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Holder regularity for solutions to
complex Monge—-Ampére equations

by MOHAMAD CHARABATI (Toulouse)

Abstract. We consider the Dirichlet problem for the complex Monge-Ampére equa-
tion in a bounded strongly hyperconvex Lipschitz domain in C™. We first give a sharp
estimate on the modulus of continuity of the solution when the boundary data is continu-
ous and the right hand side has a continuous density. Then we consider the case when the
boundary value function is C**! and the right hand side has a density in L?(£2) for some
p > 1, and prove the Hélder continuity of the solution.

1. Introduction. Let {2 be a bounded pseudoconvex domain in C”.
Given ¢ € C(9£2) and 0 < f € L'(£2). We consider the Dirichlet problem

u € PSH(2) NC(12),
Dir(2, ¢, f) : { (dd°u) = 4" in 0,
U= on 912,
where PSH($2) is the set of plurisubharmonic (psh) functions in 2. Here we
write d = 0+ 0 and d° = (i/4)(0—0); then dd¢ = (i/2)00 and (dd°-)" stands
for the complex Monge—Ampére operator.
If u € C%(£2) is a plurisubharmonic function, then
0u
ddu)" = det| -——— | 5"
(dd"u) ¢ <8z382k>6 ’
where 8 = (i/2) >_7_; dz; A dz; is the standard Kéhler form in C™.
In their seminal work, Bedford and Taylor proved that the complex
Monge-Ampére operator can be extended to the set of bounded plurisub-
harmonic functions (see [BT76|, [BT82]). Moreover, it is invariant under

holomorphic changes of coordinates. We refer the reader to [BT76], [De89],
IKI91], [Ko05] for more details on its properties.
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The Dirichlet problem was studied extensively in the last decades by
many authors. When {2 is a bounded strongly pseudoconvex domain with
smooth boundary and f € C(£2), Bedford and Taylor had showed that
Dir(£2, ¢, f) has a unique continuous solution U := U({2,¢, f). Further-
more, it was proved in [BT76] that U € Lip, (2) when ¢ € Lipy, (9£2) and
Y™ € Lip, () (0 < a < 1). In the nondegenerate case, i.e. 0 < f € C>(f2)
and ¢ € C*(942), Caffarelli, Kohn, Nirenberg and Spruck |[CK*85| proved
that U € C*(£2). However a simple example of Gamelin and Sibony shows
that the solution is not, in general, better than C'!'-smooth when f > 0
and f is smooth (see [GS80]). Krylov proved that if ¢ € C>'(9£2) and
fY7 e cbi(2), f >0, then U e CH1(2) (see [K18Y)).

For B-regular domains, Blocki [BI96] proved the existence of a continuous
solution to the Dirichlet problem Dir({2, ¢, f) when 0 < f € C(£2).

For a strongly pseudoconvex domain with smooth boundary, Kotodziej
IKo98| demonstrated that Dir(§2, ¢, f) still admits a unique continuous so-
lution under the milder assumption f € LP(£2), for p > 1. Recently Guedj,
Kotodziej and Zeriahi studied the Hoélder continuity of the solution when
0 < f e LP(2), for some p > 1, is bounded near the boundary (see [GKZ08]).

For the complex Monge-Ampére equation on a compact Kéhler manifold,
the Holder continuity of the solution was proved earlier by Kotodziej [KoOS|
(see also [DD™14]).

A viscosity approach to the complex Monge—-Ampére equation has been
developed in [EGZ11] and [Wan12].

In this paper, we consider the more general case where {2 is a bounded
strongly hyperconvex Lipschitz domain (the boundary does not need to be
smooth).

Our first result gives a sharp estimate for the modulus of continuity of
the solution in terms of the modulus of continuity of the data ¢, f.

THEOREM A. Let §2 C C" be a bounded strongly hyperconvex Lipschitz
domain, ¢ € C(052) and 0 < f € C(§2). Assume that wy, is the modulus of
continuity of ¢, and wpm is the modulus of continuity of Y7 Then the
modulus of continuity of the unique solution U to Dir(§2, ¢, f) satisfies the
estimate

1
wolt) < L+ I ) masc{wp (8/2), w5 (8), £/},
where 1 is a positive constant depending on 2.

Here we will use an alternative description of the solution given by Propo-
sition [3.2) to get optimal control for the modulus of continuity of this solution
in a strongly hyperconvex Lipschitz domain. This result was suggested by
E. Bedford [Be88] and proved in the case of strictly convex domains with
f =0 |Be82].
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Our second result concerns the Holder continuity of the solution when
ferLr(2),p>1

THEOREM B. Let 2 € C" be a bounded strongly hyperconvex Lipschitz
domain. Assume that p € CH1(082) and f € LP(82) for some p > 1. Then the
unique solution U to Dir(£2, p, f) is a-Hdlder continuous on 2 for any 0 <
a < 1/(ng+1) where 1/p+1/q = 1. Moreover, if p > 2, then the solution U
is a-Holder continuous on §2 for any 0 < o < min{1/2,2/(ng +1)}.

In |[GKZ08| the Holder continuity of the solution is obtained when ¢ €
CH1(092) and f € LP(£2), for p > 1, is bounded near the boundary. Recently,
N. C. Nguyen [N14] proved that the solution is Holder continuous when the
density f satisfies a growth condition near the boundary of (2.

2. Preliminaries. We recall that a hyperconver domain is a domain
in C" admitting a bounded plurisubharmonic exhaustion function. Let us
define the class of hyperconvex domains which will be considered in this
paper.

DEFINITION 2.1. A bounded domain §2 C C" is called a strongly hyper-
convex Lipschitz (briefly SHL) domain if there exists a neighborhood 2" of £2
and a Lipschitz plurisubharmonic defining function p : 2" — R such that

(1) p<0in £ and 952 = {p = 0},
(2) there exists a constant ¢ > 0 such that dd°p > ¢f in {2 in the weak
sense of currents.

EXAMPLE 2.2.

(1) Let §2 be a strictly conver domain, that is, there exists a Lipschitz
defining function p such that p — c|z|? is convex for some ¢ > 0. It is
clear that (2 is a strongly hyperconvex Lipschitz domain.

(2) A smooth strictly pseudoconvex bounded domain is a SHL domain
(see [HL8&4)).

(3) The nonempty finite intersection of strictly pseudoconvex bounded
domains with smooth boundary in C™ is a bounded SHL domain.
In fact, it is sufficient to set p = max{p;}. More generally a finite
intersection of SHL domains is a SHL. domain.

(4) The domain

Q={z=(21,-..,2n) €EC" i |z1|+ -+ |za| <1} (n>2)

is a bounded strongly hyperconvex Lipschitz domain in C™ with non-
smooth boundary.

(5) The unit polydisc in C" (n > 2) is hyperconvex with Lipschitz bound-
ary but it is not strongly hyperconvex Lipschitz.
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REMARK 2.3. Any bounded SHL domain is B-regular in the sense of
Sibony (|Sib87], [B194]).

Let 2 C C" be a bounded domain. If v € PSH({2) then ddu > 0 in the
sense of currents. We define

n 2
(2.1) Apgu:=Y hj Ou

Jk 5.
Pyt 02,0%;

for every positive definite Hermitian matrix H = (h;;). We can view Agu
as a positive Radon measure in f2.
The following lemma is elementary and important for what follows (see

[Gav77)).

LEMMA 2.4 ([Gav77]). Let Q be a n X n nonnegative Hermitian matriz.

Then
(det Q)Y/" = inf{tr(HQ) : H € H and det H = n™"},

where H,F denotes the set of all positive Hermitian n x n matrices.

EXAMPLE 2.5. We calculate Ag(|z|?) for every matrix H € H,” with
det H =n""

n
Ap(|z) =) hjpdy; =trH.
Jk=1
Using the inequality of arithmetic and geometric means, we have
1= (det I)"/™ < tr H,

hence Ag(|z]?) > 1 for every matrix H € H," with det H = n™".

The following result is well known (see [B196]), but we will give here an
alternative proof using ideas from the theory of viscosity due to Eyssidieux,
Guedj and Zeriahi [EGZ11].

PROPOSITION 2.6. Let u € PSH(2) N L*°(£2) and 0 < f € C(§2). Then
the following conditions are equivalent:

(1) Agu > fY™ in the weak sense of distributions, for any H € H;F with
det H=n"".
(2) (dd°u)™ > fB™ in the weak sense of currents in 2.

Proof. First, suppose that u € C2(§2). Then by Lemmathe inequality

8?2
Agu = Z pik S S fUn Y e HY det H =n",
Py 020z, —

9%u 1/n 1
> fl/n,
(det <3Zj32k > ) =1

is equivalent to
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The latter means that
(dd®u)" > fB".

(1)=(2). Let (pe) be the standard family of regularizing kernels with
supp pe C B(0,¢) and § B(0,e) Pe = 1. Then the sequence u. = u * p. decreases
to u, and we see that (1) implies Aguc > (f/")c. Since u, is smooth, we
use the first case and get (dd®uc)™ > ((f/™)c)"8", hence by applying the
convergence theorem of Bedford and Taylor [BT82, Theorem 7.4] we obtain
(ddu)™ > fpB™.

(2)=(1). Fix zg € §2, and let ¢ be a C?-function in a neighborhood B of
xo such that u < ¢ in this neighborhood and u(xg) = q(xo).

First step: We will show that dd®q,, > 0. Indeed, for every small enough
ball B’ C B centered at x(, we have

u(@o) — q(xo) > V(lB,) g,(u —q)dV,
therefore
1 1
V(B | gav —g(wo) > 75 | udv — u(ao) > 0.

B’ B’

Since ¢ is C2-smooth and the radius of B’ tends to 0, it follows from [H94]
Proposition 3.2.10] that Agz, > 0. For every positive definite Hermitian
matrix H with det H = n™", we make a linear change of complex coordinates
T such that tr(HQ) = tr(Q) where Q = (8?G/0w;0wy) and § = qo T~ 1,
Then
Anq(zo) = tr(HQ) = tr(Q) = Aq(yo).

Hence Apq(zo) > 0 for every H € H,F with det H =n™", so dd°qy, > 0.

Second step: We claim that (dd°q);, > f(xo)B". Suppose that there
exists a point ¢ € 2 and a C?-function ¢ which satisfies u < ¢ in a neigh-
borhood of xg and u(xg) = q(xo) such that (dd°q)}, < f(xo)B". We put

¢“(x) = () + e(lle — zo |2 = 12/2)
for 0 < € <« 1 small enough; we see that
0 < (dd°)7, < f(a0)B".
Since f is lower semicontinuous on {2, there exists r > 0 such that
(dd°q®)y < f(z)B", € B(zo,r).

Then (dd°q“)™ < fB" < (dd°u)™ in B(zo,r) and ¢ = q +er?/2 > q > u
on OB(xg,r), hence ¢¢ > u on B(xg,r) by the comparison principle. But
q“(w0) = q(z0) — er?/2 = u(xg) — er?/2 < u(xg), a contradiction.
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Hence, from the first part of the proof, we get Agq(zg) > f1/"(xq) for
every point xo € {2 and every C?-function ¢ in a neighborhood of zy such
that u < ¢ in this neighborhood and u(xo) = ¢(xo).

Assume that f > 0 and f € C*°(£2). Then there exists g € C*°({2) such
that Agg = f1/™. Hence ¢ = u—g is Ag-subharmonic (by [H94, Proposition
3.2.10']), from which it follows that A > 0 and Agu > f1/7.

In case f > 0 is merely continuous, we observe that

f:sup{w:wécoo,fzw>0}a

so (dd“uw)™ > fp"™ > wp™. Since w > 0 is smooth, we have Agu > wh/m,
Therefore, we get Agu > f1/.
In the general case 0 < f € C(£2), we observe that u(z) = u(z) + €|z|?
satisfies
(dd°u)" = (f +€")B",
and so
Agu > (f + En)l/n.
Letting e converge to 0, we get Agu > f1/™ for all H € H;" with det H =
n " om
As a consequence of Proposition [2.6] we give an alternative description

of the classical Perron—-Bremermann family of subsolutions to the Dirichlet
problem Dir(£2, ¢, f).

DEFINITION 2.7. We denote by V(£2, ¢, f) the family of subsolutions of
Dir(£2, ¢, f), that is,

V(£2,¢, f) ={v e PSH(£2) N C(£2) : v]pp < ¢ and
Apv > fY7 for all H € H;F with det H = n™"}.

REMARK 2.8. We observe that V(£2,¢, f) # (. Indeed, let p be as in
Definition 2.1 and A, B > 0 large enough; then Ap — B € V(£2, ¢, f).

Furthermore, the family V(£2, ¢, f) is stable under finite maximum, that
is, if u,v € V(£2, ¢, f) then max(u,v) € V(£2, ¢, f).

3. The Perron—Bremermann envelope. Bedford and Taylor [BT76]
proved that the unique solution to Dir({2, ¢, f) in a bounded strongly pseu-
doconvex domain with smooth boundary is given as the Perron—Bremermann
envelope

u=sup{v:v e B2, ¢, f)},

where B(£2, ¢, f) = {v € PSH(2) N C(12) : v|gn < ¢ and (dd“v)"™ > fpB"}.
Thanks to Proposition 2.6 we get the following corollary:

COROLLARY 3.1. V(£2,¢, f) = B(£2, ¢, f).
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Hence we get an alternative description of the Perron—Bremermann en-
velope in a bounded SHL domain. More precisely, we consider the upper
envelope

U(z) = sup{v(z) : v € V(£2,9, f)}.

PROPOSITION 3.2. Let §2 C C" be a bounded strongly hyperconvex Lip-
schitz domain, 0 < f € C(£2) and ¢ € C(912). Then the Dirichlet problem
Dir(£2, ¢, f) has a unique solution U. Moreover the solution is given by

U=sup{v:ve V(2 f)}
where V is defined in Definition and Ay is the Laplacian associated to
a positive definite Hermitian matriz H as in (2.1]).

Proof. The uniqueness follows from the comparison principle [BT76]. Our
domain {2 is B-regular in the sense of Sibony, therefore the existence of the
solution follows from [B196, Theorem 4.1]. The description of the solution
given in the proposition follows from Corollary and |[B196] Theorem 4.1]. m

REMARK 3.3. Let @1, 02 € C(082) and f1, f2 € C(£2). Then the solutions
U1 =U(82, 1, f1), Uy = U(£2, o, f2) satisfy the stability estimate
1
(3.1) U1 = Uzl oo i3y < d?[|.1 — f2||L/£(Q) + o1 — w2l 00);
where d := diam({2). Indeed, fix zp € {2 and define
1

v1(2) = | f1 = Fall 22 (12 = 20/ = @) + Us(2),

v2(2) = U1(2) + [le1 — @2l Lo 00)-
It is clear that v1,ve € PSH(£2)NC (£2). Hence, by the comparison principle,
we get v1 < vo on §2. Then we conclude that

Uy — Uy < d?||f1 — f2HLoo @@ T le1 = e2ll=00)-

Reversing the roles of Uy and Uy, we get the inequality (3.1]).
We will need in Section [5| an estimate, proved by Blocki [B193], for the
L"™-L' stability of solutions to the Dirichlet problem Dir(f2, ¢, f):

2
r n
(32) [0~ Vallzne) < ADler — p2lli=e) + 7 1A~ fl o),

where r = min{r’ > 0: 2 C B(z9,r’) for some zy € C"}.

4. The modulus of continuity of the Perron—Bremermann enve-
lope. Recall that a real function w on [0,(], 0 < I < oo, is called a modu-
lus of continuity if w is continuous, subadditive, nondecreasing and satisfies
w(0) = 0. In general, w fails to be concave; we denote by @ the minimal con-
cave majorant of w. The following property of @ is well known (see [Kor82]
and [Chl4]).
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LEMMA 4.1. Let w be a modulus of continuity on [0,1] and w be the
minimal concave majorant of w. Then w(nt) < w(nt) < (1 4+ n)w(t) for any
t>0 andn > 0.

4.1. Modulus of continuity of the solution. Now, we will start the
first step to establish an estimate for the modulus of continuity of the solution
to Dir(£2, ¢, f). For this purpose, it is natural to investigate the relation
between the modulus of continuity of U and the modulus of continuity of a
subbarrier and a superbarrier. We prove the following;:

PROPOSITION 4.2. Let 2 C C™ be a bounded SHL domain, ¢ € C(012)
and 0 < f € C(£2). Suppose that there exist v € V(§2, ¢, f) and w € SH(2)N
C(2) such that v = ¢ = —w on 9. Then there is a constant C > 0
depending on diam({2) such that the modulus of continuity of U satisfies

wy(t) < Cmax{wy(t), ww(t),wp/m(t)}.
Proof. Set g(t) := max{wy(t),ww(t),ws/m(t)} and d := diam({2). As
v =@ =—won A, for all z € 2 and £ € I we have
—g(lz = £]) < v(2) — @(§) <U(2) — p(§) < —w(z) — @(&) < g(|z — &)
Hence
(4.1) U() —U(E)| < gllz —€]), V2 D, VE € 00,

Fix a point zg € §2. For any vector 7 € C" with small enough norm, we set
Q. ={z—7:2z¢€ 2} and define in 2N 2_; the function

vi(2) = U(z +7) + g(|7])]z = 20]* = d*g(I7]) — g(I7]),

which is a well defined psh function in 2N §2_, and continuous on 2N 2_,.

By , if z € 2N 082_, we can see that
(42)  wi(2) = U(2) < g(I7]) + g(I7])]z = 20/* = g(I7]) = g(|7]) < 0.
Moreover, we assert that Agwvy > fl/” in 2N N2_,; for all H € H; with
det H = n~™. Indeed, we have
Agor(2) > [z +7) + (It Au(lz = 201*) > /" (z +7) + 9(I7])
> Uz 1)+ [z 1) = ) 2 Y R)

for all H € H," with det H = n~". Hence, by the above properties of vy, we

find that )
U(2), 2e R\ 02,

Vi(z) = _
=) {max(U(z),vl(z)), zeNNN_,,
is a well defined function and belongs to PSH(£2) N C(£2). It is clear that

AgVy > fY" for all H € H;f with det H = n~". We claim that V; = ¢
on 0. If z € 992\ £2_; then V:(2) = U(z) = ¢(z). On the other hand
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z € 02N 2_;, and by (4.2)) we get V-(2) = max(U(z),v1(2)) = U(z) = ¢(2).
Consequently, V; € V(£2, ¢, f) and this implies that
Vi(2) <U(z), Vzen.
Then for all z € 2N 2_, we have
U(z +7) + g(I7)|z = 20]* = d?g(I7]) — g(I7]) < U(2).
Hence,
U(z +7) = U(z) < (@ + Dg(|r]) = g(|7])|z = 20> < Cy(|7)).
Reversing the roles of z + 7 and z, we get
U(z+7) —U(2)| < Cy(|7]), Vz,z2+T1€
Thus, finally,
wy(|7]) < € max{wy(|7]), ww(|7]),wpr/m(|7])}. =

REMARK 4.3. Let H, be the harmonic extension of ¢ in a bounded SHL
domain {2. We can replace w in the last proposition by H,. It is known in
the classical harmonic analysis (see [Ail(]) that the harmonic extension H,

does not have, in general, the same modulus of continuity of ¢.
Let us define, for small positive ¢, the modulus of continuity

Va,5(t) = (= log(t) "

with @ > 0 and 0 < 3 < 1. It is clear that 1, is weaker than Hdélder
continuity and 1y g is Holder continuity. It was shown in [Ai02] that wg (t) <
cipp g(t) for some ¢ > 0 if wy,(t) < e19Pg g(t) for B < By, where By < 1 depends
only on n and the Lipschitz constant of the defining function p. Moreover,
a similar result was proved in [Ail0] for the modulus of continuity tq0(t).
However, the same argument of Aikawa gives wpy,, (t) < cyq g(t) for some
c>0if wy(t) < c1ap(t) fora>0and 0 < 3 < By < 1.

This leads us to the conclusion that if there exists a barrier v to the
Dirichlet problem such that v = ¢ on 942 and w,(t) < M), g(t) with a, 5 as
above, then the last proposition gives

wy < A1 maX{wa,/ﬁ(t)anl/n )},
where A\; > 0 depends on A and diam({2).

4.2. Construction of barriers. In this subsection, we will construct
a subsolution to the Dirichlet problem with boundary value ¢ and estimate
its modulus of continuity.

PROPOSITION 4.4. Let 2 C C" be a bounded SHL domain, assume that
p € C(002) and 0 < f € C(§2). Then there exists a subsolution v € V(£2, ¢, f)
such that v = @ on 0f2 and the modulus of continuity of v satisfies
1/n
o) S ACL+ [FL2 ) macc{ag(11/2), /2],

where X > 0 depends on (2.
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Observe that we do not assume any smoothness on 0f2.

Proof. First of all, fix { € 02. We claim that there exists ve € V(£2, ¢, f)
such that ve(§) = (&) It is sufficient to prove that there exists a constant
C' > 0 depending on {2 such that for every point £ € 92 and ¢ € C(912),

there is a function he € PSH(£2) NC(42) satistying

(1) he(2) < 9(2), V= € 09,

(2) he(€) = 9(€),

(3) whe(t) < C'ww(tl/?).
Assume this is true. We fix zp € {2 and write K :=supp /" > 0. Hence

Ap(Kilz — 20?) = K1Aglz — 20| > fY/", VH e Hf, det H = n™™.
We also set Ko := K1|¢ — 2|?. Then for the continuous function
#(2) = p(2) — Kilz — zof* + Ko,

we have h¢ such that (1)-(3) hold.
Then the desired function ve € V(2, ¢, f) is given by

ve(2) = he(2) + K1|z — 20]* — Ko.
Thus he(z) < @(2) = ¢(2) — Ki|z — 20/> + K2 on 02, so ve(z) < ¢ on 912
and vg(§) = ¢(8).

Moreover, it is clear that
Apve = Aphe + K1Ap (|2 — 20)?) > fY", VH € Hf, det H=n"".

Furthermore, using the hypothesis on h¢, we can control the modulus of
continuity of ve:

wye () = S |ve(2) — ve(y)] < whe () + K1w),—z2(F)
- < Cwp(tV?) + 4d3/? K11/
< Cwy(t?) + 24K, (C + 2d4Y2)/?
< (C +2dY?)(1 + 2dK;) max{w,, (t1/2), /2},
where d := diam({?2). Hence, we conclude that
wye (1) < A1+ K7) max{wg,(t/2), t1/2},
where \ := (C + 2d'/?)(1 + 2d) is a positive constant depending on (2.

Now we will construct he € PSH(£2) N C(f2) which satisfies the three
conditions above. Let B > 0 be large enough such that the function

9(2) = Bp(z) — |z — ¢
is psh in £2. Let @, be the minimal concave majorant of w, and define

x(z) = _‘Dso((_l")lﬂ)»
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which is a convex nondecreasing function on [—d?, 0]. Now fix 7 > 0 so small
that |g(2)| < d? in B(&,7) N §2 and define for z € B(&,r) N §2 the function

h(z) = x 0 g(2) + ¢(&).
It is clear that h is a continuous psh function on B(&,r) N {2 and we see
that h(z) < ¢(z) if z € B(§,r) N 02 and h(§) = p(£). Moreover by the
subadditivity of @, and Lemma [.T| we have

wh(t) = sup |h(z) = h(y)|

|z—y|<t
_ 1/2
< S“Fq”%"”'z — &~y — &2 = B(p(z) — p))]"*]
Z—Y|>
< | Sul‘o “—’cp[(‘z - y\(2d + Bl))l/Q] < C.w@(tlm),
z—y|<t

where C' := 1+ (2d 4+ B1)'/? depends on £2.
Recall that £ € 02 and fix 0 < 7y < r and 71 > d/r such that

—n@,[(|z = &> = Bp(2))"/?] < inf o —sup
o 90
for z € 02N IB(E,r1). Set v = infym ¢. Then
N(h(z) = 9(€) + (&) <72 for 2 € IB(E,m1) N 2.

Now set
he(z) = { max[y1(h(2) = ¢($) + ¢($):72l, 2 € 2NB(E ),
Y2, z€ 2\ B(&r),
which is a well defined psh function on {2, continuous on {2 and such that
he(z) < ¢(z) for all z € 012. Indeed, on 952N B(&,71) we have

Y1 (h(2) —0(§)) + (&) = —mwp (|2 —&]) +9(§) < —we(lz—&]) +9(§) < ¢(2).
Hence it is clear that h¢ satisfies the three conditions above.

We have just proved that for each & € 02, there is a ve € V(£2, ¢, f) with
ve(§) = () and

wee () < M1+ K1) max{w, (%), /7).
Set
v(z) = sup{ve(z) : £ € 042},

Since 0 < wy,(t) < M1 + Kip) max{w,(t'/2),t1/2}, we see that w,(t) con-

verges to zero when t converges to zero. Consequently, v € C({2) and v =
v* € PSH({2). Thanks to Choquet’s lemma, we can choose a nondecreasing
sequence (v;), where v; € V(£2,¢, f), converging to v almost everywhere.
This implies that

Apv = lim Agv; > fV/" VYH € H, det H=n"".
j‘)OO
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It is clear that v(§) = (&) for any & € 042. Finally, v € V(£2,¢, f), v = ¢
on 02 and wy(t) < A1+ K;) max{ww(tlﬂ),tl/?}. -

REMARK 4.5. If we assume that {2 has a smooth boundary and ¢ is
Chl-smooth, then it is possible to construct a Lipschitz barrier v to the
Dirichlet problem Dir(£2, ¢, f) (see [BT76, Theorem 6.2]).

COROLLARY 4.6. Under the same assumption of Proposition 4] there
exists a plurisuperharmonic function © € C(§2) such that © = ¢ on 012 and

wlt) S AL+ [F12 ) max{wy (¢1/2), /2,

where X > 0 depends on (2.

Proof. We can perform the same construction as in the proof of Propo-

sition for the function p1 = —p € C(912); then we get v1 € V(§2,¢1, f)
such that v; = 1 on 982 and w,, (t) < A(1+ HfH}.J/;L Q)) max{w,(t'/2),t1/2}.
Hence, we set ¥ = —wv; which is a plurlsuperharmonlc function on {2, con-
tinuous on {2 and satisfying © = ¢ on 02 and

wlt) < A1+ (I ) max{wy (t172), 67} u

4.3. Proof of Theorem A. Thanks to Proposition [£.4] we have a sub-
solution v € V(£2, ¢, f) with v = ¢ on 92 and

wolt) < AL+ I ) max{wg (1/2), £1/2).

From Corollary we get w € PSH(£2) N C(£2) such that w = —p on 912

and
1
wu(t) < AL+ [ FIE ) maxfu, (£172), 472},
where A > 0 is a constant. Applying Proposition we obtain the required
result, that is,

wolt) < (L + (172 ) masc{uwa (8/2),wpm (), 11/},
where 17 > 0 depends on (2. =

COROLLARY 4.7. Let 2 be a bounded SHL domain in C". Let ¢ €
CO(00) and 0 < f1/7 € COB(2), 0 < o, B < 1. Then the solution U to
the Dirichlet problem Dir(£2, ¢, f) belongs to C%7(§2) for v = min(B, a/2).

The following example illustrates that the estimate of wy in Theorem A
is optimal.

EXAMPLE 4.8. Let ¢ be a concave modulus of continuity on [0, 1] and

o(z) = =Y/ (1 +Rz1)/2]  for z = (z1,...,2,) € OB C C".
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It is easy to show that ¢ € C(0B) with modulus of continuity
we(t) < CY(t)

for some C > 0.
Let v(z) = —(1 + Rz1)/2 € PSH(B) N C(B) and x(\) = —(v/=A) be a
convex increasing function on [—1,0]. Hence we see that
u(z) = x ov(z) € PSH(B) N C(B)

and satisfies (ddu)™ =0 in B and v = ¢ on 0B. The modulus of continuity
of U has the estimate

Crp(t'7?) < wy(t) < Copp(t'/?)
for C1,Cy > 0. Indeed, let zyp = (—1,0,...,0) and z = (z1,0,...,0) € B
where z1 = —1 + 2t and 0 <t < 1. Hence, by Lemma we conclude that
D) = ¥[V]z = 200/2] = [/ (1 + R21) /2] = [U(2) = U(20)| < Buwu(?).

DEFINITION 4.9. Let 1) be a modulus of continuity, £ C C™ be a bounded
set and g € C N L>®(E). We define the norm of g with respect to 1 (briefly,
the ¢-norm) as follows:

- lo(z) = 9(w)]
lglly = suplg() + sup Zp— o=

PROPOSITION 4.10. Let £2 C C" be a bounded SHL domain, ¢ € C(02)
with modulus of continuity ¥, and f1/™ € C(£2) with modulus of continuity
o. Then there exists a constant C' > 0 depending on {2 such that

1/n n
[ully <€ +HfH/ gy max{lolloy, 171" .},

where 4(t) = max{¢ (t'/2), Po(t)}.

Proof. By hypothesis, we see that ||¢[[y, < oo and £/l < o00. Let
z # 1y € §2. By Theorem A, we get

0(2) — U] < 01+ | FI2 ) max{wp(lz — 1/2),wpun (|2 — )}
<L+ I ) macllplhon £/ oo }oo(1z = wl),

where (= — y|) = max{eb1(]2 — y[1/2), ¥ (|z — yl)}. Hence

U(z) —U(y) _ 1/n 1/n
sup — = < (L ([ fll oo (3)) max{l| @l s (1777 lso }
e Wz =) £ e
where 7 > d? + 1 and d = diam({2) (see Proposition [4.2). From Remark
we note that

1/n n
[0y < A2 )+ el (o) < mmas{llplior. 177" lva).
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Then we conclude that

1/n n
[0l < 2n(1 + IIfHL/m(Q ymax{ ||l 1"y} =

Finally, it is natural to try to relate the modulus of continuity of U :=
U(£2, ¢, f) to the modulus of continuity of Uy := U({2, ¢, 0), the solution to
the Bremermann problem in a bounded SHL domain.

7PROPOSITION 4.11. Let 2 be a bounded SHL domain in C", 0 < f €
C(£2) and ¢ € C(012). Then there exists a positive constant C = C(§2) such
that

wu(t) < C(L+ | FI2 ) max (e (£),071/m ().

Proof. First, we search for a subsolution v € V(£2, ¢, f) such that v|so=¢
and estimate its modulus of continuity. Since {2 is a bounded SHL domain,
there exists a Lipschitz defining function p on (2. Define

o(z) = Uo(2) + Ap(2),

where A : Hle/n/c and ¢ > 0 is as in Definition It is clear that
UEV(.Q,QD,f) v = ¢ on 02 and

wy(t) < Cuy, (t)

L/m )) and v > 1 depends on (2.

where C := v(1+ HfHLOO(Q
On the other hand, by the comparison principle we get U < Ug. So,

v<U<Up inf2 and v=U=Ug=¢ on 0f2.
Thanks to Proposition there exists A > 0 depending on {2 such that

wy(t) < Amax{wy(t), wyy (L), w e/ (t)}.
Hence, for some C' > 0 depending on {2,

wu(t) < O+ £} ) max{woy (£),wp1/n (1)) m

5. Holder continuous solutions for the Dirichlet problem with
LP density. In this section we will prove the existence and the Holder conti-
nuity of the solution to the Dirichlet problem Dir(£2, ¢, f) when f € LP(£2),
p > 1, in a bounded SHL domain.

It is well known (see [Ko98]|) that there exists a weak continuous solution
to this problem when (2 is a bounded strongly pseudoconvex domain with
smooth boundary.

The Holder continuity of this solution was studied in [GKZ08| under
some additional conditions on the density and on the boundary data, that
is, when f is bounded near the boundary and ¢ € C%'(912).

The following weak stability estimate plays an important role in the proof
of the Holder continuity of the solution.
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THEOREM 5.1 (|[GKZ0S]). Fiz 0 < f € LP(£2), p > 1. Let u,v be two
bounded plurisubharmonic functions in 2 such that (ddu)™ = fB"™ in 2 and
letu>vondR. Fixcr>1and0 <~y <r/(ng+r),1/p+1/qg=1. Then
there exists a uniform constant C = C(v,n,q) > 0 such that

sup(v — ) < O+ 1)l 0 = 0+ ] o

where 7= 1 + and (v — u)4 := max(v — u,0).

r— v(r+nq)

In [GKZOS], the authors constructed a Lipschitz continuous barrier to the
Dirichlet problem when ¢ € C11(92) and f is bounded near the boundary.
Moreover, it was shown in this case that the total mass of AU is finite in {2.
Finally, they concluded that U € C%%(2) for any a < 2/(ng + 1). The
following theorem summarizes the work in |[GKZ0S].

THEOREM 5.2 (|GKZO08|). Let 0 < f € LP(£2) for some p > 1, and
¢ € C(002). Suppose that there exist v,w € PSH(2) N CY¥¥(§2) such that
v<U< —won 2 andv =@ = —w on 912. If the total mass of AU is finite
in 12, then U € CO%(2) for o/ < min{a,2/(ng+1)}.

Let 2 C C™ be a bounded SHL domain. Using the stability Theorem
[5.1] we will ensure the existence of the solution to the Dirichlet problem
Dir(£2, ¢, f) when f € LP(£2),p > 1.

PROPOSITION 5.3. Let 2 C C™ be a bounded SHL domain, ¢ € C(012)
and 0 < f € LP(2) for some p > 1. Then there exists a unique solution U to
the Dirichlet problem Dir(£2, ¢, f).

Proof. Let (f;) be a sequence of smooth functions on 2 which converges
to f in LP({2). Thanks to Proposition ‘there exists a unique solution U;
to Dir(£2, ¢, f;), that is, U; € PSH(£2) NC(S2), U; = ¢ on 0f2 and (dd°U;)" =
fiB" in £2. We claim that
(5.1) Uk = Ujllpoo(2) < AQ+ 1 fell o) (X + 15l 2o ) fe = S5 7/1"9 ,

WhereOS’y<1/(q+ 1) is fixed, 7 :=  + 1/p+1/¢g =1 and
A = A(y.n,q.diam(2)).
Indeed, by the stability theorem and for r = n, we get

Sup(U = Uy) < C(1+ 1o 10 = Ul g
< CO+ i )0 = Uil

where 0 < v < 1/(g+1) is fixed and C' = C(v,n, q) > 0. Hence by the L"-L!
stability theorem of [BI93] (see our Remark [3.3)),

=, 1/n
10, = Ujllznay < Cllfx — £l gy

where C' depends on diam(f2). Then, from the last two inequalities and

n— “m(1+q)’
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reversing the role of U; and Uy, we deduce

10k = Ujll oo ) < CCTQA A+ I fill 7o) (L + I1Fi 1 o) 1 i — fg\lwn

Since Uy = U; = ¢ on 042, the inequality (5.1]) holds.
As f; converges to f in LP({2), there is a uniform constant B > 0 such
that
0% = Ujlloe ) < Bllfic = Sill ()

This implies that the sequence U; converges uniformly in 2. Set U = lim U;.
It is clear that U € PSH(£2) N C(£2) and U = ¢ on 942. Moreover, (dd°U;)"
converges to (dd°U)™ in the sense of currents, thus (dd“U)" = fB™ in (2.
The uniqueness of the solution follows from the comparison principle (see

[BT76]). =

Our next step is to construct Holder continuous subbarriers and super-
barriers to the Dirichlet problem when f € LP({2) for some p > 1 and
¢ € COL00).

PROPOSITION 5.4. Let ¢ € C%1(002) and 0 < f € LP(£2) for somep > 1.
Then there exist v,w € PSH(£2) N C%*(2) where a < 1/(nq + 1) such that
v=p=—w ond2 andv <U < —w on {2.

Proof. Fix a large ball B C C" so that 2 € B C C™. Let f be a trivial
extension of f to B. Since f € LP(£2) is bounded near dB, the solution hy
to Dir(B,0, f) is Holder continuous on B with exponent a; < 2/(ng + 1)
(see |GKZ0§|). Now let ho denote the solution to the Dirichlet problem in
{2 with boundary value ¢ — hy and the zero density. Thanks to Theorem A,
we see that hy € C%*2(£2) where az = a;/2. Therefore, the required barrier
will be v = hy + hg. It is clear that v € PSH({2) OC( ), v|po = ¢ and
(dd“v)™ > fB™ in the weak sense in {2. Hence, by the comparison principle
we get v < Uin 2 and v = U = ¢ on 9§2. Moreover v € C%*(2) for any
a<1/(ng+1).

Finally, it is enough to set w = U({£2, —p, 0) to obtain a superbarrier to the
Dirichlet problem Dir({2, ¢, f). We note that w € PSH(£2) N C(N2), —w=¢
on 02 and U < —w on 2. Furthermore, by Theorem A, w € C%'/2(£2) and
then w € C%(£2) for any a < 1/(ng+1). m

When f € LP(£2) for p > 2, we are able to find a Holder continuous
barrier to the Dirichlet problem with better Holder exponent. The following
theorem was proved in |[Chl4] for the complex Hessian equation, and it is
enough here to put m = n to get the complex Monge-Ampére equation.

TurEOREM 5.5 ([Ch14]). Let ¢ € CO1(012) and 0 < f € LP(R2), p > 2.
Then there exist v,w € PSH(£2) N C%Y/2(02) such that v = ¢ = —w on O
and v <U< —w in §2.
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We recall the comparison principle for the total mass of the Laplacian of
plurisubharmonic functions.

LEMMA 5.6. Let u,v € PSH(2) N C(§2) be such that v < u on 2 and

u=wv on 2. Then
| ddounpm=t <\ ddvn g
2 9}

5.1. Proof of Theorem B. Let Uy be the solution to the Dirichlet
problem Dir(£2,0, f). We first claim that the total mass of AUy is finite in (2.
Indeed, let p be the defining function of §2; then by [Ce04, Corollary 5.6]
we get

c c n 1 c c _\n (
(5.2) ;de Uo A (dd°p <((§2 (dd°Up) ) (g(dd ))

< (3 )" (garor) "

Since {2 is a bounded SHL domain, there exists a constant ¢ > 0 such that
dd®p > ¢f in 2. Hence (5.2)) yields

n—1)/n

1
| ddeug A gt < — | dd°ug A (ddop)" !
2 (0]

<) (qarr) "

Now we note that the total mass of the complex Monge-Ampére measure
of p is finite in (2 by the Chern-Levine—Nirenberg inequality and since p is
psh and bounded in a neighborhood of (2 (see [BT76]). Therefore, the total
mass of AUy is finite in (2.

Let ¢ be a Cll-extension of ¢ to 2 with [|3]lc11(p 12y < Cllellerian) for
some C' > 0. Now, let v = Ap + @ + Uy where A > 1 such that Ap+ ¢ €
PSH({?2). By the comparison principle, v < U in {2 and v = U = ¢ on 92
Since p is psh in a neighborhood of 2 and ||AUp||s < oo, we deduce that
| Av|| < oo. Then ||AU|| < co by Lemma [5.6]

Proposition [5.4] gives the existence of Holder continuous barriers to the
Dirichlet problem. Then using Theorem we obtain the final result, that
is, if f € LP(£2) for some p > 1, then U € PSH(£2) N C%*(2) where o <
1/(ng+1).

Moreover, if f € LP({2) for some p > 2, we can get a better result:
by Theorems and U € PSH(£2) N C%¥(2) where a < min{1/2,
2/(ng+1)}. =

REMARK 5.7. It is shown in [GKZ08] that we cannot expect a better
Hoélder exponent than 2/(ng) (see also [P105]).
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