Some properties of para-Kähler-Walker metrics

by Mustafa Özkan (Ankara) and Murat İşcan (Erzurum)

Abstract

A Walker 4-manifold is a pseudo-Riemannian manifold (M_{4}, g) of neutral signature, which admits a field of parallel null 2-planes. We study almost paracomplex structures on 4-dimensional para-Kähler-Walker manifolds. In particular, we obtain conditions under which these almost paracomplex structures are integrable, and the corresponding para-Kähler forms are symplectic. We also show that Petean's example of a nonflat indefinite Kähler-Einstein 4-manifold is a special case of our constructions.

1. Introduction. Let $M_{2 n}$ be a Riemannian manifold with a neutral metric, i.e., a pseudo-Riemannian metric g of signature (n, n). We denote by $\Im_{q}^{p}\left(M_{2 n}\right)$ the set of all tensor fields of type (p, q) on $M_{2 n}$. In this paper, all manifolds, tensor fields and connections are assumed to be differentiable and of class C^{∞}.

An almost paracomplex manifold is an almost product manifold ($\left.M_{2 n}, \varphi\right)$ with $\varphi^{2}=$ id such that the two eigenbundles $T^{+} M_{2 n}$ and $T^{-} M_{2 n}$ associated respectively with the eigenvalues +1 and -1 of φ have the same rank. Note that the dimension of an almost paracomplex manifold is necessarily even. Considering the paracomplex structure φ, we obtain the set of affinors $\{\operatorname{id}, \varphi\}$ with $\varphi^{2}=\mathrm{id}$ on $M_{2 n}$. They form a basis of a representation of an algebra of order 2 over the field \mathbb{R} of real numbers. This algebra is called the algebra of paracomplex (or double) numbers, and is denoted by $\mathbb{R}(j)=\left\{a_{0}+j a_{1}: j^{2}=1\right.$ and $\left.a_{0}, a_{1} \in \mathbb{R}\right\}$. Obviously, $\mathbb{R}(j)$ is associative, commutative and with unity, i.e., it admits a principal unit 1 . The canonical basis of this algebra is $\{1, j\}$.

Let $\left(M_{2 n}, \varphi\right)$ be an almost paracomplex manifold with almost paracomplex structure φ. The integrability of φ is equivalent to the vanishing of the Nijenhuis tensor

$$
N_{\varphi}(X, Y)=[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+[X, Y] .
$$

[^0]This structure is called integrable if the matrix $\varphi=\left(\varphi_{j}^{i}\right)$ is constant in a certain holonomic natural frame in a neighborhood U_{x} of every point $x \in M_{2 n}$. A necessary and sufficient condition for an almost paracomplex structure to be integrable is that there exists a torsion free linear connection such that $\nabla \varphi=0$.

Let $\left(M_{2 n}, \varphi, g\right)$ be an almost para-Hermitian manifold with almost paracomplex structure φ and pseudo-Riemannian metric tensor field g. Then

$$
\varphi^{2}=I \quad \text { and } \quad g(\varphi X, Y)=-g(X, \varphi Y)
$$

for any vector fields X and Y on $M_{2 n}$. If φ is integrable, then $\left(M_{2 n}, \varphi, g\right)$ is called a para-Hermitian manifold.

If g is a para-Hermitian pseudo-Riemannian metric, then $\omega(X, Y)=$ $g(\varphi X, Y)$ is a 2-form, called the para-Kähler form of g. A para-Hermitian pseudo-Riemannian metric g is called para-Kähler if its para-Kähler form is closed, i.e., $d \omega=0$. Here, the triple (g, φ, ω) is called an almost para-Kähler structure. Moreover, if φ is integrable, then (g, φ, ω) is called a para-Kähler structure. In particular, if g is neither positive nor negative definite, it is called an indefinite para-Kähler metric.

The goal of this paper is to study certain almost paracomplex structures φ on four-dimensional Walker manifolds, and their associated opposite almost paracomplex structures φ^{\prime}. In particular, we are interested in the integrability of φ and φ^{\prime}, and whether the corresponding para-Kähler forms ω, ω^{\prime} are symplectic or not.

2. Para-Kähler walker metrics in dimension four

2.1. Walker metric g. A neutral metric g on a 4 -manifold M_{4} is called a Walker metric if there exists a 2-dimensional null distribution D on M_{4} that is parallel with respect to g. For such metrics, a canonical form was obtained by Walker [W], who showed that there exist coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$ in which the metric g is expressed as

$$
\left(g_{i j}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \tag{2.1}\\
0 & 0 & 0 & 1 \\
1 & 0 & a & c \\
0 & 1 & c & b
\end{array}\right)
$$

for some functions a, b and c depending on the coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$. Note that $D=\operatorname{span}\left\{\partial_{1}, \partial_{2}\right\}$ where $\partial_{i}=\partial / \partial x^{i}$. We shall use the abbreviation $\partial p\left(x^{1}, x^{2}, x^{3}, x^{4}\right) / \partial x^{i}=\partial p / \partial x^{i}=p_{i}$ for any function p with $i=$ $1,2,3,4$. We refer to GT for an application of such a 4-dimensional Walker metric. We note that Walker 4-manifolds have been intensively studied in
the literature - see BCHM, D-V1, D-V2, GHKM, GT, M1, M2, SIA, SI, for example.
2.2. Almost paracomplex structure φ. Let φ be an almost paracomplex structure on a Walker manifold M_{4} which satisfies
(i) $\varphi^{2}=I$,
(ii) $g(\varphi X, Y)=-g(X, \varphi Y)$ (Hermitian property),
(iii) $\varphi \partial_{1}=\partial_{1}, \varphi \partial_{2}=-\partial_{2}$.

It can easily be seen that these three properties define φ uniquely:

$$
\left\{\begin{array}{l}
\varphi \partial_{1}=\partial_{1} \\
\varphi \partial_{2}=-\partial_{2} \\
\varphi \partial_{3}=a \partial_{1}-\partial_{3} \\
\varphi \partial_{4}=-b \partial_{2}+\partial_{4}
\end{array}\right.
$$

and φ has local components

$$
\left(\varphi_{j}^{i}\right)=\left(\begin{array}{cccc}
1 & 0 & a & 0 \\
0 & -1 & 0 & -b \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

with respect to the natural frame $\left\{\partial_{1}, \partial_{2}, \partial_{3}, \partial_{4}\right\}$.
In order to simplify our calculations in Section 4, and verification of the example in Section 5, we shall restrict ourselves to almost paracomplex structures with $a=b$,

$$
\left(\varphi_{j}^{i}\right)=\left(\begin{array}{cccc}
1 & 0 & a & 0 \tag{2.2}\\
0 & -1 & 0 & -a \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

In this case, the metric g in (2.1) takes the form

$$
\left(g_{i j}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \tag{2.3}\\
0 & 0 & 0 & 1 \\
1 & 0 & a & c \\
0 & 1 & c & a
\end{array}\right) .
$$

By writing $\varphi \partial_{i}$ in the form $\varphi \partial_{i}=\sum_{j=1}^{4} \varphi_{i}^{j} \partial_{j}$, and using 2.2, we obtain

$$
\varphi_{1}^{1}=-\varphi_{2}^{2}=-\varphi_{3}^{3}=\varphi_{4}^{4}=1 \quad \text { and } \quad \varphi_{3}^{1}=-\varphi_{4}^{2}=a .
$$

The triple $\left(M_{4}, \varphi, g\right)$ is called an almost para-Hermitian-Walker manifold. Following the terminology of [D-V1, D-V2, M1, M2, SI], we call φ a proper almost paracomplex structure.
2.3. Para-Kähler-Walker structures. Let $\left(M_{4}, \varphi, g\right)$ be an almost para-Hermitian-Walker manifold with g given in (2.3) and φ given in (2.2). If $d \omega=0$, then $\left(M_{4}, \varphi, g\right)$ is called an almost para-Kähler-Walker manifold. Then we can define a para-Kähler structure in terms of g and φ by $\omega(X, Y)=$ $g(\varphi X, Y)$, or explicitly

$$
\begin{equation*}
\omega=d x^{1} \wedge d x^{3}-d x^{2} \wedge d x^{4}-c d x^{3} \wedge d x^{4} \tag{2.4}
\end{equation*}
$$

It is clear that ω is independent of the function a. We are interested in the case for which ω is symplectic, i.e., $d \omega=0$.

Theorem 2.1. An almost para-Hermitian-Walker manifold $\left(M_{4}, \varphi, g\right)$ is an almost para-Kähler-Walker manifold, i.e., $d \omega=0$, if and only if c is independent of x^{1} and x^{2}. In fact, c then satisfies the following PDEs:

$$
\begin{equation*}
c_{1}=c_{2}=0 \tag{2.5}
\end{equation*}
$$

Proof. These conditions follow directly from $d \omega=d c \wedge d x^{3} \wedge d x^{4}$.
If c is independent of x^{1} and x^{2}, i.e., $c=c\left(x^{3}, x^{4}\right)$, then c satisfies the PDEs in 2.5), and therefore the para-Kähler form becomes

$$
\omega=d x^{1} \wedge d x^{3}-d x^{2} \wedge d x^{4}-c\left(x^{3}, x^{4}\right) d x^{3} \wedge d x^{4}
$$

which is clearly closed.
The almost paracomplex structure φ on an almost para-Kähler-Walker manifold is integrable if and only if

$$
\begin{equation*}
\left(N_{\varphi}\right)_{j k}^{i}=\varphi_{j}^{m} \partial_{m} \varphi_{k}^{i}-\varphi_{k}^{m} \partial_{m} \varphi_{j}^{i}-\varphi_{m}^{i} \partial_{j} \varphi_{k}^{m}+\varphi_{m}^{i} \partial_{k} \varphi_{j}^{m}=0 \tag{2.6}
\end{equation*}
$$

By explicit calculations for the proper almost paracomplex structure φ in (2.2), the nonzero components of the Nijenhuis tensor are as follows:

$$
\begin{array}{ll}
N_{14}^{2}=-N_{41}^{2}=-2 a_{1}, & N_{23}^{1}=-N_{32}^{1}=-2 a_{2} \\
N_{34}^{1}=-N_{43}^{1}=a a_{2}, & N_{34}^{2}=-N_{43}^{2}=-a a_{1}
\end{array}
$$

Therefore, we can state the following theorem.
TheOrem 2.2. The proper almost paracomplex structure φ given in (2.2) is integrable if and only if the following PDEs hold:

$$
\begin{equation*}
a_{1}=a_{2}=0 \tag{2.7}
\end{equation*}
$$

From (2.5) and 2.7), we have the following para-Kähler condition:
Theorem 2.3. The triple (g, φ, ω) with g in 2.3 and φ in (2.2) is a para-Kähler-Walker structure if and only if the following PDEs hold:

$$
\begin{equation*}
a_{1}=a_{2}=c_{1}=c_{2}=0 \tag{2.8}
\end{equation*}
$$

Corollary 2.4. If

$$
\left(\varphi_{j}^{i}\right)=\left(\begin{array}{cccc}
1 & 0 & a\left(x^{3}, x^{4}\right) & 0 \\
0 & -1 & 0 & -a\left(x^{3}, x^{4}\right) \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and

$$
\left(g_{i j}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & a\left(x^{3}, x^{4}\right) & c\left(x^{3}, x^{4}\right) \\
0 & 1 & c\left(x^{3}, x^{4}\right) & a\left(x^{3}, x^{4}\right)
\end{array}\right),
$$

then the triple (g, φ, ω) is always para-Kähler-Walker.
Remark 2.5. It follows from Theorem 2.3 that if (g, φ, ω) is a para-Kähler-Walker structure, then we have $a=a\left(x^{3}, x^{4}\right)$ and $c=c\left(x^{3}, x^{4}\right)$. In particular, if $c\left(x^{3}, x^{4}\right)=0$, then the metric g is of the form

$$
\left(g_{i j}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & a\left(x^{3}, x^{4}\right) & 0 \\
0 & 1 & 0 & a\left(x^{3}, x^{4}\right)
\end{array}\right) .
$$

This is the same as Petean's example $[\mathrm{P}$ for the paracomplex case (see M2] for Petean's example for the complex case).

3. Opposite almost paracomplex structure φ^{\prime} and opposite para-

 Kähler form ω^{\prime}. Let $\left(M_{4}, g\right)$ be a four-dimensional manifold of signature $(2,2)$. Suppose that g is anti-invariant under both φ and φ^{\prime}. If φ and φ^{\prime} satisfy$$
\begin{aligned}
\varphi^{2}=\varphi^{\prime 2}=1, & \varphi \varphi^{\prime}=\varphi^{\prime} \varphi \\
g(\varphi X, \varphi Y)=-g(X, Y), & g\left(\varphi^{\prime} X, \varphi^{\prime} Y\right)=-g(X, Y)
\end{aligned}
$$

for any $X, Y \in \Im_{0}^{1}\left(M_{4}\right)$, then φ is called an almost paracomplex structure, and φ^{\prime} is called an opposite almost paracomplex structure.

For a Walker manifold M_{4} with a proper almost paracomplex structure φ, the opposite almost paracomplex structure φ^{\prime} satisfies

$$
\varphi^{\prime} \partial_{1}=-\left(\alpha+2 \theta \frac{c}{a}\right) \partial_{1}-\theta \partial_{2}+2 \theta \frac{1}{a} \partial_{4},
$$

$$
\begin{aligned}
\varphi^{\prime} \partial_{2}= & \theta \partial_{1}-\alpha \partial_{2}-2 \theta \frac{1}{a} \partial_{3} \\
\varphi^{\prime} \partial_{3}= & -(\alpha a+\theta c) \partial_{1}-\frac{1}{2 \theta} a\left(1+\theta^{2}-\alpha^{2}\right) \partial_{2}+\alpha \partial_{3}+\theta \partial_{4} \\
\varphi^{\prime} \partial_{4}= & \left(\frac{1}{2 \theta} a+\frac{\theta}{2} a+\frac{\alpha^{2}}{2 \theta} a-2 \alpha c-2 \theta \frac{c^{2}}{a}\right) \partial_{1}-a\left(\alpha+\theta \frac{c}{a}\right) \partial_{2} \\
& -\theta \partial_{3}+\left(\alpha+2 \theta \frac{c}{a}\right) \partial_{4}
\end{aligned}
$$

where α and nonzero θ are two parameters.
Next, we get an explicit form of φ^{\prime} by fixing $\theta=1$ and $\alpha=0$ (only for simplicity), as follows:

$$
\begin{align*}
\varphi^{\prime} \partial_{1} & =-\frac{2 c}{a} \partial_{1}-\partial_{2}+\frac{2}{a} \partial_{4} \\
\varphi^{\prime} \partial_{2} & =\partial_{1}-\frac{2}{a} \partial_{3} \tag{3.1}\\
\varphi^{\prime} \partial_{3} & =-c \partial_{1}-a \partial_{2}+\partial_{4} \\
\varphi^{\prime} \partial_{4} & =\left(a-\frac{2 c^{2}}{a}\right) \partial_{1}-c \partial_{2}-\partial_{3}+\frac{2 c}{a} \partial_{4}
\end{align*}
$$

Thus, φ^{\prime} has local components

$$
\left(\varphi_{j}^{\prime i}\right)=\left(\begin{array}{cccc}
-2 c / a & 1 & -c & a-2 c^{2} / a \tag{3.2}\\
-1 & 0 & -a & -c \\
0 & -2 / a & 0 & -1 \\
2 / a & 0 & 1 & 2 c / a
\end{array}\right)
$$

3.1. Opposite para-Kähler form ω^{\prime}. Let $\left(M_{4}, \varphi^{\prime}, g\right)$ be an opposite almost para-Hermitian-Walker manifold with g of the form 2.3, and φ^{\prime} of the form 3.2. We can define an opposite para-Kähler form $\omega^{\prime}(X, Y)=$ $g\left(\varphi^{\prime} X, Y\right)$, whose explicit form is given by

$$
\begin{equation*}
\omega^{\prime}=\frac{2}{a} d x^{1} \wedge d x^{2}+d x^{1} \wedge d x^{4}-d x^{2} \wedge d x^{3}-\frac{2 c}{a} d x^{2} \wedge d x^{4} \tag{3.3}
\end{equation*}
$$

From (3.3), we have the following theorem:
TheOrem 3.1. Let $\left(M_{4}, \varphi^{\prime}, g\right)$ be an opposite almost para-HermitianWalker manifold. Then it is an opposite almost para-Kähler-Walker manifold, i.e., $d \omega^{\prime}=0$, if and only if the following PDEs hold:

$$
\begin{equation*}
a_{3}=c_{3}=0 \quad \text { and } \quad a_{4}+a c_{1}-c a_{1}=0 \tag{3.4}
\end{equation*}
$$

Proof. These PDEs can be obtained from the differential of ω^{\prime} :

$$
\begin{aligned}
d \omega^{\prime}= & -\frac{2 a_{3}}{a^{2}} d x^{1} \wedge d x^{2} \wedge d x^{3}-\frac{2}{a^{2}}\left(a_{4}+a c_{1}-c a_{1}\right) d x^{1} \wedge d x^{2} \wedge d x^{4} \\
& +\frac{2}{a^{2}}\left(a c_{3}-c a_{3}\right) d x^{2} \wedge d x^{3} \wedge d x^{4}
\end{aligned}
$$

3.2. Integrability of φ^{\prime}. The opposite almost paracomplex structure φ^{\prime} in 3.2 is integrable if the PDEs in 2.6 hold for $\varphi_{j}^{\prime i}$ in 3.2 . Then we have the following theorem:

Theorem 3.2. The opposite almost paracomplex structure φ^{\prime} in (3.2) is integrable if and only if the following PDEs hold:

$$
\begin{align*}
a_{4}-c a_{1}=0, & a_{3}+a c_{2}=0 \tag{3.5}\\
a_{3}-a a_{1}=0, & a c_{1}-a a_{2}-2 c_{3}=0
\end{align*}
$$

3.3. Opposite para-Kähler-Walker structure. The triple $\left(g, \varphi^{\prime}, \omega^{\prime}\right)$ is called an opposite para-Kähler structure if $d \omega^{\prime}=0$ and $N_{\varphi^{\prime}}=0$. The following theorem follows from (3.4) and (3.5).

Theorem 3.3. The triple $\left(g, \varphi^{\prime}, \omega^{\prime}\right)$ with g in 2.3 and φ^{\prime} in 3.2 is an opposite para-Kähler-Walker structure if and only if the following PDEs hold:

$$
a=\text { constant } \quad \text { and } \quad c_{1}=c_{2}=c_{3}=0
$$

4. Curvatures of a Walker metric for a special case. Let R, r and S be the curvature tensor, Ricci tensor and scalar curvature of the Walker metric g in (2.3), respectively. Then the components of R, r and S are as follows (see [M2, Appendices A-C]):

$$
\begin{align*}
R_{1313}= & R_{1414}=-\frac{1}{2} a_{11}, \quad R_{1314}=-\frac{1}{2} c_{11}, \quad R_{1323}=R_{1424}=-\frac{1}{2} a_{12} \\
R_{1324}= & R_{1423}=-\frac{1}{2} c_{12}, \quad R_{1334}=\frac{1}{2} a_{14}-\frac{1}{2} c_{13}-\frac{1}{4} a_{1} a_{2}+\frac{1}{4} c_{1} c_{2} \\
R_{1434}= & \frac{1}{2} c_{14}-\frac{1}{2} a_{13}-\frac{1}{4}\left(c_{1}\right)^{2}+\frac{1}{4}\left(a_{1}\right)^{2}-\frac{1}{4} a_{1} c_{2}+\frac{1}{4} a_{2} c_{1} \\
R_{2323}= & R_{2424}=-\frac{1}{2} a_{22}, \quad R_{2324}=-\frac{1}{2} c_{22} \tag{4.1}\\
R_{2334}= & \frac{1}{2} a_{24}-\frac{1}{2} c_{23}-\frac{1}{4} a_{1} c_{2}+\frac{1}{4} a_{2} c_{1}-\frac{1}{4}\left(a_{2}\right)^{2}+\frac{1}{4}\left(c_{2}\right)^{2} \\
R_{2434}= & \frac{1}{2} c_{24}-\frac{1}{2} a_{23}-\frac{1}{4} c_{1} c_{2}+\frac{1}{4} a_{1} a_{2} \\
R_{2334}= & c_{34}-\frac{1}{2} a_{44}-\frac{1}{2} a_{33}-\frac{1}{4} a\left(c_{1}\right)^{2}+\frac{1}{4} a\left(a_{1}\right)^{2}+\frac{1}{2} c a_{1} a_{2}-\frac{1}{2} c c_{1} c_{2} \\
& +\frac{1}{2} a_{4} c_{1}+\frac{1}{2} a_{1} c_{4}+\frac{1}{4} a\left(a_{2}\right)^{2}-\frac{1}{4} a\left(c_{2}\right)^{2}-\frac{1}{2} a_{3} c_{2}+\frac{1}{2} a_{2} c_{3}
\end{align*}
$$

$$
\begin{align*}
& r_{13}=\frac{1}{2} a_{11}+\frac{1}{2} c_{12}, \quad r_{14}=\frac{1}{2} a_{12}+\frac{1}{2} c_{11}, \tag{4.2}\\
& r_{23}=\frac{1}{2} a_{12}+\frac{1}{2} c_{22}, \quad r_{24}=\frac{1}{2} a_{22}+\frac{1}{2} c_{12}, \\
& r_{33}=\frac{1}{2} a a_{11}+c a_{12}+\frac{1}{2} a a_{22}-a_{24}+c_{23}-\frac{1}{2} a_{2} c_{1}+\frac{1}{2} a_{1} c_{2}+\frac{1}{2}\left(a_{2}\right)^{2}-\frac{1}{2}\left(c_{2}\right)^{2}, \\
& r_{34}=\frac{1}{2} a c_{11}+c c_{12}+\frac{1}{2} a_{14}-\frac{1}{2} c_{13}-\frac{1}{2} a_{1} a_{2}+\frac{1}{2} c_{1} c_{2}+\frac{1}{2} a c_{22}-\frac{1}{2} c_{24}+\frac{1}{2} a_{23}, \\
& r_{44}=\frac{1}{2} a a_{11}+c a_{12}+c_{14}-a_{13}-\frac{1}{2}\left(c_{1}\right)^{2}+\frac{1}{2}\left(a_{1}\right)^{2}-\frac{1}{2} a_{1} c_{2}+\frac{1}{2} a_{2} c_{1}+\frac{1}{2} a a_{22},
\end{align*}
$$ and

$$
\begin{equation*}
S=a_{11}+a_{22}+2 c_{12} \tag{4.3}
\end{equation*}
$$

It follows from (2.8) that all components of S and r in 4.2 and 4.3 vanish. Taking (2.8) and 4.1) into account, we have the following theorem:

TheOrem 4.1. If M_{4} is a Walker 4-manifold which consists of a para-Kähler-Walker structure (g, φ, ω) with g in 2.3) and φ in (2.2), then M_{4} is both scalar flat and Ricci flat. Moreover, M_{4} is flat if and only if the following PDE holds:

$$
2 c_{34}-a_{33}-a_{44}=0
$$

From (2.8) and 4.1), we have:
THEOREM 4.2. Let M_{4} be a Walker 4-manifold which consists of an opposite para-Kähler-Walker structure $\left(g, \varphi^{\prime}, \omega^{\prime}\right)$ with g in 2.3 and φ^{\prime} in (3.2). Then M_{4} is flat.
5. Examples of indefinite Ricci flat almost para-Kähler non-para-Kähler 4-manifolds. Let $\left(M_{2 n}, \varphi, g\right)$ be an almost para-Hermitian manifold. We can now state the almost para-Hermitian version of Goldberg conjecture [M3]: if (GC1) $M_{2 n}$ is compact, (GC2) g is Einstein, and (GC3) the fundamental 2-form ω is closed, then φ must be integrable. In this section, we construct an example of a noncompact indefinite Ricci flat almost para-Kähler non-para-Kähler 4-manifold. This is an indefinite para-Kähler version of the example given in $\mathbb{N P}$. For this purpose, we consider the metric g given by

$$
\left(g_{i j}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \tag{5.1}\\
0 & 0 & 0 & 1 \\
1 & 0 & a & 0 \\
0 & 1 & 0 & a
\end{array}\right)
$$

This metric is defined by choosing $a=b$ and $c=0$ in the generic form (2.1). From (2.4), we have $\omega=d x^{1} \wedge d x^{3}-d x^{2} \wedge d x^{4}$. Thus ω is symplectic.

We now turn to the Einstein conditions for the restricted Walker metric g in (5.1). Let r and S denote the Ricci tensor and the scalar curvature of
the metric g in (5.1), respectively. The Einstein tensor is defined by $G_{i j}=$ $r_{i j}-\frac{1}{4} S g_{i j}$ and has the following nonzero components (see M2, Appendix D]):

$$
\begin{align*}
G_{13} & =-G_{24}=\frac{1}{4} a_{11}-\frac{1}{4} a_{22} \\
G_{14} & =G_{23}=\frac{1}{2} a_{12} \\
G_{33} & =\frac{1}{4} a a_{11}+\frac{1}{4} a a_{22}-a_{24}+\frac{1}{2}\left(a_{2}\right)^{2} \tag{5.2}\\
G_{34} & =\frac{1}{2} a_{14}-\frac{1}{2} a_{1} a_{2}+\frac{1}{2} a_{23} \\
G_{44} & =\frac{1}{4} a a_{11}-a_{13}+\frac{1}{2}\left(a_{1}\right)^{2}+\frac{1}{4} a a_{22}
\end{align*}
$$

It follows from (5.2) that the Einstein condition $\left(G_{i j}=0\right)$ consists of the following PDEs:

$$
\begin{aligned}
& a_{11}-a_{22}=0, \quad a_{12}=0, \quad a a_{11}-2 a_{24}+\left(a_{2}\right)^{2}=0 \\
& a_{14}-a_{1} a_{2}+a_{23}=0, \quad a a_{11}-2 a_{13}+\left(a_{1}\right)^{2}=0
\end{aligned}
$$

If a is independent of x^{2} and x^{4}, and contains x^{1} only linearly, the first four PDEs hold trivially, and the last one reduces to $2 a_{13}-\left(a_{1}\right)^{2}=0$. Then it follows that $a=-2 x^{1} / x^{3}$ is a solution to the PDE, and therefore the metric

$$
g=\left(g_{i j}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{5.3}\\
0 & 0 & 0 & 1 \\
1 & 0 & -2 x^{1} / x^{3} & 0 \\
0 & 1 & 0 & -2 x^{1} / x^{3}
\end{array}\right)
$$

is Einstein on the coordinate patch $x^{3}>0$ (or $x^{3}<0$). Moreover, the domain $x^{3}>0\left(\right.$ or $\left.x^{3}<0\right)$ in M_{4} must be noncompact. It follows from (4.2) that g is Ricci flat. In particular, this metric admits the following proper almost paracomplex structure:

$$
\begin{equation*}
\varphi \partial_{1}=\partial_{1}, \quad \varphi \partial_{2}=-\partial_{2}, \quad \varphi \partial_{3}=a \partial_{1}-\partial_{3}, \quad \varphi \partial_{4}=-a \partial_{2}+\partial_{4} \tag{5.4}
\end{equation*}
$$

For the Einstein metric (5.3), the proper almost paracomplex structure φ in (5.4 becomes

$$
\varphi \partial_{1}=\partial_{1}, \quad \varphi \partial_{2}=-\partial_{2}, \quad \varphi \partial_{3}=-\frac{2 x^{1}}{x^{3}} \partial_{1}-\partial_{3}, \quad \varphi \partial_{4}=\frac{2 x^{1}}{x^{3}} \partial_{2}+\partial_{4}
$$

Then, the integrability condition, given in Theorem 2.2 , is not satisfied:

$$
a_{1}=-2 / x^{3} \neq 0 \quad \text { and } \quad a_{2}=0
$$

Thus, φ cannot be integrable. The condition (3.4) for ω^{\prime} to be symplectic in Theorem 3.1 also fails:

$$
a_{3}=2 x^{1} /\left(x^{3}\right)^{2} \neq 0, \quad a_{4}+a c_{1}-c a_{1}=0, \quad c_{3}=0
$$

Therefore, ω^{\prime} is not symplectic.

Similarly, the opposite almost paracomplex structure φ^{\prime} in (3.1) has the form

$$
\begin{aligned}
\varphi^{\prime} \partial_{1} & =-\partial_{2}-\frac{x^{3}}{x^{1}} \partial_{4}, & \varphi^{\prime} \partial_{2} & =\partial_{1}+\frac{x^{3}}{x^{1}} \partial_{3} \\
\varphi^{\prime} \partial_{3} & =\frac{2 x^{1}}{x^{3}} \partial_{2}+\partial_{4}, & \varphi^{\prime} \partial_{4} & =-\frac{2 x^{1}}{x^{3}} \partial_{1}-\partial_{3}
\end{aligned}
$$

Then the φ^{\prime}-integrability condition (3.5) in Theorem 3.2 does not hold either:

$$
\begin{aligned}
& a_{4}-c a_{1}=0, \quad a_{3}+a c_{2}=a_{3}=-2 x^{1} /\left(x^{3}\right)^{2} \neq 0 \\
& a_{3}-a a_{1}=-6 x^{1} /\left(x^{3}\right)^{2} \neq 0, \quad a c_{1}-a a_{2}-2 c_{3}=0
\end{aligned}
$$

Thus, φ^{\prime} is not integrable.
Acknowledgements. The authors are grateful to the referees for their useful comments and suggestions which improved the first version of the paper.

References

[BCHM] A. Bonome, R. Castro, L. M. Hervella and Y. Matsushita, Construction of Norden structures on neutral 4-manifolds, JP J. Geom. Topol. 5 (2005), 121140.
[D-V1] J. Davidov, J. C. Díaz-Ramos, E. García-Río, Y. Matsushita, O. Muškarov and R. Vázquez-Lorenzo, Almost Kähler Walker 4-manifolds, J. Geom. Phys. 57 (2007), 1075-1088.
[D-V2] J. Davidov, J. C. Díaz-Ramos, E. García-Río, Y. Matsushita, O. Muškarov and R. Vázquez-Lorenzo, Hermitian-Walker 4-manifolds, J. Geom. Phys. 58 (2008), 307-323.
[GHKM] E. García-Río, S. Haze, N. Katayama and Y. Matsushita, Symplectic, Hermitian and Kahler structures on Walker 4-manifolds, J. Geom. 90 (2008), 56-65.
[GT] R. Ghanam and G. Thompson, The holonomy Lie algebras of neutral metrics in dimension four, J. Math. Phys. 42 (2001), 2266-2284.
[M1] Y. Matsushita, Four-dimensional Walker metrics and symplectic structure, J. Geom. Phys. 52 (2004), 89-99; Erratum, J. Geom. Phys. 57 (2007), 729.
[M2] Y. Matsushita, Walker 4-manifolds with proper almost complex structure, J. Geom. Phys. 55 (2005), 385-398.
[M3] Y. Matsushita, Counterexamples of compact type to the Goldberg conjecture and various version of the conjecture, in: S. Dimiev and K. Sekigawa (eds.), Topics in Contemporary Differential Geometry, Complex Analysis and Mathematical Physics (Sofia, 2006), World Sci., Hackensack, NJ, 2007, 222-233.
[NP] P. Nurowski and M. Przanowski, A four-dimensional example of a Ricci flat metric admitting almost-Kähler non-Kähler structure, Class. Quantum Grav. 16 (1999), no. 3, L9-L13.
[P] J. Petean, Indefinite Kähler-Einstein metrics on compact complex surfaces, Comm. Math. Phys. 189 (1997), 227-235.
[SIA] A. A. Salimov, M. Iscan and K. Akbulut, Notes on para-Norden-Walker 4manifolds, Int. J. Geom. Methods Modern Phys. 7 (2010), 1331-1347.
[SI] A. A. Salimov and M. Iscan, Some properties of Norden-Walker metrics, Kodai Math. J. 33 (2010), 283-293.
[W] A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford Ser. 1 (1950), 69-79.

Mustafa Özkan
Department of Mathematics
Faculty of Sciences
Gazi University
06500 Ankara, Turkey
E-mail: ozkanm@gazi.edu.tr
Murat İşcan
Department of Mathematics
Faculty of Sciences
Ataturk University
25240 Erzurum, Turkey
E-mail: miscan@atauni.edu.tr

Received 29.9.2013
and in final form 9.12.2013

[^0]: 2010 Mathematics Subject Classification: Primary 53C50; Secondary 53B30.
 Key words and phrases: Walker 4-manifolds, almost paracomplex structure, symplectic structures, para-Kähler metrics.

