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Foliations making a constant angle
with principal directions on ellipsoids

by Ronaldo Garcia (Goiânia), Rémi Langevin (Dijon) and
Paweł Walczak (Łódź)

Abstract. We study the global behavior of foliations of ellipsoids by curves making
a constant angle with the lines of curvature.

1. Introduction. Research on differential geometry of quadrics has a
pretty long history but is still of some interest. Let us point out the following
issues:

(i) already in the late eighteenth century, Gaspar Monge [Mo1, Mo2]
described the global behavior of lines of principal curvature on the
ellipsoid (probably, this was also the origin of the theory of singular
foliations on surfaces);

(ii) a bit later, in the nineteenth century, Jacobi [Ja] studied the geodesic
flow on the ellipsoid (see [Kle] and [GS3]);

(iii) quite recently, Marcel Berger [Be] has shown interest in caustics on
quadrics.

A major part of this work belongs to conformal geometry.
In [LW1], while studying the conformal geometry of foliations, we made

the following observation (p. 147): Given a point p of a surface S ⊂ R3 or S3,
the osculating circles at p to the leaves of the foliations Fα by curves making
constant angle α with the lines of curvature form a pencil; in other words, two
such circles, Oα and Oβ , intersect at two points, p and p̃, p̃ being independent
of the choice of α and β. A bit later, this observation was used in [LW2],
where the following geometric characterization of holomorphic maps of the
complex plane was provided: A C2-diffeomorphism f of an open subset U
of C onto a subset V of C is holomorphic if and only if it is orientation
preserving and for each z in U the family of circles osculating at f(z) to the
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images of the circles Cθ of a pencil B(z, ∗) with one of its base points at z is
also a pencil.

The foliations Fα belong to the conformal geometry of surfaces: principal
directions are preserved under an arbitrary conformal change of a Rieman-
nian metric, therefore are invariant under conformal transformations of either
R3 or S3, and obviously the notion of angle belongs to conformal geometry.

The above motivates our interest in the foliations Fα on surfaces of differ-
ent conformal types. For example, Fα’s are rather simple on Dupin cyclides,
surfaces which are very special: they are in two different ways envelopes of
one-parameter families of spheres (see [Da]).

Fig. 1. Foliation of a torus of revolution by Villarceau circles

Dupin cyclides arise as conformal images of tori, cylinders and cones of
revolution, therefore there are three types of them and one can choose a nice
representative of each class:

(A) the boundary of a tubular neighborhood of a geodesic of S3; using
the complex plane C2, it admits the equations

Ta,b = {|z1|2 = a2, |z2|2 = b2 : z1, z2 ∈ C, 0 < a ≤ b, a2 + b2 =1}

(the condition a2 + b2 = 1 guarantees that it is contained in the unit
sphere of C2);

(B) a cylinder of revolution in R3;
(C) a cone of revolution in R3.

Then, in cases (A) and (B) the foliations Fα are totally geodesic in the
Dupin cyclide. In case (A), four of them consist of circles: two foliations
by characteristic circles, F0 = F0 and Fπ/2, and two others by Villarceau
circles (Figure 1). Recall that the angle αv of the Villarceau circles with the
principal foliations on Ta,b depends on the quotient a/b; it is π/4 only for
the Clifford torus T√2,

√
2.
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In case (C), one can develop the cone on a plane. This procedure provides
a local isometry outside the apex.

In the plane, one can see that a foliation by curves making a constant
angle with rays is a foliation by logarithmic spirals. The picture on the cone
can be obtained by rolling the planar foliation back onto the cone.

Dupin cyclides also enjoy the following property: for each point p of a
cyclide D, there exist two circles through p, the Villarceau ones, which form
the intersection of D with a sphere Σ. All the quadrics enjoy this property
too: any quadric Q (with umbilics, if any, deleted) can be covered by two
families of circles (or lines) such that any two circles, one in each family, lie
on the sphere. This is why, in this article, we study in detail the foliations
by curves making a constant angle with lines of curvature on ellipsoids.

While considering a surface M with the principal foliations F0 and Fπ/2
and the umbilical set U , the triple P = (F0,Fπ/2,U) will be referred to as
the principal configuration of the surface. Again, for each α ∈ (−π/2, π/2)
we will denote by Fα the foliation of M rU whose leaves are curves making
constant angle α with the leaves of the principal foliation F0. Notice that
the normal curvature of a leaf of Fα is precisely

kn(α) = k1 cos2 α+ k2 sin2 α

and the local behavior of Fα’s is fairly easy to describe: any surface admits
a principal chart around any of its non-umbilical points and in that chart
the leaves of Fα intersect the coordinate lines at angle α. Therefore, here
we shall focus on the global behavior of Fα’s on ellipsoids. (On hyperboloids
and paraboloids, the dynamical study of the foliations Fα is simpler.)

Our main results are contained in Theorem 3 and Corollary 4, where:
(1) we describe the equations of the foliations Fα in the conformal principal
charts, (2) we determine the form of the Poincaré return map on a particular
transverse section and (3) we derive a condition on α providing minimality
(that is, density of the leaves) of Fα.

This article is closely related to [GLW], where the authors study the dy-
namics ofDarboux curves, which are curves Γ on surfacesM in eitherR3 or S3

such that their osculating spheres are tangent toM . In particular, the position
of Darboux curves with respect to our foliations Fα is considered therein.

2. Results. Consider the ellipsoid

Qa,b,c = {(x, y, z) : x2/a+ y2/b+ z2/c = 1}
with a > b > c > 0. It belongs to the Dupin triple orthogonal system of
surfaces defined by

q = qλ(x, y, z) =
x2

a− λ
+

y2

b− λ
+

z2

c− λ
− 1
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(see also [Sp, Vol. 3, Chapter 4] and [St, pp. 99–103]. Recall that the intersec-
tion of two orthogonal surfaces of this family is a line of principal curvature
for the two surfaces.

Given p0 = (x0, y0, z0) ∈ Qa,b,c with x0y0z0 6= 0, consider the equation
in λ, qλ(x0, y0, z0) = 0.

It can be shown that the three roots of this equation of degree 3 are real;
one is zero. One can also check that the other two roots, u and v, satisfy u ∈
(b, a) and v ∈ (c, b). Following the roots u, v when the point p0 moves around
the quadric Qa,b,c gives the foliations F0 and Fπ/2, therefore provides a chart
of the quadric with coordinate curves, the lines of principal curvature near p0.

The three quadrics satisfy qu(p0) = qv(p0) = q0(p0) = 0. Let us show
that any two of the three quadrics meet orthogonally along their curve of
intersection. We should check for example that 〈∇q0(p0),∇qu(p0)〉 = 0.

We have

∇q0(p0) =

(
2x

a
,
2y

b
,
2z

c

)
and ∇qu(p0) =

(
2x

a− u
,

2y

b− u
,

2z

c− u

)
.

Therefore,

〈∇q0(p0),∇qu(p0)〉 =
4x2

a(a− u)
+

4y2

b(b− u)
+

4z2

c(c− u)
.

One also has

4qu − 4q0 =
4x2

a− u
− 4x2

a
+

4y2

b− u
− 4y2

b
+

4z2

c− u
− 4z2

c
= u〈∇q0(p0),∇qu(p0)〉.

This expression is equal to zero at p0. The proofs of the other two orthogo-
nality relations are similar.

Solving the linear system q0(p0) = qu(p0) = qv(p0) = 0 in the variables
x2

0, y2
0 and z2

0 and taking square roots we obtain a parametrization β : [b, a]×
[c, b]→ Qa,b,c given by

(1)
β(u, v) =

(
±

√
a(u− a)(v − a)

(b− a)(c− a)
,±

√
b(u− b)(v − b)
(b− a)(b− c)

,±

√
c(u− c)(v − c)
(c− a)(c− b)

)
.

The first fundamental form of β is given by

(2) I = ds2 = Edu2 +Gdv2 =
(v − u)u

4H(u)
du2 +

(u− v)v

4H(v)
dv2.

The second fundamental form of β with respect to the normal N =
−(βu ∧ βv)/‖βu ∧ βv‖ is given by

(3) II = edu2 + gdv2 =
v − u
4H(u)

√
abc

uv
du2 +

u− v
4H(v)

√
abc

uv
dv2

where H(t) = (t− a)(t− b)(t− c).
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Therefore the principal curvatures k1 ≤ k2 are

(4) k1 =
e

E
=

1

u

√
abc

uv
, k2 =

g

G
=

1

v

√
abc

uv
.

The four umbilical points Ui (i = 1, . . . , 4) are given by

(5) (±x0, 0,±z0) =

(
±
√
a(a− b)
a− c

, 0, ±
√
c(c− b)
c− a

)
.

Proposition 1. There exists a conformal parametrization ϕ : (−s1, s1)×
(−s2, s2)→ Qa,b,c ∩ {(x, y, z) : y ≥ 0} such that the lines of principal curva-
ture are the coordinate curves, and the leaves of Fπ/4 and F−π/4 are defined
by dV 2− dU2 = 0, i.e., are images of straight lines making angle ±π/4 with
the coordinate lines; here

s1 =

a�

b

√
−u
H(u)

du <∞ and s2 =

b�

c

√
v

H(v)
dv <∞,

where, as before, H(t) = (t− a)(t− b)(t− c).
Moreover, ϕ(s1, s2) = U1, ϕ(−s1, s2) = U2, ϕ(−s1,−s2) = U3 and

ϕ(s1,−s2) = U4. By symmetry the same result holds for the region Qa,b,c ∩
{(x, y, z) : y ≤ 0} (see Figure 2).

(−s1,−s2)

(s1, s2)

(s1,−s2)

(−s1, s2)
U1

U4

U2

U3

Fig. 2. Lines of principal curvature of the ellipsoid Qa,b,c represented in a conformal chart

Proof. The differential equation of the foliations Fα and F−α is given by

kn(β(u, v), α)) =
edu2 + gdv2

Edu2 +Gdv2
= k1 cos2 α+ k2 sin2 α.

In the principal chart (u, v) the above equation reads
H(u)v cos2 αdv2 +H(v)u sin2 αdu2 = 0,

equivalently,
v

H(v)
cos2 αdv2 + sin2 α

u

H(u)
du2 = 0.

Set dτ1 =
√
−u/H(u) du, dτ2 =

√
v/H(v) dv, s1 =

	a
b dτ1 and s2 =

	b
c dτ2.

Then the differential equation of Fπ/4 and F−π/4 becomes equivalent to
dτ2

2 − dτ2
1 = 0 in the rectangle [0, s1]× [0, s2].
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Defining the change of coordinates φ(u, v) = (U, V ), U = s1−
	u
b dτ1 and

V = s2 −
	v
c dτ2 it follows that ϕ(U, V ) = (β ◦ φ−1)(U, V ) is a conformal

parametrization of the first octant of the ellipsoid having the coordinate
curves as lines of principal curvature, and the leaves of Fπ/4 and F−π/4
correspond to the straight lines in the plane (U, V ) making angle ±π/4 with
the lines of principal curvature. By construction it follows that ϕ(s1, s2) =
U1 = (x0, 0, z0) is an umbilical point contained in the first octant of the
ellipsoid.

Now, using the symmetry of the ellipsoid with respect to the plane coor-
dinates we consider the rectangle R = (−s1, s1)× (−s2, s2) and an analytic
continuation of ϕ to obtain a conformal chart (U, V ) which maps this rect-
angle onto the region Qa,b,c ∩ {y ≥ 0}.

By construction, ϕ(∂R) = Σ and the four vertices of the rectangle R are
mapped by ϕ to the four umbilical points Ui given by (5).

By symmetry of the ellipsoid the same result can be obtained in the
region Qa,b,c ∩ {y ≤ 0}.

Remark 2. On the ellipse Σ = {(x, y, z) : x2/a + z2/c = 1, y = 0}
the quantities 2s1 = 2

	a
b

√
−u/H(u) du < ∞ and 2s2 = 2

	b
c

√
v/H(v) dv <

∞ can be interpreted as the distances between the umbilical points U1 =
(x0, 0, z0) and U2 = (−x0, 0, z0), and U1 = (x0, 0, z0) and U4 = (x0, 0,−z0),
respectively.

Theorem 3. In the conformal chart (U, V ), (U, V ) ∈ (−s1, s1)×(−s2, s2)
given in Proposition 1, the foliation Fα, α ∈ (−π/2, π/2), can be defined by
the linear differential equation cosαdV − sinαdU = 0. Moreover, the ellipse
Σ r {U1, U2, U3, U4} is a transverse section of Fα for any α ∈ (−π/2, π/2),
and the Poincaré return map Πα : Σ → Σ coincides with the composition of
the involutions Π+

α and Π−α .

Proof. Consider the conformal principal coordinates (U, V ) with −s1 ≤
U ≤ s1 and −s2 ≤ V ≤ s2 as in Proposition 1.

The leaves of Fα and F−α are given in this chart by the differential
equation

cos2 α dU2 − sin2 α dV 2 = 0,

(cosα dU − sinα dV )(cosα dU + sinα dV ) = 0.

Also consider a conformal principal chart (Ū , V̄ ) and the parametrization
ϕ1 : (−s1, s1)× (−s2, s2)→ Qa,b,c ∩ {y ≤ 0}

having the same properties as ϕ.
The ellipse Σ is the union of four umbilical points Ui and four prin-

cipal umbilical separatrices of the principal foliations F0 and Fπ/2. So
Σ r {U1, U2, U3, U4} is a transverse section of the foliations Fα for any
α ∈ (−π/2, π/2).
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Therefore, near the umbilical point U1 = (x0, 0, z0) = ϕ(s1, s2) contained
in the positive octant, the foliation Fα, with umbilical separatrix of U1 (the
leaf of Fα whose limit set contains the umbilical point U1) contained in the
region {y > 0} defines a return map Π+

α : Σ → Σ reverting the orientation,
with Π+

α (U2) = U2 and Π+
α (U4) = U4. This follows because in the conformal

principal chart (U, V ) this return map is defined by the differential equation
dV
dU = sinα

cosα .
By analytic continuation, it follows that Π+

α is an involution, i.e. Π+
α ◦

Π+
α = id, with two fixed points {U2, U4}.
Also, one can define a return map Π−α , another involution in the region

y < 0. It has two umbilics, U1 and U3, as fixed points, and in the conformal
principal chart (Ū , V̄ ) it is defined by the differential equation dV̄

dŪ
= − sinα

cosα .
Therefore, the Poincaré return map Πα : Σ → Σ is the composition of

the involutions Π+
α and Π−α (see Figure 3).

(s1, s2)

(s1,−s2)(−s1,−s2)

(−s1, s2)
U1

U3 U4

U2

Fig. 3. The foliations Fα and F−α of the ellipsoid Qa,b,c represented in a conformal chart

Corollary 4. Consider the ellipsoid Qa,b,c, 0 < c < b < a, and let
ρ(α) = s1 sinα

s2 cosα . If ρ(α) ∈ R r Q (resp. ρ(α) ∈ Q) then all the leaves of Fα
and F−α are dense (resp. all but the umbilical separatrices are closed). See
Figure 4.

Fig. 4. The foliations Fα and F−α of the ellipsoid Qa,b,c

Proof. The result follows from rotation number theory for circle diffeo-
morphisms (see [MP]).

To compute the rotation number of Πα consider two lattices of R2 having
the rectangle R = [−s1, s1] × [−s2, s2] and the square Q = [−1, 1] × [−1, 1]
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as fundamental domains. Now, observe that the linear equation dV/dU =

sinα/cosα defined in R is equivalent to dy
dx = s1 sinα

s2 cosα in Q.
Considering the ellipsoid parametrized by the two conformal charts (U, V )

and (Ū , V̄ ), we see that the Poincaré map Πα is conjugate to the rotation
of the circle with rotation number ρ(α) = s1 sinα

s2 cosα , which is the return map of
the induced flow on the torus T2 = R2/Z2 defined by the linear differential
equation dy

dx = s1 sinα
s2 cosα .

3. Final remarks. 1. The special case α = π/4 was studied previously
in [GS1]. A more general framework of implicit differential equations, uni-
fying various families of geometric curves, was studied in [GS2] (see also
[GS3]).

2. It follows from Corollary 4 that all the foliations F±α have four singu-
larities of topological index 1/2, and each has a unique separatrix and one
hyperbolic sector as in the case of the principal foliations F0 and Fπ/2.

3. The Dupin cyclides mentioned in the Introduction provide examples
of canal surfaces, obtained as envelopes of one-parameter families of spheres.
The foliations Fα on such surfaces fairly are easy to describe. For instance,
one of the principal foliations, say F0, consists of circles, intersections of the
spheres defining the canal with the corresponding members of the derived
family. All the Fα’s can be easily pictured on special canal surfaces which
appear as conformal images of surfaces of revolution, cones and cylinders over
planar (or rather spherical) curves, and were studied in [BLW]. Note that
canal surfaces are of some interest in computer graphics (see, for example,
[D&al] and the bibliography therein).
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