 0, . . . , 0) ∈ B
where z1 = −1 + 2t and 0 ≤ t ≤ 1. Hence, by Lemma 4.1, we conclude that

ψ(t1/2) = ψ[
√
|z − z0|/2] = ψ[

√
(1 + <z1)/2] = |U(z)− U(z0)| ≤ 3ωU(t).

Definition 4.9. Let ψ be a modulus of continuity, E ⊂ Cn be a bounded
set and g ∈ C ∩ L∞(E). We define the norm of g with respect to ψ (briefly,
the ψ-norm) as follows:

‖g‖ψ := sup
z∈E
|g(z)|+ sup

z 6=y∈E

|g(z)− g(y)|
ψ(|z − y|)

.

Proposition 4.10. Let Ω ⊂ Cn be a bounded SHL domain, ϕ ∈ C(∂Ω)
with modulus of continuity ψ1 and f1/n ∈ C(Ω̄) with modulus of continuity
ψ2. Then there exists a constant C > 0 depending on Ω such that

‖U‖ψ ≤ C(1 + ‖f‖1/n
L∞(Ω̄)

) max{‖ϕ‖ψ1 , ‖f1/n‖ψ2},

where ψ(t) = max{ψ1(t1/2), ψ2(t)}.

Proof. By hypothesis, we see that ‖ϕ‖ψ1 < ∞ and ‖f1/n‖ψ2 < ∞. Let
z 6= y ∈ Ω̄. By Theorem A, we get

|U(z)− U(y)| ≤ η(1 + ‖f‖1/n
L∞(Ω̄)

) max{ωϕ(|z − y|1/2), ωf1/n(|z − y|)}

≤ η(1 + ‖f‖1/n
L∞(Ω̄)

) max{‖ϕ‖ψ1 , ‖f1/n‖ψ2}ψ(|z − y|),

where ψ(|z − y|) = max{ψ1(|z − y|1/2), ψ2(|z − y|)}. Hence

sup
z 6=y∈Ω̄

|U(z)− U(y)|
ψ(|z − y|)

≤ η(1 + ‖f‖1/n
L∞(Ω̄)

) max{‖ϕ‖ψ1 , ‖f1/n‖ψ2},

where η ≥ d2 + 1 and d = diam(Ω) (see Proposition 4.2). From Remark 3.3,
we note that

‖U‖L∞(Ω̄) ≤ d2‖f‖1/n
L∞(Ω̄)

+ ‖ϕ‖L∞(∂Ω) ≤ ηmax{‖ϕ‖ψ1 , ‖f1/n‖ψ2}.
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Then we conclude that

‖U‖ψ ≤ 2η(1 + ‖f‖1/n
L∞(Ω̄)

) max{‖ϕ‖ψ1 , ‖f1/n‖ψ2}.

Finally, it is natural to try to relate the modulus of continuity of U :=
U(Ω,ϕ, f) to the modulus of continuity of U0 := U(Ω,ϕ, 0), the solution to
the Bremermann problem in a bounded SHL domain.

Proposition 4.11. Let Ω be a bounded SHL domain in Cn, 0 ≤ f ∈
C(Ω̄) and ϕ ∈ C(∂Ω). Then there exists a positive constant C = C(Ω) such
that

ωU(t) ≤ C(1 + ‖f‖1/n
L∞(Ω̄)

) max{ωU0(t), ωf1/n(t)}.

Proof. First, we search for a subsolution v∈V(Ω,ϕ, f) such that v|∂Ω=ϕ
and estimate its modulus of continuity. Since Ω is a bounded SHL domain,
there exists a Lipschitz defining function ρ on Ω̄. Define

v(z) = U0(z) +Aρ(z),

where A := ‖f‖1/nL∞/c and c > 0 is as in Definition 2.1. It is clear that
v ∈ V(Ω,ϕ, f), v = ϕ on ∂Ω and

ωv(t) ≤ C̃ωU0(t)

where C̃ := γ(1 + ‖f‖1/n
L∞(Ω̄)

) and γ ≥ 1 depends on Ω.
On the other hand, by the comparison principle we get U ≤ U0. So,

v ≤ U ≤ U0 in Ω and v = U = U0 = ϕ on ∂Ω.

Thanks to Proposition 4.2, there exists λ > 0 depending on Ω such that

ωU(t) ≤ λmax{ωv(t), ωU0(t), ωf1/n(t)}.
Hence, for some C > 0 depending on Ω,

ωU(t) ≤ C(1 + ‖f‖1/n
L∞(Ω̄)

) max{ωU0(t), ωf1/n(t)}.

5. Hölder continuous solutions for the Dirichlet problem with
Lp density. In this section we will prove the existence and the Hölder conti-
nuity of the solution to the Dirichlet problem Dir(Ω,ϕ, f) when f ∈ Lp(Ω),
p > 1, in a bounded SHL domain.

It is well known (see [Ko98]) that there exists a weak continuous solution
to this problem when Ω is a bounded strongly pseudoconvex domain with
smooth boundary.

The Hölder continuity of this solution was studied in [GKZ08] under
some additional conditions on the density and on the boundary data, that
is, when f is bounded near the boundary and ϕ ∈ C1,1(∂Ω).

The following weak stability estimate plays an important role in the proof
of the Hölder continuity of the solution.
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Theorem 5.1 ([GKZ08]). Fix 0 ≤ f ∈ Lp(Ω), p > 1. Let u, v be two
bounded plurisubharmonic functions in Ω such that (ddcu)n = fβn in Ω and
let u ≥ v on ∂Ω. Fix r ≥ 1 and 0 ≤ γ < r/(nq + r), 1/p + 1/q = 1. Then
there exists a uniform constant C = C(γ, n, q) > 0 such that

sup
Ω

(v − u) ≤ C(1 + ‖f‖τLp(Ω))‖(v − u)+‖γLr(Ω),

where τ := 1
n + γq

r−γ(r+nq) and (v − u)+ := max(v − u, 0).

In [GKZ08], the authors constructed a Lipschitz continuous barrier to the
Dirichlet problem when ϕ ∈ C1,1(∂Ω) and f is bounded near the boundary.
Moreover, it was shown in this case that the total mass of ∆U is finite in Ω.
Finally, they concluded that U ∈ C0,α(Ω̄) for any α < 2/(nq + 1). The
following theorem summarizes the work in [GKZ08].

Theorem 5.2 ([GKZ08]). Let 0 ≤ f ∈ Lp(Ω) for some p > 1, and
ϕ ∈ C(∂Ω). Suppose that there exist v, w ∈ PSH(Ω) ∩ C0,α(Ω̄) such that
v ≤ U ≤ −w on Ω̄ and v = ϕ = −w on ∂Ω. If the total mass of ∆U is finite
in Ω, then U ∈ C0,α′

(Ω̄) for α′ < min{α, 2/(nq + 1)}.
Let Ω ⊂ Cn be a bounded SHL domain. Using the stability Theorem

5.1 we will ensure the existence of the solution to the Dirichlet problem
Dir(Ω,ϕ, f) when f ∈ Lp(Ω), p > 1.

Proposition 5.3. Let Ω ⊂ Cn be a bounded SHL domain, ϕ ∈ C(∂Ω)
and 0 ≤ f ∈ Lp(Ω) for some p > 1. Then there exists a unique solution U to
the Dirichlet problem Dir(Ω,ϕ, f).

Proof. Let (fj) be a sequence of smooth functions on Ω̄ which converges
to f in Lp(Ω). Thanks to Proposition 3.2, there exists a unique solution Uj
to Dir(Ω,ϕ, fj), that is, Uj ∈ PSH(Ω)∩C(Ω̄), Uj = ϕ on ∂Ω and (ddcUj)

n =
fjβ

n in Ω. We claim that

(5.1) ‖Uk − Uj‖L∞(Ω̄) ≤ A(1 + ‖fk‖τLp(Ω))(1 + ‖fj‖τLp(Ω))‖fk − fj‖
γ/n
L1(Ω)

,

where 0 ≤ γ < 1/(q + 1) is fixed, τ := 1
n + γq

n−γn(1+q) , 1/p + 1/q = 1 and
A = A(γ, n, q,diam(Ω)).

Indeed, by the stability theorem 5.1 and for r = n, we get

sup
Ω

(Uk − Uj) ≤ C(1 + ‖fj‖τLp(Ω))‖(Uk − Uj)+‖γLn(Ω)

≤ C(1 + ‖fj‖τLp(Ω))‖Uk − Uj‖γLn(Ω),

where 0 ≤ γ < 1/(q+1) is fixed and C = C(γ, n, q) > 0. Hence by the Ln-L1

stability theorem of [Bł93] (see our Remark 3.3),

‖Uk − Uj‖Ln(Ω) ≤ C̃‖fk − fj‖
1/n
L1(Ω)

,

where C̃ depends on diam(Ω). Then, from the last two inequalities and
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reversing the role of Uj and Uk, we deduce

‖Uk − Uj‖L∞(Ω) ≤ CC̃γ(1 + ‖fk‖τLp(Ω))(1 + ‖fj‖τLp(Ω))‖fk − fj‖
γ/n
L1(Ω)

.

Since Uk = Uj = ϕ on ∂Ω, the inequality (5.1) holds.
As fj converges to f in Lp(Ω), there is a uniform constant B > 0 such

that
‖Uk − Uj‖L∞(Ω̄) ≤ B‖fk − fj‖

γ/n
L1(Ω)

.

This implies that the sequence Uj converges uniformly in Ω̄. Set U = lim Uj .
It is clear that U ∈ PSH(Ω) ∩ C(Ω̄) and U = ϕ on ∂Ω. Moreover, (ddcUj)

n

converges to (ddcU)n in the sense of currents, thus (ddcU)n = fβn in Ω.
The uniqueness of the solution follows from the comparison principle (see
[BT76]).

Our next step is to construct Hölder continuous subbarriers and super-
barriers to the Dirichlet problem when f ∈ Lp(Ω) for some p > 1 and
ϕ ∈ C0,1(∂Ω).

Proposition 5.4. Let ϕ ∈ C0,1(∂Ω) and 0 ≤ f ∈ Lp(Ω) for some p > 1.
Then there exist v, w ∈ PSH(Ω) ∩ C0,α(Ω̄) where α < 1/(nq + 1) such that
v = ϕ = −w on ∂Ω and v ≤ U ≤ −w on Ω.

Proof. Fix a large ball B ⊂ Cn so that Ω b B ⊂ Cn. Let f̃ be a trivial
extension of f to B. Since f̃ ∈ Lp(Ω) is bounded near ∂B, the solution h1

to Dir(B, 0, f̃) is Hölder continuous on B̄ with exponent α1 < 2/(nq + 1)
(see [GKZ08]). Now let h2 denote the solution to the Dirichlet problem in
Ω with boundary value ϕ− h1 and the zero density. Thanks to Theorem A,
we see that h2 ∈ C0,α2(Ω̄) where α2 = α1/2. Therefore, the required barrier
will be v = h1 + h2. It is clear that v ∈ PSH(Ω) ∩ C(Ω̄), v|∂Ω = ϕ and
(ddcv)n ≥ fβn in the weak sense in Ω. Hence, by the comparison principle
we get v ≤ U in Ω and v = U = ϕ on ∂Ω. Moreover v ∈ C0,α(Ω̄) for any
α < 1/(nq + 1).

Finally, it is enough to set w = U(Ω,−ϕ, 0) to obtain a superbarrier to the
Dirichlet problem Dir(Ω,ϕ, f). We note that w ∈ PSH(Ω) ∩ C(Ω̄), −w = ϕ
on ∂Ω and U ≤ −w on Ω̄. Furthermore, by Theorem A, w ∈ C0,1/2(Ω̄) and
then w ∈ C0,α(Ω̄) for any α < 1/(nq + 1).

When f ∈ Lp(Ω) for p ≥ 2, we are able to find a Hölder continuous
barrier to the Dirichlet problem with better Hölder exponent. The following
theorem was proved in [Ch14] for the complex Hessian equation, and it is
enough here to put m = n to get the complex Monge–Ampère equation.

Theorem 5.5 ([Ch14]). Let ϕ ∈ C0,1(∂Ω) and 0 ≤ f ∈ Lp(Ω), p ≥ 2.
Then there exist v, w ∈ PSH(Ω) ∩ C0,1/2(Ω̄) such that v = ϕ = −w on ∂Ω
and v ≤ U ≤ −w in Ω.
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We recall the comparison principle for the total mass of the Laplacian of
plurisubharmonic functions.

Lemma 5.6. Let u, v ∈ PSH(Ω) ∩ C(Ω̄) be such that v ≤ u on Ω and
u = v on ∂Ω. Then �

Ω

ddcu ∧ βn−1 ≤
�

Ω

ddcv ∧ βn−1.

5.1. Proof of Theorem B. Let U0 be the solution to the Dirichlet
problem Dir(Ω, 0, f). We first claim that the total mass of ∆U0 is finite in Ω.
Indeed, let ρ be the defining function of Ω; then by [Ce04, Corollary 5.6]
we get

�

Ω

ddcU0 ∧ (ddcρ)n−1 ≤
( �
Ω

(ddcU0)n
)1/n( �

Ω

(ddcρ)n
)(n−1)/n

(5.2)

≤
( �
Ω

fβn
)1/n( �

Ω

(ddcρ)n
)(n−1)/n

.

Since Ω is a bounded SHL domain, there exists a constant c > 0 such that
ddcρ ≥ cβ in Ω. Hence (5.2) yields

�

Ω

ddcU0 ∧ βn−1 ≤ 1

cn−1

�

Ω

ddcU0 ∧ (ddcρ)n−1

≤ 1

cn−1

( �
Ω

fβn
)1/n( �

Ω

(ddcρ)n
)(n−1)/n

.

Now we note that the total mass of the complex Monge–Ampère measure
of ρ is finite in Ω by the Chern–Levine–Nirenberg inequality and since ρ is
psh and bounded in a neighborhood of Ω̄ (see [BT76]). Therefore, the total
mass of ∆U0 is finite in Ω.

Let ϕ̃ be a C1,1-extension of ϕ to Ω̄ with ‖ϕ̃‖C1,1(Ω̄) ≤ C‖ϕ‖C1,1(∂Ω) for
some C > 0. Now, let v = Aρ + ϕ̃ + U0 where A � 1 such that Aρ + ϕ̃ ∈
PSH(Ω). By the comparison principle, v ≤ U in Ω and v = U = ϕ on ∂Ω.
Since ρ is psh in a neighborhood of Ω̄ and ‖∆U0‖Ω < ∞, we deduce that
‖∆v‖Ω <∞. Then ‖∆U‖Ω <∞ by Lemma 5.6.

Proposition 5.4 gives the existence of Hölder continuous barriers to the
Dirichlet problem. Then using Theorem 5.2 we obtain the final result, that
is, if f ∈ Lp(Ω) for some p > 1, then U ∈ PSH(Ω) ∩ C0,α(Ω̄) where α <
1/(nq + 1).

Moreover, if f ∈ Lp(Ω) for some p ≥ 2, we can get a better result:
by Theorems 5.5 and 5.2, U ∈ PSH(Ω) ∩ C0,α(Ω̄) where α < min{1/2,
2/(nq + 1)}.

Remark 5.7. It is shown in [GKZ08] that we cannot expect a better
Hölder exponent than 2/(nq) (see also [Pl05]).
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