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Some new Opial-type inequalities involving
higher order derivatives

by Youyu Wang, Wei Sun and Jing Yang (Tianjin)

Abstract. We establish several new Opial-type inequalities involving different types
of boundary conditions.

1. Introduction. In 1960 the Polish mathematician Z. Opial [Op] pub-
lished an inequality involving integrals of a function and its derivative.

Theorem 1.1. Let x( · ) ∈ C(1)[a, b] be such that x(a) = x(b) = 0 and
x(t) > 0 in (a, b). Then

(1.1)

b�

a

|x(t)x′(t)| dt ≤ 1

4
(b− a)

b�

a

(x′(t))2 dt.

where the constant 1
4(b− a) is the best possible.

An improved form of Opial’s inequality was established by Willett [W].

Theorem 1.2. Let x( · ) be absolutely continuous on [a, b], and x(a) = 0.
Then

(1.2)

b�

a

|x(t)x′(t)| dt ≤ 1

2
(b− a)

b�

a

(x′(t))2 dt.

The first natural extension of Opial’s inequality (1.2) involving higher
order derivatives x(n)(t) (n ≥ 1) is also due to Willett [W].

Theorem 1.3. Let x( · ) ∈ C(n)[a, b] be such that x(i)(a) = 0 for
0 ≤ i ≤ n− 1 (n ≥ 1). Then

(1.3)

b�

a

|x(t)x(n)(t)| dt ≤ 1

2
(b− a)n

b�

a

|x(n)(t)|2 dt.
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A sharp version of inequality (1.3) is due to Das [D]:

Theorem 1.4. Let x( · ) ∈ C(n−1)[a, b] be such that x(i)(a) = 0 for
0 ≤ i ≤ n− 1 (n ≥ 1). Further, let x(n−1)( · ) be absolutely continuous and	b
a |x

(n)(t)|2 dt <∞. Then

(1.4)

b�

a

|x(t)x(n)(t)| dt ≤ 1

2n!

(
n

2n− 1

)1/2

(b− a)n
b�

a

|x(n)(t)|2 dt.

This simple inequality has motivated a large number of research papers
giving its successively simpler proofs, providing various generalizations, and
exhibiting discrete analogs (see the reference list).

This type of inequalities has been used recently in studying the gaps
between zeros of solutions of differential equations. The main purpose of the
present paper is to establish some new Opial-type inequalities with different
types of boundary conditions. To the best of our knowledge, no author has
discussed these problems till now.

2. Main results. In this section, we give our main results and some
corollaries.

Theorem 2.1. Let x( · ) ∈ C(n)[a, b] be such that αix
(i)(a)+βix

(i)(b) = 0
with αi, βi > 0 for 0 ≤ i ≤ n− 1 (n ≥ 1). Then

(2.1)

b�

a

|x(t)x(n)(t)| dt ≤
n−1∏
i=0

√
(α2

i + β2i )/2

αi + βi
(b− a)n

b�

a

|x(n)(t)|2 dt.

Proof. Define

Hi(s, t) =


αi

αi + βi
, a ≤ t ≤ s,

− βi
αi + βi

, s ≤ t ≤ b,

and

Li(s) =
( b�

a

|Hi(s, t)|2 dt
)1/2

=

[
α2
i (s− a) + β2i (b− s)

(αi + βi)2

]1/2
.

Then, by the condition αix
(i)(a) + βix

(i)(b) = 0 for 0 ≤ i ≤ n− 1, we have

(2.2) x(i)(s) =

b�

a

x(i+1)(t)Hi(s, t) dt (a ≤ s ≤ b).
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So, by the Cauchy–Schwarz inequality, we get

|x(i)(s)| ≤
b�

a

|x(i+1)(t)| |Hi(s, t)| dt

≤
( b�

a

|x(i+1)(t)|2 dt
)1/2( b�

a

|Hi(s, t)|2 dt
)1/2

= Li(s) ·
( b�

a

|x(i+1)(t)|2 dt
)1/2

.

Thus, for 0 ≤ i ≤ n− 1, we have

(2.3)
( b�

a

|x(i)(t)|2dt
)1/2

≤

√
(α2

i + β2i )/2

αi + βi
· (b− a)

( b�

a

|x(i+1)(t)|2 dt
)1/2

.

Using (2.3) inductively, we obtain

|x(t)| ≤ L0(t) ·
( b�

a

|x′(t)|2 dt
)1/2

(2.4)

≤ L0(t) ·
√

(α2
1 + β21)/2

α1 + β1
· (b− a)

( b�

a

|x′′(t)|2 dt
)1/2

≤ · · ·

≤ L0(t) ·
n−1∏
i=1

√
(α2

i + β2i )/2

αi + βi
(b− a)n−1

( b�

a

|x(n)(t)|2 dt
)1/2

.

Using the Cauchy–Schwarz inequality, we have

b�

a

L0(t) · |x(n)(t)| dt ≤
√

(α2
0 + β20)/2

α0 + β0
(b− a)

( b�

a

|x(n)(t)|2 dt
)1/2

.(2.5)

Multiplying (2.4) by |x(n)(t)|, and using (2.5), we obtain (2.1).

Letting αi = βi = 1 (0 ≤ i ≤ n− 1) in Theorem 2.1 yields the following
result.

Corollary 2.2. Let x( · ) ∈ C(n)[a, b] be such that x(i)(a) + x(i)(b) = 0
for 0 ≤ i ≤ n− 1 (n ≥ 1). Then

(2.6)

b�

a

|x(t)x(n)(t)| dt ≤
(
b− a

2

)n b�

a

|x(n)(t)|2 dt.
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Theorem 2.3. Let x( · ) ∈ C(2n)[a, b] be such that x(2i)(a) = x(2i)(b) = 0
for 0 ≤ i ≤ n− 1 (n ≥ 1). Then

(2.7)

b�

a

|x(t)x(2n)(t)| dt ≤
(

4

3
√

10

)n(b− a
2

)2n b�

a

|x(2n)(t)|2 dt.

Proof. In view of the assumptions on x(t), it is easy to check that

(2.8) x(2i)(t) = −
b�

a

T (t, s)x(2i+2)(s) ds, 0 ≤ i ≤ n− 1,

where

T (t, s) =


(s− a)(b− t)

b− a
, a ≤ s ≤ t ≤ b,

(t− a)(b− s)
b− a

, a ≤ t ≤ s ≤ b.

So by the Cauchy–Schwarz inequality, we obtain

|x(2i)(t)| ≤
b�

a

|T (t, s)| |x(2i+2)(s)| ds(2.9)

≤
( b�

a

|T (t, s)|2 ds
)1/2( b�

a

|x(2i+2)(s)|2 ds
)1/2

=
(b− t)(t− a)√

3(b− a)

( b�

a

|x(2i+2)(s)|2 ds
)1/2

.

Thus, for 0 ≤ i ≤ n− 1, we get

(2.10)
( b�

a

|x(2i)(t)|2 dt
)1/2

≤ 1√
3(b− a)

( b�

a

(t− a)2(b− t)2 dt
)1/2( b�

a

|x(2i+2)(t)|2 dt
)1/2

=
(b− a)2

3
√

10

( b�

a

|x(2i+2)(t)|2 dt
)1/2

.

Using (2.9) and (2.10) inductively, we obtain

(2.11) |x(t)| ≤
b�

a

|T (t, s)| |x′′(s)| ds

≤ (b− t)(t− a)√
3(b− a)

( b�

a

|x′′(s)|2 ds
)1/2
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≤ (b− t)(t− a)√
3(b− a)

· (b− a)2

3
√

10

( b�

a

|x(4)(t)|2 dt
)1/2

≤ · · ·

≤ (b− t)(t− a)√
3(b− a)

· (b− a)2n−2

(3
√

10)n−1
·
( b�

a

|x(2n)(t)|2 dt
)1/2

.

Using the Cauchy–Schwarz inequality, we have

b�

a

(b− t)(t− a)√
3(b− a)

|x(2n)(t)| dt ≤ (b− a)2

3
√

10

( b�

a

|x(2n)(t)|2 dt
)1/2

.(2.12)

Multiplying (2.11) by |x(2n)(t)|, and using (2.12), we obtain

b�

a

|x(t)x(2n)(t)| dt

≤ (b− a)2n−2

(3
√

10)n−1

( b�

a

|x(2n)(t)|2 dt
)1/2 b�

a

(b− t)(t− a)√
3(b− a)

|x(2n)(t)| dt

≤ (b− a)2n

(3
√

10)n

b�

a

|x(2n)(t)|2 dt.

The inequality (2.7) follows immediately.

Theorem 2.4. Let x( · ) ∈ C(2n+1)[a, b] be such that x(a) +x(b) = 0 and
x(2i+1)(a) = x(2i+1)(b) = 0 for 0 ≤ i ≤ n− 1 (n ≥ 1). Then

(2.13)

b�

a

|x(t)x(2n+1)(t)| dt ≤
(

4

3
√

10

)n(b− a
2

)2n+1 b�

a

|x(2n+1)(t)|2 dt.

Proof. By the assumption x(a) + x(b) = 0, it is easy to check that

(2.14) x(t) =

b�

a

K(t, s)x′(s) ds,

where

K(t, s) =

{
1/2, a ≤ s ≤ t ≤ b,
−1/2, a ≤ t ≤ s ≤ b.

So by the Cauchy–Schwarz inequality, we obtain

|x(t)| ≤
( b�

a

|K(t, s)|2 ds
)1/2( b�

a

|x′(s)|2 ds
)1/2

(2.15)

=

(
b− a

4

)1/2( b�

a

|x′(s)|2 ds
)1/2

.
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For 0 ≤ i ≤ n− 1, with the help of (2.10), we also have

(2.16)
( b�

a

|x(2i+1)(t)|2 dt
)1/2

≤ (b− a)2

3
√

10

( b�

a

|x(2i+3)(t)|2 dt
)1/2

.

Using (2.15) and (2.16) inductively, we obtain

|x(t)| ≤
(
b− a

4

)1/2( b�

a

|x′(s)|2 ds
)1/2

(2.17)

≤
(
b− a

4

)1/2

· (b− a)2

3
√

10

( b�

a

|x(3)(t)|2 dt
)1/2

≤ · · ·

≤
(
b− a

4

)1/2

· (b− a)2n

(3
√

10)n

( b�

a

|x(2n+1)(t)|2 dt
)1/2

.

Multiplying (2.17) by |x(2n+1)(t)|, and using the Cauchy–Schwarz inequality,
we obtain

b�

a

|x(t)x(2n+1)(t)| dt

≤
(
b− a

4

)1/2

· (b− a)2n

(3
√

10)n

( b�

a

|x(2n+1)(t)|2 dt
)1/2 b�

a

|x(2n+1)(t)| dt

≤ (b− a)2n+1

2(3
√

10)n

b�

a

|x(2n)(t)|2 dt.

The inequality (2.13) follows immediately.

Theorem 2.5. Let x( · ) ∈ C(2n)[a, b] be such that x(2i)(a) = x(2i+1)(b)
= 0 for 0 ≤ i ≤ n− 1 (n ≥ 1). Then

(2.18)

b�

a

|x(t)x(2n)(t)| dt ≤
(

4√
6

)n(b− a
2

)2n b�

a

|x(2n)(t)|2 dt.

Proof. In view of the assumptions on x(t), it is easy to check that

(2.19) x(2i)(t) = −
b�

a

P (t, s)x(2i+2)(s) ds, 0 ≤ i ≤ n− 1,

where

P (t, s) =

{
s− a, a ≤ s ≤ t ≤ b,
t− a, a ≤ t ≤ s ≤ b.
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Denote

Q(t) =
( b�

a

|P (t, s)|2 ds
)1/2

=
1√
3

√
(t− a)3 + 3(t− a)2(b− t).

By the Cauchy–Schwarz inequality, we obtain

|x(2i)(t)| ≤
b�

a

|P (t, s)| |x(2i+2)(s)| ds(2.20)

≤
( b�

a

|P (t, s)|2 ds
)1/2( b�

a

|x(2i+2)(s)|2 ds
)1/2

= Q(t) ·
( b�

a

|x(2i+2)(s)|2 ds
)1/2

.

Thus, for 0 ≤ i ≤ n− 1, we get( b�

a

|x(2i)(t)|2 dt
)1/2

≤
( b�

a

Q2(t) dt
)1/2( b�

a

|x(2i+2)(t)|2 dt
)1/2

(2.21)

=
(b− a)2√

6

( b�

a

|x(2i+2)(t)|2 dt
)1/2

.

Using (2.20) and (2.21) inductively, we obtain

|x(t)| ≤
b�

a

|P (t, s)| |x′′(s)| ds(2.22)

≤ Q(t) ·
( b�

a

|x′′(s)|2 ds
)1/2

≤ Q(t) · (b− a)2√
6

( b�

a

|x(4)(t)|2 dt
)1/2

≤ · · ·

≤ Q(t) · (b− a)2n−2

(
√

6)n−1

( b�

a

|x(2n)(t)|2 dt
)1/2

.

Using the Cauchy–Schwarz inequality, we find that

b�

a

Q(t)|x(2n)(t)| dt ≤
( b�

a

Q2(t) dt
)1/2( b�

a

|x(2n)(t)|2 dt
)1/2

(2.23)

=
(b− a)2√

6

( b�

a

|x(2n)(t)|2 dt
)1/2

.



192 Y. Y. Wang et al.

Multiplying (2.22) by |x(2n)(t)|, and using (2.23), we conclude that

b�

a

|x(t)x(2n)(t)| dt ≤ (b− a)2n

(
√

6)n

b�

a

|x(2n)(t)|2 dt.

The inequality (2.18) follows immediately.
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