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Cutting description of trivial 1-cohomology

by Andrzej Czarnecki (Kraków)

Abstract. A characterisation of trivial 1-cohomology, in terms of some connectedness
condition, is presented for a broad class of metric spaces.

1. Introduction. We will establish the following theorem:

Theorem 1.1. A connected and locally connected metric space X has a
trivial first Čech cohomology group if and only if every connected open subset
U leaves X \ U disconnected, provided it has a disconnected boundary.

Consider the following conditions:

(1) X is connected and locally connected;
(2) H1(X) = 0;
(3) ∂U is disconnected;
(4) X \ U is disconneced;

Then Theorem 1.1 accounts for all nontrivial implications in

Theorem 1.2. (1)⇒ ((2)⇔ (∀U open and connected, (3)⇔ (4))).

That (4) always implies (3) is an exercise on normality of metric spaces.
We dub the innermost parentheses the “cutting condition”.

Of course, our theorems apply to the manifold category, and we can state
one corollary in terms of de Rham cohomology, thus solving a PDE:

Corollary 1.3. If every open domain U of a manifold M with ∂U
disconnected leaves M \ U disconnected, then every equation

df = α

has a solution, provided the 1-form α is closed.

Throughout this paper, H i(X) stands for the ith reduced Čech cohomol-
ogy group with constant Z coefficients.
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This paper is a matured version of [CLK] and, as mentioned there, ob-
servations of this kind have (minor) applications to complex analysis, con-
cerning boundary of domains of holomorphy. Apart from the proof, we will
give examples to show that local connectedness cannot be ommited.

2. The proof. All the algebraic topology material used here is classic
and can be found in any popular textbook on the subject. Recall that the
0−th group H0(A) is always free and in the locally connected setting its
rank is equal to the number of connected components of A minus 1. It is
natural to apply the Mayer–Vietoris sequence in any problem concerning
decompositions of a space and cohomology. However, some care is needed.
Recall that for every pair of open sets A and B covering the space X, we
have an exact sequence

H0(X)→ H0(A)⊕H0(B)→ H0(A ∩B)
∂∗−→ H1(X)→ · · · .

We label only the so-called connecting homomorphism for future reference.
Now consider small open neighbourhoods of X \ U , the closure and the
boundary of U : X \ U ⊂ A, U ⊂ B, ∂U ⊂ C, respectively. Hence we have

H0(X)→ H0(A)⊕H0(B)→ H0(C)
∂∗−→ H1(X)→ · · · .

The directed system of such neighbourhoods converges to our initial sets,
and this is reflected by convergence in cohomology, by rigidity of Čech co-
homology in metric spaces. Thus we have an exact sequence

H0(X)→ H0(X \ U)⊕H0(U)→ H0(∂U)
∂∗−→ H1(X)→ · · · .

Assume now that X is connected, U is a domain and H1(X) is trivial. The
sequence takes the form

0→ H0(X \ U)→ H0(∂U)→ 0

This establishes a bijection between the components of the boundary and of
the complement, and thus one implication in our theorem.

Remark 2.1. Dropping the assumption that U is connected, we still get
an exact sequence

H0(X)→ H0(X \ U)⊕H0(U)→ H0(∂U)
∂∗−→ Im ∂∗ → 0.

Note that H1(X), and thus also Im ∂∗, are free groups. Exactness means
that the alternating sum of the ranks of the groups in the sequence (its
Euler characteristic) is zero:

rkH0(X)− rkH0(X \ U)− rkH0(U) + rkH0(∂U) + rk Im ∂∗ = 0.

Translating that into the number of connected components (we write #A for
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the number of connected components of A), when X is connected, we get

−1 ≤ #∂U −#X \ U −#U ≤ −1 + rkH1(X).

Note that for a broad class of spaces (spaces with “good” coverings in the
sense of homotopy theory, manifolds for example) rkH1(X) is bounded by
rkπ1(X).

For the other implication, assume that H1(X) is nontrivial. We will find
a domain with a connected complement and disconnected boundary.

We have H1(X) = lim−→H1U , the injective limit with respect to the di-
rected system of all open coverings ofX—without loss of generality, coverings
by connected sets. Hence a nontrivial class in H1(X) arises as a nontrivial
class in some H1(V) (and in all of its refinements). H1(V) is in turn equal
to H1

S(NV), the singular cohomology of the nerve of V, which is a simplicial
complex. We can assume that NV is truncated over dimension 2, since we
are interested only in the first cohomology group. For any simplicial com-
plex K, there is a 1:1 corespondence between H1

S(K) and [K,S1], the homo-
topy classes of continuous maps from K to the circle. Therefore a nontrivial
class in H1

S(NV) is represented by a map θ from NV to S1. This map can
be chosen simplicial (for a sufficiently fine simplicial structure on the circle;
note that a simplicial circle has at least three vertices) and without local
extrema (a point x is a local extremum of θ : NV → S1 if it is a genuine
local extremum in a neighbourhood Vx of θ|Vx → B(θ(x), ε) ⊂ S1, a small
ball in S1 identified with an interval in R).

Starting from any vertex, enumerate the vertices in the circle clockwise.
Pick any vertex vn ∈ S1. The vertices ai in θ−1(v) are open sets in the cover-
ing V. Any connected component of

⋃
ai must have disconnected boundary

(with disjoint open sets θ−1(vn−1) and θ−1(vn+1)). Moreover, there exists
at least one connected component A ⊂

⋃
ai whose complement has a con-

nected component, say B, meeting both θ−1(vn−1) and θ−1(vn+1) (otherwise
θ would be nullhomotopic). The domain U =

⋃
{v vertex in NV | v∩B = ∅}

has a disconnected boundary and a connected complement. This proves the
other implication in our theorem.

3. Counterexamples. As for the counterexample concerning local con-
nectedness, consider the “rational Hawaiian earring”, a dense subspace of a
ball in R2:

HQ =
⋃

q∈Q∩[0,1]

∂B((0, q), q).

This connected space obviously has nontrivial 1-cohomology, and all of its
connected and open subsets must contain the point (0, 0). Such subsets have
a connected boundary only when the boundary is equal to the complement
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and is contained in one of the circles. Thus, in terms of Theorem 1.2, the
cutting condition does not imply (1) without local connectedness.

We note however that trivial 1-cohomology always implies bijection be-
tween quasi-components of the complement and of the boundary of a domain,
because the sequence

0→ H0(X \ U)→ H0(∂U)→ 0

remains exact, and—without assuming local connectedness—the ranks of the
groups now equal the number of quasi-components minus 1.

To finish, we note that the last remaining one-way implication in Theorem
1.2 cannot be reversed by the following counterexample.

The Knaster–Kuratowski fan (a cone over the rationals) is a contractible
space and satisfies the cutting condition (for reasons similar to the case of
the Hawaiian earring), but is not locally connected. Observe, however, that
this space is not locally homogeneous (the vertex is topologically different
from other points).
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