A result on the comparison principle for the log canonical threshold of plurisubharmonic functions

by HAI MAU LE (Hanoi), HONG XUAN NGUYEN (Hanoi) and HUNG VIET VU (Son La)

Abstract. We prove a comparison principle for the log canonical threshold of plurisubharmonic functions under an assumption on complex Monge–Ampère measures.

1. Introduction. Let Ω be a domain in \mathbb{C}^n , $x \in \Omega$ and u be a plurisubharmonic function on Ω (briefly, psh). Demailly and Kollár [DeKo] introduced and investigated the *log canonical threshold* of u at x, defined as follows:

 $c_u(x) = \sup\{c > 0 : e^{-2cu} \text{ is } L^1 \text{ on a neighbourhood of } x\}.$

Note that $c_u(x)$ measures the singularity of u at x. Demailly and Kollár proved the lower semicontinuity of $x \mapsto c_u(x)$ in the holomorphic Zariski topology and established a relation between the Lelong number $\nu_u(x)$ and $c_u(x)$:

$$\frac{1}{\nu_u(x)} \le c_u(x) \le \frac{n}{\nu_u(x)}$$

(see [DeKo, 1.4]).

Recently, lower estimates and the comparison principle for this quantity have been studied. Namely, Demailly and Hiep Hoang Pham proved that if Ω is a bounded hyperconvex domain in \mathbb{C}^n , $0 \in \Omega$ and $u \in \widetilde{\mathcal{E}}(\Omega)$ then

$$c_u(0) \ge \sum_{j=0}^{n-1} \frac{e_j(u)}{e_{j+1}(u)},$$

where $e_j(u) = \int_{\{0\}} (dd^c u)^j \wedge (dd^c \log ||z||)^{n-j}$ is the Lelong number of $(dd^c u)^j$ at 0 (see [DP, Theorem 1.5]) and $\widetilde{\mathcal{E}}(\Omega)$ is the set of psh functions which, on a neighbourhood U of an arbitrary point $x_0 \in \Omega$, are equal to a sum u + v

²⁰¹⁰ Mathematics Subject Classification: 14B05, 32U05, 32U25, 32W20.

 $Key\ words\ and\ phrases:$ Lelong number, log canonical threshold, complex Monge–Ampère measures.

with $u \in \mathcal{E}(U)$ and $v \in C^{\infty}(U)$. Here $\mathcal{E}(U)$ is the class of psh functions on U introduced and investigated in [Ce1]; it is recalled in Section 2. Moreover, Demailly and Hiep Hoang Pham showed that the above estimate is sharp.

Next, Hiep Hoang Pham [P] gave a comparison principle for c_u . He proved that if Ω is a domain in \mathbb{C}^n and $\{\Omega_j\}_{j\geq 1}$ is a sequence of smooth domains with $\Omega \supseteq \Omega_1 \supseteq \Omega_2 \supseteq \cdots$, $\bigcap_{j=1}^{\infty} \Omega_j = \{0\}$, and u, v are plurisubharmonic functions on Ω such that $u \geq v$ on $\partial \Omega_j$ for $j \geq 1$, then $c_u(0) \geq c_v(0)$ (see [P, Theorem 1.1]).

Continuing this study, by relying on the solvability of the complex Monge– Ampère equations for measures carrying pluripolar sets, proved in [ACCP], we give the following comparison principle for the log canonical threshold of plurisubharmonic functions:

MAIN THEOREM. Assume that Ω is a domain in \mathbb{C}^n , $0 \in \Omega$ and $u, v \in PSH^{-}(\Omega)$ are such that

$$\int_{\{0\}} (dd^c \max(u, v, \varphi))^n = \int_{\{0\}} (dd^c \max(u, \varphi))^n$$

for every $\varphi \in \text{PSH}^{-}(\Omega) \cap L^{\infty}_{\text{loc}}(\Omega \setminus \{0\})$. Then $c_u(0) \ge c_v(0)$.

The note is organized as follows. In Section 2 we recall the classes $\mathcal{F}(\Omega)$, $\mathcal{E}(\Omega)$ for Ω being a bounded hyperconvex domain in \mathbb{C}^n , and some related results. Section 3 is devoted to the proof of the above comparison principle.

2. Background. The elements of pluripotential theory that will be used throughout this paper can be found in [BT], [Ce1], [Ce2], [De], [Kl], [Ko1], [Ko2], while elements of the theory of log canonical thresholds can be found in [DeKo] and [DP].

In this paper we denote by $PSH^{-}(\Omega)$ the set of negative plurisubharmonic functions on a domain Ω in \mathbb{C}^{n} . Now we recall the definition of the classes $\mathcal{F}(\Omega)$, $\mathcal{E}(\Omega)$ and some related results. For more details we refer the readers to the papers of Cegrell [Ce1], [Ce2].

2.1. Let Ω be a bounded hyperconvex domain in \mathbb{C}^n , that is, a bounded domain in \mathbb{C}^n for which there exists a negative plurisubharmonic function ρ on Ω such that $\Omega_c = \{z \in \Omega : \rho(z) < c\} \Subset \Omega$ for all c < 0. Following [Ce1] we define

$$\mathcal{E}_{0} = \mathcal{E}_{0}(\Omega) = \left\{ \varphi \in \mathrm{PSH}^{-}(\Omega) \cap L^{\infty}(\Omega) : \lim_{z \to \xi} \varphi(z) = 0, \\ \forall \xi \in \partial \Omega, \int_{\Omega} (dd^{c}\varphi)^{n} < \infty \right\}, \\ \mathcal{F} = \mathcal{F}(\Omega) = \left\{ \varphi \in \mathrm{PSH}^{-}(\Omega) : \exists \mathcal{E}_{0} \ni \varphi_{j} \searrow \varphi, \sup_{j} \int_{\Omega} (dd^{c}\varphi_{j})^{n} < \infty \right\},$$

$$\mathcal{E} = \mathcal{E}(\Omega) = \Big\{ \varphi \in \mathrm{PSH}^{-}(\Omega) : \forall z_0 \in \Omega, \exists a \text{ neighbourhood } \omega \ni z_0, \\ \mathcal{E}_0 \ni \varphi_j \searrow \varphi \text{ on } \omega, \sup_j \int_{\Omega} (dd^c \varphi_j)^n < \infty \Big\}.$$

The following inclusions are clear: $\mathcal{E}_0 \subset \mathcal{F} \subset \mathcal{E}$.

As in [Ce1], we note that if $u \in \mathcal{F}(\Omega)$ then $(dd^c u)^n$ is a positive Radon measure on Ω and $\int_{\Omega} (dd^c u)^n < \infty$.

We denote by $\mathcal{F}^{a}(\Omega)$ the subclass of $u \in \mathcal{F}(\Omega)$ such that $(dd^{c}u)^{n}$ vanishes on all pluripolar sets of Ω .

2.2. We recall the following result of [Ce1] on $\mathcal{F}^{a}(\Omega)$. Assume that μ is a positive Borel measure vanishing on all pluripolar sets of Ω with $\mu(\Omega) < \infty$. Then there exists a unique function $u \in \mathcal{F}^{a}(\Omega)$ such that $(dd^{c}u)^{n} = \mu$ (see [Ce1, Lemma 5.14]).

2.3. Next, we recall the following comparison principle from [Ce1]. Let $u \in \mathcal{F}^a(\Omega)$ and $v \in \mathcal{E}(\Omega)$ with $(dd^c v)^n \ge (dd^c u)^n$. Then $u \ge v$ on Ω (see [Ce1, Theorem 5.15]).

3. Comparison principle for the log canonical threshold. In this section we give the proof of the Main Theorem. For this we need the following auxiliary lemmas.

LEMMA 3.1. Assume that Ω is a domain in \mathbb{C}^n , $0 \in \Omega$ and $u, v, \varphi \in PSH^{-}(\Omega)$ with $u \geq v \geq u + \varphi$ and $c_{\varphi}(0) = \infty$. Then $c_u(0) = c_v(0)$.

Proof. First we prove that $c_u(0) \leq c_{u+\varphi}(0)$. Indeed, let $c \in (0, c_u(0))$. Choose q > 1 such that $qc \in (0, c_u(0))$. Let p > 1 be such that 1/q + 1/p = 1. Take r > 0 such that

$$\int_{\mathbb{B}(0,r)} e^{-2cqu} dV < \infty \quad \text{and} \quad \int_{\mathbb{B}(0,r)} e^{-2pc\varphi} dV < \infty.$$

By the Hölder inequality, we have

$$\int_{\mathbb{B}(0,r)} e^{-2c(u+\varphi)} dV \le \left(\int_{\mathbb{B}(0,r)} e^{-2cqu} dV\right)^{1/q} \cdot \left(\int_{\mathbb{B}(0,r)} e^{-2cp\varphi} dV\right)^{1/p} < \infty.$$

Hence, $c \leq c_{u+\varphi}(0)$ and we are done.

Now, since $u \ge v \ge u + \varphi$ we have $c_u(0) \ge c_v(0) \ge c_{u+\varphi}(0) \ge c_u(0)$, and the desired conclusion follows.

Next, by using some results of [ACCP] on the solvability of the complex Monge–Ampère equations for measures carrying pluripolar sets we will obtain the following. LEMMA 3.2. Let Ω be a bounded hyperconvex domain in \mathbb{C}^n , $0 \in \Omega$ and $u \in \mathcal{F}(\Omega) \cap L^{\infty}_{\text{loc}}(\Omega \setminus \{0\})$. Then there exist $\widetilde{u} \in \mathcal{F}(\Omega)$ and $\phi \in \mathcal{F}^a(\Omega)$ such that $u \leq \phi$, $\widetilde{u} + \phi \leq u \leq \widetilde{u}$, $(dd^c \widetilde{u})^n = 1_{\{0\}}(dd^c u)^n$ and $(dd^c \phi)^n = 1_{\Omega \setminus \{0\}}(dd^c u)^n$.

Proof. We can assume that $\int_{\{0\}} (dd^c u)^n > 0$. Put

 $\widetilde{u} = (\sup\{\varphi \in PSH^{-}(\Omega) : \varphi = u \text{ on a neighbourhood } U \text{ of } 0\})^*.$

By [ACCP, Lemma 4.3] we have $\tilde{u} \in \mathcal{F}(\Omega)$, $u \leq \tilde{u}$ and $(dd^c \tilde{u})^n = 1_{\{0\}} (dd^c u)^n$. On the other hand, by hypothesis the measure $\mu = 1_{\Omega \setminus \{0\}} (dd^c u)^n$ vanishes on all pluripolar sets of Ω and $\mu(\Omega) \leq (dd^c u)^n(\Omega) < \infty$, so [Ce1, Lemma 5.14] implies that there exists $\phi \in \mathcal{F}^a(\Omega)$ such that $(dd^c \phi)^n = 1_{\Omega \setminus \{0\}} (dd^c u)^n$. By the comparison principle, we deduce that $u \leq \phi$.

We now prove that $\tilde{u} + \phi \leq u$. From the definition of \tilde{u} we can choose $\varepsilon_j > 0$ and $u_j \in \mathcal{F}(\Omega)$ such that $\varepsilon_j \searrow 0$, $u_j \nearrow \tilde{u}$ and $u_j = u$ on $\mathbb{B}(0, \varepsilon_j)$. Let $0 < \delta_j < \varepsilon_j$. Set $a_j = \inf_{\mathbb{B}(0,\varepsilon_j) \setminus \mathbb{B}(0,\delta_j)} u$ and

$$v_j = \begin{cases} \max(u, a_j) & \text{on } \mathbb{B}(0, \varepsilon_j), \\ u & \text{on } \Omega \setminus \mathbb{B}(0, \varepsilon_j). \end{cases}$$

We have $v_j \in \mathcal{F}^a(\Omega)$ and $v_j = u$ on $\Omega \setminus \mathbb{B}(0, \delta_j)$. Hence,

 $(dd^{c}(\phi + \max(u_{j}, v_{j})))^{n} \ge (dd^{c}\phi)^{n} + (dd^{c}\max(u_{j}, v_{j}))^{n} \ge (dd^{c}v_{j})^{n}.$

Again by the comparison principle, we get $\phi + u_j \leq \phi + \max(u_j, v_j) \leq v_j$. It follows that $\phi + u_j \leq u$ on $\Omega \setminus \mathbb{B}(0, \varepsilon_k)$ for every $j \geq k$. Letting $j \to \infty$ and then $k \to \infty$ we infer that $\phi + \tilde{u} \leq u$ on Ω , as desired.

Proof of Main Theorem. We consider two cases.

CASE 1: Ω is a bounded hyperconvex domain, $0 \in \Omega$ and $u, v \in \mathcal{F}(\Omega) \cap L^{\infty}_{\text{loc}}(\Omega \setminus \{0\})$. Put $\varphi = u + v$. Then $\varphi \in \text{PSH}^{-}(\Omega) \cap L^{\infty}_{\text{loc}}(\Omega \setminus \{0\})$, so by hypothesis

$$\int_{\{0\}} (dd^c \max(u, v))^n = \int_{\{0\}} (dd^c u)^n$$

By Lemma 3.2 there exist $\tilde{u} \in \mathcal{F}(\Omega)$ and $\phi \in \mathcal{F}^a(\Omega)$ such that $u \leq \phi$, $\tilde{u} + \phi \leq u \leq \tilde{u}$, $(dd^c \tilde{u})^n = 1_{\{0\}} (dd^c u)^n$ and $(dd^c \phi)^n = 1_{\Omega \setminus \{0\}} (dd^c u)^n$. Since $\int_{\{0\}} (dd^c \phi)^n = 0$, by [Ce1, Corollary 5.7] we get $c_{\phi}(0) = \infty$. Therefore, Lemma 3.1 implies that

$$c_u(0) = c_{\widetilde{u}}(0).$$

Now, since $|\max(\tilde{u}, v) - \max(u, v)| \leq -\phi$, by [ACCP, Lemma 4.12] we get

$$\int_{\{0\}} (dd^c \max(\widetilde{u}, v))^n = \int_{\{0\}} (dd^c \max(u, v))^n = \int_{\{0\}} (dd^c u)^n = \int_{\{0\}} (dd^c \widetilde{u})^n$$

Moreover, again by Lemma 3.2 there exist $\tilde{v} \in \mathcal{F}(\Omega)$ and $\psi \in \mathcal{F}^a(\Omega)$ such that $v \leq \psi$, $\tilde{v} + \psi \leq v \leq \tilde{v}$, $(dd^c \tilde{v})^n = 1_{\{0\}} (dd^c v)^n$ and $(dd^c \psi)^n =$ $1_{\Omega \setminus \{0\}} (dd^c v)^n$. Similarly, we also have

$$c_v(0) = c_{\widetilde{v}}(0).$$

Now, since $|\max(\tilde{u}, \tilde{v}) - \max(\tilde{u}, v)| \le -\psi$, again by [ACCP, Lemma 4.12] we get

$$\int_{\{0\}} (dd^c \max(\widetilde{u}, \widetilde{v}))^n = \int_{\{0\}} (dd^c \max(\widetilde{u}, v))^n = \int_{\{0\}} (dd^c \widetilde{u})^n.$$

Since

$$\begin{split} \int_{\Omega} (dd^{c}\widetilde{u})^{n} &= \int_{\{0\}} (dd^{c}\widetilde{u})^{n} = \int_{\{0\}} (dd^{c}\max(\widetilde{u},\widetilde{v}))^{n} \\ &\leq \int_{\Omega} (dd^{c}\max(\widetilde{u},\widetilde{v}))^{n} \leq \int_{\Omega} (dd^{c}\widetilde{u})^{n}, \end{split}$$

and $(dd^c \tilde{u})^n \leq (dd^c \max(\tilde{u}, \tilde{v}))^n$, it follows that $(dd^c \tilde{u})^n = (dd^c \max(\tilde{u}, \tilde{v}))^n$. Hence, [Ce2, Theorem 3.15] implies that $\max(\tilde{u}, \tilde{v}) = \tilde{u}$. Thus, $\tilde{v} \leq \tilde{u}$, and hence

$$c_u(0) = c_{\widetilde{u}}(0) \ge c_{\widetilde{v}}(0) = c_v(0).$$

CASE 2: Ω is a domain in \mathbb{C}^n , $0 \in \Omega$ and $u, v \in \text{PSH}^-(\Omega)$. Without loss of generality we can assume that $\Omega = \mathbb{B}(0, 1)$. Let $\varphi_j = j \log |z| \in \mathcal{F}(\Omega) \cap L^{\infty}_{\text{loc}}(\Omega \setminus \{0\})$. Put $u_j = \max(u, \varphi_j), v_j = \max(v, \varphi_j)$. It is easy to see that $u_j, v_j \in \mathcal{F}(\Omega) \cap L^{\infty}_{\text{loc}}(\Omega \setminus \{0\})$ and

$$\int_{\{0\}} (dd^{c} \max(u_{j}, v_{j}, \varphi))^{n} = \int_{\{0\}} (dd^{c} \max(u_{j}, \varphi))^{n}$$

for every $\varphi \in \text{PSH}^{-}(\Omega) \cap L^{\infty}_{\text{loc}}(\Omega \setminus \{0\})$, so by Case 1 we have $c_{u_j}(0) \geq c_{v_j}(0)$. Now, [P, Lemma 2.1] implies that

$$c_u(0) = \lim_{j \to \infty} c_{u_j}(0) \ge \lim_{j \to \infty} c_{v_j}(0) = c_v(0). \bullet$$

Acknowledgements. The authors would like to thank the referees for valuable remarks which led to the improvement of exposition.

References

- [ACCP] P. Åhag, U. Cegrell, R. Czyż and H. H. Pham, Monge-Ampère on pluripolar sets, J. Math. Pures Appl. 92 (2009), 613–627.
- [BT] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1–40.
- [Ce1] U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble) 54 (2004), 159–179.
- [Ce2] U. Cegrell, A general Dirichlet problem for the complex Monge–Ampère operator, Ann. Polon. Math. 94 (2008), 131–147.

114	H. M. Le et a	1.
[De]	JP. Demailly, <i>Monge–Ampère operator, Lelong numbers and intersection the-</i> <i>ory</i> , in: Complex Analysis and Geometry, Plenum Press, New York, 1993, 115– 193	
[DeKo]	JP. Demailly and J. Kollár, Semi-contra and Kähler–Einstein metric on Fano or 34 (2001), 525–556.	inuity of complex singularity exponents bifolds, Ann. Sci. École Norm. Sup. (4)
[DP]	JP. Demailly and H. H. Pham, A sharp lower bound for the log canonical threshold, Acta Math. 212 (2014), 1–9.	
[Kl]	M. Klimek, <i>Pluripotential Theory</i> , Oxford Univ. Press, 1991.	
[Ko1]	S. Kołodziej, The range of the complex Monge-Ampère operator, II, Indiana Univ. Math. J. 44 (1995), 765-782.	
[Ko2]	S. Kołodziej, <i>The complex Monge–Ampère equation and pluripotential theory</i> , Mem. Amer. Math. Soc. 178 (2005), 64 pp.	
[P]	H. H. Pham, A comparison principle for Acad. Sci. Paris 351 (2013), 441–443.	the log canonical threshold, C. R. Math.
Hai Mau Le, Hong Xuan Nguyen		Hung Viet Vu
Department of Mathematics		Department of Mathematics,
Hanoi National University of Education		Physics and Informatics
Hanoi, Vietnam		Tay Bac University
E-mail: mauhai@fpt.vn		Son La, Vietnam
х	uanhongdhsp@yahoo.com	E-mail: viethungtbu@gmail.com

Received 18.10.2013 and in final form 25.11.2013

(3246)