L-homology theory of $F S Q L$-manifolds and the degree of FSQL-mappings

by A. Abbasov (Biga)

Abstract

A homology theory of Banach manifolds of a special form, called FSQLmanifolds, is developed, and also a homological degree of FSQL-mappings between FSQLmanifolds is introduced.

1. Introduction. In this article the results of the article [3] are generalized to Banach manifolds of a special form, namely to Fredholm Special Quasi Linear (FSQL) manifolds. In other words, a homology theory of such manifolds is devised and also the homological degree of FSQL-mappings between them is introduced. Every $F S Q L$-mapping is an $F Q L$-mapping 10 , $\left.{ }^{1}\right)$, and vice versa. However, $F S Q L$-mappings are more convenient for the structure of $F S Q L$-manifolds.

It is known that the degree of a mapping is a strong tool for proving the existence of solutions of various mathematical problems. For instance, various variants of the nonlinear Hilbert problem ([7], [10], etc.) have been solved with the help of the degree of $F Q L$-mappings. Moreover, the homological degree of mappings transforms topological problems into algebraic ones. In this case, the problem of finding the degree of a mapping will be reduced to a combinatorial problem.
2. Definition of $F S Q L$-manifolds and $F S Q L$-mappings. Let $\xi_{p}=$ $\left(X_{p}, \varphi_{p}, V_{p}\right)$ and $\xi_{p, r}=\left(X_{p}, \varphi_{p, r}, V_{p, r}\right)$ be affine bundles with identical total space X_{p} and with base spaces $V_{p}, V_{p, r}$ which are p - and r-manifolds ($r \geq p$), respectively.

[^0]Definition 2.1. $\xi_{p, r}$ is called an $(r-p)$-division of ξ_{p} if

$$
\begin{array}{ll}
\forall \alpha^{\prime} \in V_{p, r} \exists \alpha \in V_{p}, & \varphi_{p, r}^{-1}\left(\alpha^{\prime}\right) \subset \varphi_{p}^{-1}(\alpha) \text { and } \\
& \operatorname{codim}\left(\varphi_{p, r}^{-1}\left(\alpha^{\prime}\right)\right)=r-p \text { in } \varphi_{p}^{-1}(\alpha) .
\end{array}
$$

Obviously, in this case $V_{p, r}$ is an affine bundle with the base space V_{p} and with fibers of dimension $r-p$.

Let $\eta_{m}=\left(Y_{m}, \psi_{m}, B_{m}\right)$ also be an affine bundle, the base space of which is an m-manifold.

Definition 2.2. A continuous mapping $f_{p, m}: X_{p} \rightarrow Y_{m}$ is called a Fredholm Special Linear (FSL) mapping between the affine bundles ξ_{p} and η_{m} if for some r there exists an $(r-p)$-division $\xi_{p, r}=\left(X_{p}, \varphi_{p, r}, V_{p, r}\right)$ of ξ_{p} and an $(r-m)$-division $\eta_{m, r}=\left(Y_{m}, \psi_{m, r}, B_{m, r}\right)$ of η_{m} with the same dimension r of the base spaces, such that $f_{p, m}$ induces a bimorphism between $\xi_{p, r}$ and $\eta_{m, r}$.

From this point on, we will denote such $f_{p, m}$ as $f_{p, m, r}$. We will also call the restriction of an $F S L$-mapping to any subset of X_{p} an $F S L$-mapping.

Obviously, if $f_{p, m, r}$ is a bimorphism between $\xi_{p, r}$ and $\eta_{m, r}$, then it is also a bimorphism between some $(\nu-r)$-divisions $\xi_{p, \nu}=\left(X_{p}, \varphi_{p, \nu}, V_{p, \nu}\right)$ and $\eta_{m, \nu}=\left(Y_{m}, \psi_{m, \nu}, B_{m, \nu}\right)$ of $\xi_{p, r}$ and $\eta_{m, r}$ for any $\nu>r$.

For simplicity, let us assume that ξ_{p} and η_{m} are embedded in Banach spaces E_{1} and E_{2} with norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$, respectively. Let $f_{p, m, r}: X_{p} \rightarrow$ Y_{m} be a bimorphism between ξ_{p} and η_{m}, and Δ_{p} be a bounded domain in X_{p}. Let

$$
\begin{aligned}
\left\|f_{p, m, r}\right\| \|_{\Delta_{p}}=\sup \inf \{C \mid & \left\|f_{p, m, r, \alpha^{\prime}}(u)\right\|_{2} \leq C\left(1+\|u\|_{1}\right), \\
& \left.\|u\|_{1} \leq C\left(1+\left\|f_{p, m, r, \alpha^{\prime}}(u)\right\|_{2}\right), \forall u \in X_{p, \alpha^{\prime}}\right\}
\end{aligned}
$$

where $X_{p, \alpha^{\prime}}$ is the fiber of $\xi_{p, r}$ over $\alpha^{\prime} \in V_{p, r}, f_{p, m, r, \alpha^{\prime}}$ is the restriction of $f_{p, m, r}$ onto $X_{p, \alpha^{\prime}}$, and the supremum is taken over all $X_{p, \alpha^{\prime}}$ for which $X_{p, \alpha^{\prime}} \cap \Delta_{p} \neq \emptyset$.

Definition 2.3. A continuous mapping $f_{p, m}: X_{p} \rightarrow Y_{m}$ is called an FSQL-mapping between the affine bundles ξ_{p} and η_{m} if it can be uniformly approximated in each bounded domain Δ_{p} of X_{p} by $F S L$-mappings $f_{p, m, r}$ so that

$$
\left\|\mid f_{p, m, r}\right\|_{\Delta_{p}} \leq C\left(\Delta_{p}\right), \quad \forall r>r\left(\Delta_{p}\right),
$$

where $C\left(\Delta_{p}\right)$ is independent of r for $r>r\left(\Delta_{p}\right)$.
Now we shall give definitions of $F S Q L$-manifolds and of $F S Q L$-mappings between $F S Q L$-manifolds. Let \tilde{X} be a Banach manifold and $\left\{\tilde{X}_{p}\right\}, \tilde{X}_{p-1} \subset$ $\tilde{X}_{p}, p=1,2, \ldots$, be a system of open sets covering \tilde{X}, i.e. $\tilde{X}=\bigcup \tilde{X}_{p}$. Let $\xi_{p}=\left(X_{p}, \varphi_{p}, V_{p}\right)$ be an affine bundle, Δ_{p} be a bounded domain in X_{p} and $\tilde{\varphi}_{p}: \tilde{X}_{p} \rightarrow \Delta_{p}$ be a homeomorphism. In this case, ($\left.\tilde{\varphi}_{p}, \tilde{X}_{p}\right)$ is called a linear chart (L-chart) on \tilde{X}. We shall say that a linear structure (L-structure)
is introduced on \tilde{X}_{p} if the conditions above are satisfied. If an L-structure is defined on \tilde{X}_{p+1}, then obviously it is also defined on \tilde{X}_{p} (as an induced structure). If $\tilde{\varphi}_{p^{\prime}}: \tilde{X}_{p^{\prime}} \rightarrow \Delta_{p^{\prime}}, \tilde{\varphi}_{p^{\prime \prime}}: \tilde{X}_{p^{\prime \prime}} \rightarrow \Delta_{p^{\prime \prime}}, p^{\prime}, p^{\prime \prime} \geq p$, are two L structures on \tilde{X}_{p}, then the transition functions $\tilde{\varphi}_{p^{\prime \prime}} \circ \tilde{\varphi}_{p^{\prime}}^{-1}: \Delta_{p^{\prime}} \rightarrow \Delta_{p^{\prime}}$ and $\tilde{\varphi}_{p^{\prime}} \circ \tilde{\varphi}_{p^{\prime}}^{-1}: \Delta_{p^{\prime \prime}} \rightarrow \Delta_{p^{\prime}}$ arise. Let us suppose that they are FSQL-mappings between $\xi_{p^{\prime}}=\left(X_{p^{\prime}}, \varphi_{p^{\prime}}, V_{p^{\prime}}\right)$ and $\xi_{p^{\prime \prime}}=\left(X_{p^{\prime \prime}}, \varphi_{p^{\prime \prime}}, V_{p^{\prime \prime}}\right)$. In that case, we shall say that the two L-structures on \tilde{X}_{p} are equivalent.

Definition 2.4. A class of equivalent L-structures on \tilde{X}_{p} is called an FSQL-structure on \tilde{X}_{p}.

Obviously, an $F S Q L$-structure on \tilde{X}_{p+1} induces an $F S Q L$-structure on \tilde{X}_{p}. An FSQL-structure on \tilde{X}_{p} is said to be coordinated with an FSQLstructure on \tilde{X}_{p+1} if it coincides with the induced structure.

Definition 2.5. A collection of $F S Q L$-structures on $\tilde{X}_{p}, p=1,2, \ldots$, which are coordinated with each other is called an FSQL-structure on \tilde{X}. A Banach manifold \tilde{X} with an $F S Q L$-structure is called an FSQL-manifold.

Let \tilde{X}, \tilde{Y} be $F S Q L$-manifolds,

$$
\tilde{X}=\bigcup \tilde{X}_{p}, \tilde{X}_{p} \subset \tilde{X}_{p+1} \forall p, \quad \tilde{Y}=\bigcup \tilde{Y}_{m}, \tilde{Y}_{m} \subset \tilde{Y}_{m+1} \forall m
$$

$\left(\tilde{\varphi}_{p}, \tilde{X}_{p}\right),\left(\tilde{\psi}_{m}, \tilde{Y}_{m}\right)$ be L-charts on \tilde{X}, \tilde{Y} and $\tilde{\varphi}_{p}\left(\tilde{X}_{p}\right)=\Delta_{p}, \tilde{\psi}_{m}\left(\tilde{Y}_{m}\right)=\Omega_{m}$ be bounded domains in $\xi_{p}=\left(X_{p}, \varphi_{p}, V_{p}\right), \eta_{m}=\left(Y_{m}, \psi_{m}, B_{m}\right)$, respectively.

Definition 2.6. A continuous mapping $\tilde{f}: \tilde{X} \rightarrow \tilde{Y}$ between $F S Q L$ manifolds \tilde{X} and \tilde{Y} is called an FSQL-mapping if
(a) $\forall p \exists m, \tilde{f}\left(\tilde{X}_{p}\right) \subset \tilde{Y}_{m}$,
(b) $f_{p, m} \equiv \tilde{\psi}_{m} \circ \tilde{f} \circ \tilde{\varphi}_{p}^{-1}: \Delta_{p} \rightarrow \Omega_{m}$ is an FSQL-mapping between the domains of the affine bundles ξ_{p} and η_{m}.
3. L-homology theory of affine bundles. Singular theory. First, note that the simplicial theory of (n, k)-simplexes is available in [3], it is similar to the finite-dimensional case.

Let H be a real Hilbert space, H^{k} be a linear subspace of codimension $k(k \geq 0)$ and σ_{n} be a Euclidean n-simplex. We will name the Cartesian product $\sigma_{n} \times H^{k}$ a Hilbertian simplex of bi-dimension (n, k) and we will denote it by σ_{n}^{k}, that is, $\sigma_{n}^{k}=\sigma_{n} \times H^{k}$. We will consider σ_{n}^{k} to be oriented if σ_{n} is oriented. In this case, the orientation on σ_{n} is taken to be the orientation on σ_{n}^{k}. From this point on, we will consider σ_{n}^{k} to be oriented.

Definition 3.1. A continuous mapping $f_{n}^{k}: \sigma_{n}^{k} \rightarrow X_{p}$ is called a singular (n, k)-simplex in ξ_{p} if there exists a k-division $\left(\xi_{p^{\prime}}\right)$ of ξ_{p} such that f_{n}^{k} induces a bimorphism between $\sigma_{n} \times H^{k}$ and $\xi_{p^{\prime}}$.

It follows from this definition that each singular (n, k)-simplex f_{n}^{k} induces some finite-dimensional mapping between the base spaces σ_{n} and $V_{p^{\prime}}\left(p^{\prime}=\right.$ $p+k)$ of these bundles.

Definition 3.2. A finite formal linear combination $\tilde{c}_{n}^{k}=\sum_{i} g_{i} \cdot f_{n, i}^{k}$ of singular (n, k)-simplexes in ξ_{p} with coefficients $g_{i} \in \mathbb{Z}$, where \mathbb{Z} is the ring of integers, is called a singular (n, k)-chain in ξ_{p}.

We will denote by $\tilde{C}_{n}^{k}\left(X_{p}\right)$ the set of all singular chains in ξ_{p} of bidimension (n, k). Obviously, it is an Abelian group under addition of chains. It is a free group.

Definition 3.3. We define the differential

$$
\tilde{\partial}_{n}^{k}: \tilde{C}_{n}^{k}\left(X_{p}\right) \rightarrow \tilde{C}_{n-1}^{k}\left(X_{p}\right) \quad \forall n \geq 1, \forall k \geq 0
$$

as follows:

$$
\tilde{\partial}_{n}^{k} f_{n}^{k}=\sum(-1)^{i}\left(\left.f_{n}^{k}\right|_{\sigma_{n-1, i}^{k}}\right)
$$

and we extend it to $\tilde{C}_{n}^{k}\left(X_{p}\right)$ by additivity. Moreover,

$$
\tilde{\partial}_{0}^{k}: \tilde{C}_{0}^{k}\left(X_{p}\right) \rightarrow 0 \quad \forall k \geq 0
$$

Remark. Here $\sigma_{n-1, i}^{k}$ is the $(n-1, k)$-boundary of the simplex σ_{n}^{k}, which is located opposite vertex i.

Theorem 3.4. The equality

$$
\tilde{\partial}_{n-1}^{k} \circ \tilde{\partial}_{n}^{k}=0
$$

is true for each $n \geq 1$ and k.
The proof is similar to the finite-dimensional case.
Analogously to the finite-dimensional case, one can define the groups $\operatorname{Ker} \tilde{\partial}_{n}^{k}, \operatorname{Im} \tilde{\partial}_{n+1}^{k}$ and \tilde{H}_{n}^{k}, i.e. the groups of (n, k)-cycles, (n, k)-boundaries and the (n, k)-homology group (see [3]). However the theory of relative homology of ξ_{p}, which is introduced in the following section, is more interesting.

4. The relative L-homology of an affine bundle

DEFINITION 4.1. An (n, k)-chain $\tilde{c}_{n}^{k} \in \tilde{C}_{n}^{k}\left(X_{p}\right)$ is called a relative cycle of bi-dimension (n, k) if $\tilde{\partial}_{n}^{k} \tilde{c}_{n}^{k} \in \tilde{C}_{n-1}^{k}\left(X_{p} \backslash \Delta_{p}\right)$.

Definition 4.2. A relative cycle \tilde{c}_{n}^{k} is called homologous to zero if

$$
\exists \tilde{c}_{n+1}^{k} \in \tilde{C}_{n+1}^{k}\left(X_{p}\right), \quad \tilde{\partial}_{n+1}^{k} \tilde{c}_{n+1}^{k}=\tilde{c}_{n}^{k} \oplus \tilde{d}_{n}^{k}, \quad \tilde{d}_{n}^{k} \in \tilde{C}_{n}^{k}\left(X_{p} \backslash \Delta_{p}\right)
$$

It follows from this definition that the sum of relative (n, k)-cycles homologous to zero is also homologous to zero. Therefore the set of relative (n, k)-cycles homologous to zero forms a subgroup of the group of relative (n, k)-cycles.

Now we define the concept of "support" of a singular simplex.
Let f_{n}^{k} be a singular simplex in X_{p}. By definition, it induces a bimorphism between $\sigma_{n} \times H^{k}$ and some k-division $\xi_{p^{\prime}}=\left(X_{p}, \varphi_{p^{\prime}}, V_{p^{\prime}}\right)$ of ξ_{p}. Then $\left(f_{n}^{k}\right)^{-1}\left(\xi_{p^{\prime}}\right)$ induces an affine bundle $\left(\sigma_{n^{\prime}}^{k^{\prime}}\right)$, which is a $\left(k^{\prime}-k\right)$-division of σ_{n}^{k} : its base space $\sigma_{n^{\prime}}$ is itself an affine bundle with base space σ_{n} and fiber $H_{k^{\prime}-k}, n^{\prime}=n+\left(k^{\prime}-k\right)$, which is the Euclidean $\left(k^{\prime}-k\right)$-space. As σ_{n} is convex, one can represent $\sigma_{n^{\prime}}$ in the form of a Cartesian product: $\sigma_{n^{\prime}}=\sigma_{n} \times H_{k^{\prime}-k}$. Therefore the bundle $\sigma_{n^{\prime}}^{k^{\prime}}$ is also a Cartesian product, i.e. $\sigma_{n^{\prime}}^{k^{\prime}}=\sigma_{n^{\prime}} \times H^{k^{\prime}}$, where $H^{k^{\prime}}$ is a subspace of H of codimension k^{\prime}. Now we divide $\sigma_{n^{\prime}}$ into n^{\prime}-prisms $\sigma_{n^{\prime}, j}, j=0, \pm 1, \pm 2, \ldots$, with bases $\sigma_{n}\left({ }^{2}\right)$. Let us choose the orientation of one $\left(n^{\prime}, k^{\prime}\right)$-prism $\sigma_{n^{\prime}, j}^{k^{\prime}}=\sigma_{n^{\prime}, j} \times H^{k^{\prime}}$ arbitrarily and coordinate orientations of other $\left(n^{\prime}, k^{\prime}\right)$-prisms with it. Then any two neighboring prisms will induce opposite orientations on the common edge. Obviously, it is possible to divide $\sigma_{n^{\prime}}$ into n^{\prime}-prisms so that the restriction of each of the mappings f_{n}^{k} to a unique $\sigma_{n^{\prime}, j} \times H^{k^{\prime}}$ contains the intersection of $f_{n}^{k}\left(\sigma_{n}^{k}\right)$ with Δ_{p}; this is possible because of the linearity of each f_{n}^{k} on H_{α}^{k}, the uniform continuity of f_{n}^{k} in α, and the boundedness of Δ_{p}. In this case all the other analogous restrictions will be outside of Δ_{p}. Thus, we can give the following

Definition 4.3. The restriction of a singular simplex f_{n}^{k} to an $\left(n^{\prime}, k^{\prime}\right)$ prism $\sigma_{n^{\prime}}^{k^{\prime}}$ is called an $\left(n^{\prime}, k^{\prime}\right)$-support of f_{n}^{k} if
(a) $n^{\prime}-n=k^{\prime}-k$,
(b) $f_{n}^{k}\left(\sigma_{n^{\prime}}^{k^{\prime}}\right) \cap \Delta_{p}=f_{n}^{k}\left(\sigma_{n}^{k}\right) \cap \Delta_{p}$.

Let us denote the $\left(n^{\prime}, k^{\prime}\right)$-support of f_{n}^{k} by $f_{n^{\prime}}^{k^{\prime}}$. From Definition 4.3 it follows that there can be different $\left(n^{\prime}, k^{\prime}\right)$-supports of a singular (n, k)-simplex. But obviously, the difference of two $\left(n^{\prime}, k^{\prime}\right)$-supports of f_{n}^{k} is homologous to zero relative to $X_{p} \backslash \Delta_{p}$.

Analogously, we shall say that a chain $\tilde{c}_{n^{\prime}}^{k^{\prime}}=\sum g_{i} \cdot f_{n^{\prime}, i}^{k^{\prime}}$ is an $\left(n^{\prime}, k^{\prime}\right)$ support of the chain $\tilde{c}_{n}^{k}=\sum g_{i} \cdot f_{n, i}^{k}$ if for each i the simplex $f_{n^{\prime}, i}^{k^{\prime}}$ is an (n^{\prime}, k^{\prime})-support of $f_{n, i}^{k}$.

Obviously with the help of the above construction one can construct an $\left(n^{\prime \prime}, k^{\prime \prime}\right)$-support of the chain \tilde{c}_{n}^{k} for any $n^{\prime \prime}>n^{\prime}, k^{\prime \prime}>k^{\prime}$, where $n^{\prime \prime}-n=$ $k^{\prime \prime}-k$.

[^1]REMARK. In view of the aforementioned construction, from this point on we will suppose that all simplexes $f_{n^{\prime}, i}^{k^{\prime}}$ of $\tilde{c}_{n^{\prime}}^{k^{\prime}}$ are bimorphisms between $\sigma_{n} \times H^{k}$ and $\xi_{p^{\prime \prime}}=\left(X_{p}, \varphi_{p^{\prime \prime}}, V_{p^{\prime \prime}}\right)$.

Let \tilde{c}_{n}^{k} be a singular cycle relative to $X_{p} \backslash \Delta_{p}$ and $\tilde{c}_{n^{\prime}}^{k^{\prime}}$ be its $\left(n^{\prime}, k^{\prime}\right)$ support. Let us orient each simplex of $\tilde{c}_{n^{\prime}}^{k^{\prime}}$ so that two simplexes which have a common edge induce opposite orientations on this common edge. Then $\tilde{c}_{n^{\prime}}^{k^{\prime}}$ is also a singular cycle relative to $X_{p} \backslash \Delta_{p}$. Thus the relative cycle $\tilde{c}_{n^{\prime}}^{k^{\prime}}$ is oriented (in two possible ways).

Obviously, two supports of a relative cycle \tilde{c}_{n}^{k} of the same bi-dimension are homologous to each other relative to $X_{p} \backslash \Delta_{p}$.

Lemma 4.4. If \tilde{c}_{n}^{k} is a singular cycle relative to $X_{p} \backslash \Delta_{p}$, then for every $l>0$ its $(n+l, k+l)$-support \tilde{c}_{n+l}^{k+l} is also a singular cycle relative to $X_{p} \backslash \Delta_{p}$, and if an $(n+l, k+l)$-support \tilde{c}_{n+l}^{k+l} of \tilde{c}_{n}^{k} is a singular cycle relative to $X_{p} \backslash \Delta_{p}$ for some $l>0$, then \tilde{c}_{n}^{k} is also a singular cycle relative to $X_{p} \backslash \Delta_{p}\left({ }^{3}\right)$.

Indeed, as \tilde{c}_{n}^{k} is a singular cycle relative to $X_{p} \backslash \Delta_{p}, \tilde{\partial}_{n}^{k} \tilde{c}_{n}^{k} \in \tilde{C}_{n-1}^{k}\left(X_{p} \backslash \Delta_{p}\right)$. Because of the definition of a support of a chain and the construction of the prism, the boundary of the $(n+l, k+l)$-support \tilde{c}_{n+l}^{k+l} also belongs to $X_{p} \backslash \Delta_{p}$ for every $l>0$. For the proof of the second statement of this lemma, it is enough to apply the construction from the definition of the support of a function in reverse order.

Lemma 4.5. If $\tilde{c}_{n}^{k} \sim 0\left(X_{p}, X_{p} \backslash \Delta_{p}\right)$, then $\tilde{c}_{n+l}^{k+l} \sim 0\left(X_{p}, X_{p} \backslash \Delta_{p}\right)$ for all $l>0$, and if $\tilde{c}_{n+l}^{k+l} \sim 0\left(X_{p}, X_{p} \backslash \Delta_{p}\right)$ for some $l>0$, then $\tilde{c}_{n}^{k} \sim 0$ $\left.\left(X_{p}, X_{p} \backslash \Delta_{p}\right) 4^{4}\right)$.

Indeed, if $\tilde{c}_{n}^{k} \sim 0\left(X_{p}, X_{p} \backslash \Delta_{p}\right)$, then

$$
\exists \tilde{c}_{n+1}^{k} \in \tilde{C}_{n+1}^{k}\left(X_{p}\right), \quad \tilde{\partial}_{n+1}^{k} \tilde{c}_{n+1}^{k}=\tilde{c}_{n}^{k} \oplus \tilde{d}_{n}^{k}, \quad \tilde{d}_{n}^{k} \in \tilde{C}_{n}^{k}\left(X_{p} \backslash \Delta_{p}\right)
$$

In this case one can construct an $(n+l+1, k+l)$-support \tilde{c}_{n+l+1}^{k+l} of \tilde{c}_{n+1}^{k} such that

$$
\tilde{\partial}_{n+l+1}^{k+l} \tilde{c}_{n+l+1}^{k+l}=\tilde{c}_{n+l}^{k+l} \oplus \tilde{d}_{n+l}^{k+l}, \quad \tilde{d}_{n+l}^{k+l} \in \tilde{C}_{n+l}^{k+l}\left(X_{p} \backslash \Delta_{p}\right)
$$

where \tilde{c}_{n+l}^{k+l} and \tilde{d}_{n+l}^{k+l} are $(n+l, k+l)$-supports of \tilde{c}_{n}^{k} and \tilde{d}_{n}^{k}, respectively. For the proof of the second statement of this lemma it is enough to apply the construction from the definition of support of a function in reverse order.

In view of Lemmas 4.4 and 4.5 we can give a new definition of homology to zero, which is equivalent to the previous one.

[^2]Definition 4.6 (equivalent to Definition 4.2. A relative cycle \tilde{c}_{n}^{k} is called homologous to zero if for some $l>0$ its $(n+l, k+l)$-support \tilde{c}_{n+l}^{k+l} is homologous to zero (in the sense of Definition 4.2).
5. Calculation of relative L-homology of an affine bundle. In this section we will assume that the base space $V_{p_{0}}$ of the affine bundle $\xi_{p_{0}}=\left(X_{p_{0}}, \varphi_{p_{0}}, V_{p_{0}}\right)$ does not have boundary, and the bounded domain $\Delta_{p_{0}}$ is of the form $X_{p_{0}} \cap B_{1}(R)$, where $B_{1}(R)$ is the open ball in E_{1} of radius R with center at zero $\left({ }^{5}\right)$.

Theorem 5.1. For any p_{0} and $k \geq 0$,

$$
\tilde{H}_{n}^{k}\left(X_{p_{0}}, X_{p_{0}} \backslash \Delta_{p_{0}}\right) \cong \begin{cases}0, & n \neq p_{0}+k \\ \mathbb{Z}, & n=p_{0}+k\end{cases}
$$

The proof reduces to calculating $\tilde{H}_{n}\left(V_{p_{0}, p_{0}+k}, V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}\right)$ where $W_{p_{0}, p_{0}+k}=\varphi_{p_{0}, p_{0}+k}\left(\Delta_{p_{0}}\right), \varphi_{p_{0}, p_{0}+k}$ is the projection of the k-division $\left(X_{p_{0}}, \varphi_{p_{0}, p_{0}+k}, V_{p_{0}, p_{0}+k}\right)$ of $\left(X_{p_{0}}, \varphi_{p_{0}}, V_{p_{0}}\right)$.

Before proving the theorem we state two relevant lemmas.
Let $\tilde{c}_{n}^{k}=\sum g_{i} \cdot f_{n, i}^{k}$ be an (n, k)-chain in $\tilde{C}_{n}^{k}\left(X_{p_{0}}\right), \sigma_{n}^{k}=\sigma_{n} \times H^{k}$ be a Hilbertian (n, k)-simplex and $s: \sigma_{n} \rightarrow \sigma_{n}^{k}$ be a continuous section of $\sigma_{n} \times H^{k}$. Let us consider the n-chain $\tilde{c}_{n}=\sum g_{i} \cdot f_{n, i}$ in $V_{p_{0}, p_{0}+k}$, where

$$
f_{n, i}=\varphi_{p_{0}, p_{0}+k} \circ f_{n, i}^{k} \circ s: \sigma_{n} \rightarrow V_{p_{0}, p_{0}+k}
$$

In other words, \tilde{c}_{n} is the projection (by means of $\varphi_{p_{0}, p_{0}+k}$) of the chain \tilde{c}_{n}^{k} onto $V_{p_{0}, p_{0}+k}$.

LEMMA 5.2. \tilde{c}_{n}^{k} is a cycle relative to $X_{p_{0}} \backslash \Delta_{p_{0}}$ if and only if \tilde{c}_{n} is a cycle relative to $V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}$.

Indeed, if \tilde{c}_{n}^{k} is a cycle relative to $X_{p_{0}} \backslash \Delta_{p_{0}}$, then $\tilde{\partial}_{n}^{k} \tilde{c}_{n}^{k} \in \tilde{C}_{n-1}^{k}\left(X_{p_{0}} \backslash \Delta_{p_{0}}\right)$. As \tilde{c}_{n} is the projection (by means of $\varphi_{p_{0}, p_{0}+k}$) of \tilde{c}_{n}^{k} onto $V_{p_{0}, p_{0}+k}$, then $\tilde{\partial}_{n} \tilde{c}_{n} \in \tilde{C}_{n-1}\left(V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}\right)$. The converse implication is self-evident.

LEMMA 5.3. $\tilde{c}_{n}^{k} \sim 0\left(X_{p_{0}}, X_{p_{0}} \backslash \Delta_{p_{0}}\right)$ if and only if

$$
\tilde{c}_{n} \sim 0\left(V_{p_{0}, p_{0}+k}, V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}\right)
$$

Indeed, if $\tilde{c}_{n}^{k} \sim 0\left(X_{p_{0}}, X_{p_{0}} \backslash \Delta_{p_{0}}\right)$, it follows that

$$
\exists \tilde{c}_{n+1}^{k} \in \tilde{C}_{n+1}^{k}\left(X_{p_{0}}\right), \quad \tilde{\partial}_{n+1}^{k} \tilde{c}_{n+1}^{k}=\tilde{c}_{n}^{k} \oplus \tilde{d}_{n}^{k}, \quad \tilde{d}_{n}^{k} \in \tilde{C}_{n}^{k}\left(X_{p_{0}} \backslash \Delta_{p_{0}}\right)
$$

$\left({ }^{5}\right)$ Recall that the affine bundle $\xi_{p_{0}}$ is embedded in a Banach space E_{1}.

Therefore

$$
\tilde{\partial}_{n+1} \tilde{c}_{n+1}=\tilde{c}_{n} \oplus \tilde{d}_{n}, \quad \tilde{d}_{n} \in \tilde{C}_{n}\left(V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}\right)
$$

where $\tilde{c}_{n+1}, \tilde{c}_{n}$ and \tilde{d}_{n} are the projections (by means of $\varphi_{p_{0}, p_{0}+k}$) of the chains $\tilde{c}_{n+1}^{k}, \tilde{c}_{n}^{k}$ and \tilde{d}_{n}^{k} onto $V_{p_{0}, p_{0}+k}$, respectively. The converse implication is self-evident.

Proof of Theorem 5.1. Let $\tilde{c}_{n}^{k} \in\left[\tilde{c}_{n}^{k}\right] \in \tilde{H}_{n}^{k}\left(X_{p_{0}}, X_{p_{0}} \backslash \Delta_{p_{0}}\right)$, and \tilde{c}_{n} be the projection of \tilde{c}_{n}^{k} onto $V_{p_{0}, p_{0}+k}$. By Lemma 5.2, \tilde{c}_{n} is a cycle relative to $V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}$.

1) Let $n \neq p_{0}+k$. Then, as is known from the theory of finite-dimensional homology,

$$
\tilde{c}_{n} \sim 0\left(V_{p_{0}, p_{0}+k}, V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}\right)
$$

i.e. the n-dimensional singular cycle \tilde{c}_{n} in $V_{p_{0}, p_{0}+k}$ is homologous to zero relative to $V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}$. By Lemma 5.3 ,

$$
\tilde{c}_{n}^{k} \sim 0\left(X_{p_{0}}, X_{p_{0}} \backslash \Delta_{p_{0}}\right)
$$

Hence,

$$
\tilde{H}_{n}^{k}\left(X_{p_{0}}, X_{p_{0}} \backslash \Delta_{p_{0}}\right) \cong 0 \text { for } n \neq p_{0}+k
$$

2) Let $n=p_{0}+k$. If $\tilde{c}_{p_{0}+k}$ is a cycle relative to $V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}$, then

$$
\left[\tilde{c}_{p_{0}+k}\right] \in \tilde{H}_{p_{0}+k}\left(V_{p_{0}, p_{0}+k}, V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}\right)
$$

Therefore

$$
\exists d \in \mathbb{Z}, \quad\left[\tilde{c}_{p_{0}+k}\right]=d \cdot\left[\tilde{1}_{p_{0}+k}\right]
$$

where $\left[\tilde{1}_{p_{0}+k}\right]$ is the unit element of $\tilde{H}_{p_{0}+k}\left(V_{p_{0}, p_{0}+k}, V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}\right)$. By Lemma 5.3.

$$
\left[\tilde{c}_{p_{0}+k}^{k}\right]=d \cdot\left[\tilde{1}_{p_{0}+k}^{k}\right]
$$

where $\left[\tilde{1}_{p_{0}+k}^{k}\right]$ is the unit element of $\tilde{H}_{p_{0}+k}^{k}\left(X_{p_{0}}, X_{p_{0}} \backslash \Delta_{p_{0}}\right)$. By the abovementioned construction, the mapping

$$
\left[\tilde{c}_{p_{0}+k}^{k}\right] \mapsto d \in \mathbb{Z}
$$

is an isomorphism. Thus,

$$
\tilde{H}_{p_{0}+k}^{k}\left(X_{p_{0}}, X_{p_{0}} \backslash \Delta_{p_{0}}\right) \cong \mathbb{Z}
$$

Remark. Actually we proved that

$$
\tilde{H}_{n}^{k}\left(X_{p_{0}}, X_{p_{0}} \backslash \Delta_{p_{0}}\right) \cong \tilde{H}_{n}\left(V_{p_{0}, p_{0}+k}, V_{p_{0}, p_{0}+k} \backslash W_{p_{0}, p_{0}+k}\right) \cong \begin{cases}0, & n \neq p_{0}+k \\ \mathbb{Z}, & n=p_{0}+k\end{cases}
$$

As $\tilde{\varphi}_{p_{0}}\left(\tilde{X}_{p_{0}}\right)=\Delta_{p_{0}}$ and $\Delta_{p_{0}} \subset X_{p_{0}}$, the spaces $\left(\tilde{X}, \tilde{X} \backslash \tilde{X}_{p_{0}}\right)$ and $\left(X_{p_{0}}, X_{p_{0}} \backslash \Delta_{p_{0}}\right)$ are homeomorphic to each other. Therefore

$$
\tilde{H}_{n}^{k}\left(\tilde{X}, \tilde{X} \backslash \tilde{X}_{p_{0}}\right) \cong \begin{cases}0, & n \neq p_{0}+k \\ \mathbb{Z}, & n=p_{0}+k\end{cases}
$$

for every integer $k \geq 0\left(^{6}\right)$.
6. L-homological degree of an $F S Q L$-mapping between $F S Q L$ manifolds. We shall consider a simpler case for the definition of L-homological degree of $F S Q L$-mappings between $F S Q L$-manifolds.

We will suppose that

1) The $F S Q L$-manifolds \tilde{X}, \tilde{Y} are embedded in the Banach spaces E_{x}, E_{y} with the norms $\|\cdot\|_{x},\|\cdot\|_{y}$, respectively.
2) The mappings $\tilde{\varphi}_{p}, \tilde{\varphi}_{p}^{-1}, \tilde{\psi}_{m}, \tilde{\psi}_{m}^{-1}$ are uniformly continuous.
3) $\tilde{f}: \tilde{X} \rightarrow \tilde{Y}$ is an $F S Q L$-mapping which satisfies an a priori estimate

$$
\begin{equation*}
\|x\|_{x} \leq \Phi\left(\|\tilde{f}(x)\|_{y}\right) \tag{6.1}
\end{equation*}
$$

where Φ is some positive monotone function.
For simplicity, suppose that Φ is the identity mapping. Let us consider the equation

$$
\begin{equation*}
\tilde{f}(x)=y_{0}, \quad y_{0} \in \tilde{Y} \tag{6.2}
\end{equation*}
$$

Under condition 6.1), all the solutions of 6.2 belong to $\tilde{X}_{R_{0}}=\tilde{X} \cap B_{x}\left(R_{0}\right)$, where $B_{x}\left(R_{0}\right)$ is the open ball in E_{x} of radius $R_{0}=\left\|y_{0}\right\|_{y}$ with center at zero. According to the definition of an FSQL-manifold,

$$
\exists p_{0}, \forall p \geq p_{0}: \quad \tilde{X}_{R_{0}} \tilde{X}_{p}
$$

and according to the definition of FSQL-mappings between $F S Q L$-manifolds,

$$
\exists m_{0}, \forall m \geq m_{0}: \quad \tilde{f}\left(\tilde{X}_{p}\right) \subset \tilde{Y}_{m}
$$

Let p and m be numbers for which all the above mentioned conditions are satisfied. Then to define the degree of \tilde{f} at the point $y_{0} \in \tilde{Y}$ we can consider the restriction of \tilde{f} to \tilde{X}_{p}. As $\tilde{\varphi}_{p}$ and $\tilde{\psi}_{m}$ are homeomorphisms, equation 6.2 holds in $\tilde{X}_{R_{0}}$ if and only if the equation

$$
f_{p, m}(u)=w_{0}, \quad w_{0}=\tilde{\psi}_{m}\left(y_{0}\right)
$$

holds in $\tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}}\right)$, where $f_{p, m} \equiv \tilde{\psi}_{m} \circ \tilde{f} \circ \tilde{\varphi}_{p}^{-1}: \Delta_{p} \rightarrow \Omega_{m}, \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}}\right) \subset \Delta_{p}$.
According to the definition of FSQL-manifolds, $f_{p, m}$ is an FSQL-mapping between the affine bundles ξ_{p} and η_{m}. Let $\left\{f_{p, m, r}\right\}$ be a sequence of $F S L$ mappings which is uniformly convergent to $f_{p, m}$ on Δ_{p}. Let us consider the
$\left({ }^{6}\right)$ Recall that p_{0} is the dimension of the base space $V_{p_{0}}$ of the affine bundle $\xi_{p_{0}}$.
equation

$$
\begin{equation*}
f_{p, m, r}(u)=w_{0} \tag{6.3}
\end{equation*}
$$

We will search for its solutions in $\tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)$, where $\tilde{X}_{R_{0}^{\prime}}=\tilde{X} \cap B_{x}\left(R_{0}^{\prime}\right)$, $R_{0}^{\prime}=\left\|y_{0}\right\|_{y}+2 \delta, \delta>0$.

REmARK. $\quad \tilde{X}_{R_{0}^{\prime}} \subset \tilde{X}_{p}$ for large enough p, therefore $\tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right) \subset \Delta_{p}$.
Obviously, $\tilde{f}(x) \in \tilde{Y} \backslash B_{y}\left(R_{0}\right)$ at $x \in \tilde{X} \backslash B_{x}\left(R_{0}\right)$, where $B_{y}\left(R_{0}\right)$ is the open ball in E_{y} of radius R_{0} with center at zero. Therefore \tilde{f} is a mapping of pairs $\left(\tilde{X}, \tilde{X} \backslash B_{x}\left(R_{0}\right)\right)$ and $\left(\tilde{Y}, \tilde{Y} \backslash B_{y}\left(R_{0}\right)\right)$, and $f_{p, m}$ is a mapping of pairs $\left(\Delta_{p}, \Delta_{p} \backslash \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}}\right) t\right)$ and $\left.\left(\Omega_{m}, \Omega_{m} \backslash \tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}}\right)\right){ }^{7}\right)$

By the definition of $F S Q L$-mapping,

$$
\forall u \in \Delta_{p}: \quad\left\|f_{p, m}(u)-f_{p, m, r}(u)\right\|_{2}<\delta_{1}, \quad \delta_{1}>0
$$

for sufficiently large r. As the L-charts $\tilde{\varphi}_{p}, \tilde{\varphi}_{p}^{-1}, \tilde{\psi}_{m}, \tilde{\psi}_{m}^{-1}$ are uniformly continuous,

$$
\forall x \in \tilde{X}_{p}: \quad\left\|\tilde{f}(x)-\tilde{\psi}_{m}^{-1} \circ f_{p, m, r} \circ \tilde{\varphi}_{p}(x)\right\|_{y}<\delta, \quad \delta>0
$$

for a proper choice of δ_{1}. Therefore $f_{\tilde{\tilde{Y}}, m, r}$ will be a mapping of pairs $\left(\Delta_{p}\right.$, $\left.\Delta_{p} \backslash \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)\right)$ and $\left(\Omega_{m}, \Omega_{m} \backslash \tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}-\delta}\right)\right)$ for sufficiently large r, where $\tilde{Y}_{R_{0}-\delta}=\tilde{Y} \cap B_{y}\left(R_{0}-\delta\right), B_{y}\left(R_{0}-\delta\right)$ is the open ball in E_{y} of radius $R_{0}-\delta$ with center at zero.

Let $\left[\tilde{\omega}_{r+k}^{k}\right] \in \tilde{H}_{r+k}^{k}\left(\Delta_{p}, \Delta_{p} \backslash \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)\right), \tilde{\omega}_{r+k}^{k} \in\left[\tilde{\omega}_{r+k}^{k}\right], \tilde{\omega}_{r+k}^{k}=\sum g_{i} \cdot f_{r+k, i}^{k}$ and for any $i, f_{r+k, i}^{k}: \sigma_{r+k} \times H^{k} \rightarrow \xi_{p^{\prime \prime}}$ where $\xi_{p^{\prime \prime}}=\left(X_{p}, \varphi_{p^{\prime \prime}}, V_{p^{\prime \prime}}\right)$, and $f_{p, m, r}: \Delta_{p} \rightarrow \Omega_{m}$ is an FSL-mapping which satisfies the above mentioned conditions. One can construct an affine bundle $\xi_{p, \nu}, \nu \geq r$, which is a common division of $\xi_{p, r}$ and $\xi_{p^{\prime \prime}}$. Let us take an $(r+\nu, \nu)$-support $\tilde{\omega}_{r+\nu}^{\nu}=\sum g_{i} \cdot f_{r+\nu, i}^{\nu}$ of $\tilde{\omega}_{r+k}^{k}$. Then there exists a singular chain $\tilde{c}_{r+\nu}^{\nu}=$ $\sum g_{i} \cdot\left(f_{p, m, r} \circ f_{r+\nu, i}^{\nu}\right)$. By Lemma 4.4. $\tilde{\omega}_{r+\nu}^{\nu}$ is a relative cycle. As $f_{p, m, r}$ is a mapping of the above-mentioned pairs, $\tilde{c}_{r+\nu}^{\nu}$ is also a relative cycle, i.e. $\left\lfloor\tilde{c}_{r+\nu}^{\nu}\right\rfloor \in \tilde{H}_{r+\nu}^{\nu}\left(\Omega_{m}, \Omega_{m} \backslash \tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}-\delta}\right)\right)$. Obviously, the class $\left[\tilde{\omega}_{r+k}^{k}\right]$ corresponds to $\left\lfloor\tilde{\omega}_{r+\nu}^{\nu}\right\rfloor$ under the natural isomorphism $\tilde{H}_{r+\nu}^{\nu}\left(\Delta_{p}, \Delta_{p} \backslash \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)\right) \rightarrow$ $\tilde{H}_{r+k}^{k}\left(\Delta_{p}, \Delta_{p} \backslash \tilde{\varphi}_{p}\left(\tilde{X}_{R^{\prime}{ }_{0}}\right)\right)$, and the class $\left[\tilde{c}_{r+k}^{k}\right]$ corresponds to $\left\lfloor\tilde{c}_{r+\nu}^{\nu}\right\rfloor$ under the natural isomorphism

$$
\tilde{H}_{r+\nu}^{\nu}\left(\Omega_{m}, \Omega_{m} \backslash \tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}-\delta}\right)\right) \rightarrow \tilde{H}_{r+k}^{k}\left(\Omega_{m}, \Omega_{m} \backslash \tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}-\delta}\right)\right)
$$

Therefore $f_{p, m, r}$ induces a homomorphism

$$
f_{p, m, r, *}: \tilde{H}_{r+k}^{k}\left(\Delta_{p}, \Delta_{p} \backslash \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)\right) \rightarrow \tilde{H}_{r+k}^{k}\left(\Omega_{m}, \Omega_{m} \backslash \tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}-\delta}\right)\right)
$$

[^3]Let $\left[\tilde{1}_{r+k}^{k}\right]$ be the generator of the group $\tilde{H}_{r+k}^{k}\left(\Delta_{p}, \Delta_{p} \backslash \tilde{\varphi}_{p}\left(\tilde{X}_{R_{1}^{\prime}}\right)\right)$ and $\left[\tilde{c}_{r+k}^{k}\right]=f_{p, m, r, *}\left[\tilde{1}_{r+k}^{k}\right]$. As $\tilde{H}_{r+k}^{k}\left(\Omega_{m}, \Omega_{m} \backslash \tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}-\delta}\right)\right) \cong \mathbb{Z}$, some number in \mathbb{Z} corresponds to the element $\left[\tilde{c}_{r+k}^{k}\right]$. Let us denote that number by $\operatorname{deg}_{H}\left(f_{p, m, r}\right)$.

Definition 6.1. The number $\operatorname{deg}_{H}\left(f_{p, m, r}\right)$ is called an L-homological degree of the $F S L$-mapping $f_{p, m, r}$.

The sign of $\operatorname{deg}_{H}\left(f_{p, m, r}\right)$ depends on the choice of the generators of the groups $\tilde{H}_{r+k}^{k}\left(\Delta_{p}, \Delta_{p} \backslash \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)\right)$ and $\tilde{H}_{r+k}^{k}\left(\Omega_{m}, \Omega_{m} \backslash \tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}-\delta}\right)\right)$, but its absolute value is invariable. The latter fact is not important for the proof of the existence of a solution of equation (6.2) (see Theorem 6.6). One can prove that the degree of $f_{p, m, r}$ is well defined by Definition 6.1.

One can prove that $\left\{\left|\operatorname{deg}_{H}\left(f_{p, m, r}\right)\right|\right\}$ stabilizes for sufficiently large $r\left(^{8}\right)$. Therefore we can give the following

DEFINITION 6.2. $\operatorname{deg}_{H}\left(f_{p, m}\right)=\lim _{r \rightarrow \infty}\left|\operatorname{deg}_{H}\left(f_{p, m, r}\right)\right|$.
DEFINITION 6.3. $\operatorname{deg}_{H}(\tilde{f})=\operatorname{deg}_{H}\left(f_{p, m}\right)$.
As $f_{p, m} \equiv \tilde{\psi}_{m} \circ \tilde{f} \circ \tilde{\varphi}_{p}^{-1} \tilde{\psi}_{m}$, and $\tilde{\varphi}_{p}$ are homeomorphisms, the degree of \tilde{f} is well defined by Definition 6.3.

Lemma 6.4. Let $\operatorname{deg}_{H}\left(f_{p, m, r}\right) \neq 0$. Then the equation 6.3 has a solution in $\tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)$.

Proof. As $f_{p, m, r}$ is a bimorphism, it induces some finite-dimensional continuous mapping $g_{p, m, r}: V_{p, r} \rightarrow B_{m, r}$. The commutativity of the diagram

$$
\begin{gathered}
\left(\Delta_{p}, \Delta_{p} \backslash \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)\right) \xrightarrow{f_{p, m, r}} \quad\left(\Omega_{m}, \Omega_{m} \backslash \tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}-\delta}\right)\right) \\
\varphi_{p, r} \downarrow \\
\left(V_{p, r}, V_{p, r} \backslash \varphi_{p, r}\left(\tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)\right)\right) \xrightarrow{g_{p, m, r}}\left(B_{m, r}, B_{m, r} \backslash \psi_{m, r}\left(\tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}-\delta}\right)\right)\right)
\end{gathered}
$$

yields the commutativity of

$$
\begin{array}{cl}
\tilde{H}_{r}^{0}\left(\Delta_{p}, \Delta_{p} \backslash \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)\right) & \xrightarrow{f_{p, m, r, *}} \quad \tilde{H}_{r}^{0}\left(\Omega_{m}, \Omega_{m} \backslash \tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}-\delta}\right)\right) \\
\varphi_{p, r, *} \downarrow & \downarrow \psi_{m, r, *} \\
\tilde{H}_{r}\left(V_{p, r}, V_{p, r} \backslash \varphi_{p, r}\left(\tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)\right)\right) \xrightarrow{g_{p, m, r, *}} \tilde{H}_{r}\left(B_{m, r}, B_{m, r} \backslash \psi_{m, r}\left(\tilde{\psi}_{m}\left(\tilde{Y}_{R_{0}-\delta}\right)\right)\right)
\end{array}
$$

As $\varphi_{p, r, *}$ and $\psi_{m, r, *}$ are isomorphisms (see Theorem 5.1),

$$
\operatorname{deg}_{H}\left(f_{p, m, r}\right)=\operatorname{deg}_{H}\left(g_{p, m, r, *}\right)
$$

$\left({ }^{8}\right)$ Because of its length, the proof of this statement is given in the appendix.

Here $\operatorname{deg}_{H}\left(g_{p, m, r}\right)$ is the homological degree of $g_{p, m, r}$. Thus, $\operatorname{deg}_{H}\left(g_{p, m, r}\right) \neq 0$ as $\operatorname{deg}_{H}\left(f_{p, m, r}\right) \neq 0$. Then, as is known from finite-dimensional analysis,

$$
\exists \alpha_{0}^{\prime} \in V_{p, r}, \quad g_{p, m, r}\left(\alpha_{0}^{\prime}\right)=\beta_{0}^{\prime}, \quad \beta_{0}^{\prime}=\psi_{m, r}\left(w_{0}\right) .
$$

As $f_{p, m, r, \alpha_{0}^{\prime}}$ is an isomorphism between the fibers $X_{p, \alpha_{0}^{\prime}}\left(X_{p, \alpha_{0}^{\prime}}=\varphi_{p, r}^{-1}\left(\alpha_{0}^{\prime}\right)\right)$ and $Y_{m, \beta_{0}^{\prime}}\left(Y_{m, \beta_{0}^{\prime}}=\psi_{m, r}^{-1}\left(\beta_{0}^{\prime}\right)\right)$ of the affine bundles $\xi_{p, r}$ and $\eta_{m, r}$, there exists a unique point $u_{0} \in \varphi_{p, r}^{-1}\left(\alpha_{0}^{\prime}\right)$ such that

$$
\begin{equation*}
f_{p, m, r}\left(u_{0}\right)=w_{0} . \tag{6.4}
\end{equation*}
$$

However, in this case, it could happen that $u_{0} \notin \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)$. Let us show that this is not the case. Obviously,

$$
\forall u \in \Delta_{p}: \quad\left\|f_{p, m}(u)-f_{p, m, r}(u)\right\|_{2}<\delta_{1}, \quad \delta_{1}>0,
$$

for sufficiently large r. As the L-charts $\tilde{\varphi}_{p}, \tilde{\varphi}_{p}^{-1}, \tilde{\psi}_{m}, \tilde{\psi}_{m}^{-1}$ are uniformly continuous,

$$
\forall x \in \tilde{X}_{p}: \quad\left\|\tilde{f}(x)-\tilde{\psi}_{m}^{-1} \circ f_{p, m, r} \circ \tilde{\varphi}_{p}(x)\right\|_{y}<\delta, \quad \delta>0 .
$$

If $u_{0} \notin \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)$, then $x_{0}=\tilde{\varphi}_{p}^{-1}\left(u_{0}\right) \notin X_{R_{0}^{\prime}}$, i.e. $\left\|x_{0}\right\|_{x}>R_{0}^{\prime}$. Then it follows from the estimate (6.1) that $\left\|\tilde{f}\left(x_{0}\right)\right\|_{y}>R_{0}^{\prime}$. As $R_{0}^{\prime}=R_{0}+2 \delta, R_{0}=\left\|y_{0}\right\|_{y}$, we have

$$
\begin{aligned}
\left\|\tilde{\psi}_{m}^{-1} \circ f_{p, m, r} \circ \tilde{\varphi}_{p}\left(x_{0}\right)\right\|_{y} & \geq\left\|\tilde{f}\left(x_{0}\right)\right\|_{y}-\left\|\tilde{f}\left(x_{0}\right)-\tilde{\psi}_{m}^{-1} \circ f_{p, m, r} \circ \tilde{\varphi}_{p}\left(x_{0}\right)\right\|_{y} \\
& \geq\left(\left\|y_{0}\right\|_{y}+2 \delta\right)-\delta>\left\|y_{0}\right\|_{y},
\end{aligned}
$$

i.e. $\tilde{\psi}_{m}^{-1} \circ f_{p, m, r} \circ \tilde{\varphi}_{p}\left(x_{0}\right) \neq y_{0}$, hence $f_{p, m, r}\left(u_{0}\right) \neq w_{0}$, which contradicts the equality (6.4). Thus $u_{0} \in \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)$.

Using the local stability of $\left|\operatorname{deg}_{H}\left(f_{p, m, r}\right)\right|$ it is not difficult to prove the following:

Theorem 6.5. Let $\left\{\tilde{f}_{t}\right\}$ be a family of FSQL-mappings between \tilde{X} and \tilde{Y}, which continuously depends on $t \in[0,1]$ (uniformly in each ball) and for each $t \in[0,1]$ an a priori estimate (6.1) is satisfied, where the function Φ does not depend on t. Then

$$
\operatorname{deg}_{H}\left(\tilde{f}_{1}\right)=\operatorname{deg}_{H}\left(\tilde{f}_{0}\right)
$$

Theorem $6.6\left({ }^{9}\right)$. Let $\tilde{f}: \tilde{X} \rightarrow \tilde{Y}$ be an FSQL-mapping which satisfies an a priori estimate (6.1) and $\operatorname{deg}_{H}(\tilde{f}) \neq 0$. Then equation 6.2 has a solution for each $y_{0} \in Y$.

Proof. Because of Definition 6.3,

$$
\operatorname{deg}_{H}\left(f_{p, m}\right) \neq 0,
$$

[^4]and because of Definition 6.2,
$$
\operatorname{deg}_{H}\left(f_{p, m, r}\right) \neq 0
$$
for sufficiently large r. By Lemma 6.4 in this case equation (6.3) has a solution in $\tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)$. Let
$$
N_{r}=\left\{u \in \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right) \mid f_{p, m, r}(u)=w_{0}\right\}, \quad N=\overline{\bigcup_{r \geq r_{0}} N_{r}}
$$

Let us prove that N is compact. First, we shall prove that N_{r} is compact. For this purpose we will construct its finite ε-covering. Let $u_{0} \in N_{r}$ and $B_{1}\left(u_{0}, \varepsilon\right)$ the ball in E_{1} of radius ε with center at u_{0}. Let us consider the function

$$
P_{u_{0}}\left(\alpha^{\prime}\right)=\inf _{u}\left\{\left\|f_{p, m, r, \alpha^{\prime}}(u)-w_{0}\right\|_{2} \mid u \in X_{p, \alpha^{\prime}} \backslash B_{1}\left(u_{0}, \varepsilon\right)\right\}
$$

where $X_{p, \alpha^{\prime}}$ is the fiber of the subbundle $\xi_{p, r}=\left(X_{p}, \varphi_{p, r}, V_{p, r}\right)$ above $\alpha^{\prime} \in$ $V_{p, r}$ and $f_{p, m, r, \alpha^{\prime}}$ is the restriction of $f_{p, m, r}$ to $X_{p, \alpha^{\prime}}$. It is continuous in $\varphi_{p, r}\left(\tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)\right)$. Let C be the constant from Definition 2.3. Then for $u \in$ $X_{p, \alpha_{0}^{\prime}} \backslash B_{1}\left(u_{0}, \varepsilon\right)$,

$$
\begin{align*}
\left\|f_{p, m, r, \alpha_{0}^{\prime}}(u)-w_{0}\right\|_{2} & =\left\|f_{p, m, r, \alpha_{0}^{\prime}}(u)-f_{p, m, r, \alpha_{0}^{\prime}}\left(u_{0}\right)\right\|_{2} \tag{6.5}\\
& =\left\|f_{p, m, r, \alpha_{0}^{\prime}}\left(u-u_{0}\right)\right\|_{2} \geq \frac{1}{C} \cdot\left\|u-u_{l}\right\|_{1}>\frac{\varepsilon}{C}
\end{align*}
$$

As $\left\|u-u_{0}\right\|_{1}>\varepsilon$ we have $P_{u_{0}}\left(\alpha_{0}^{\prime}\right)>\varepsilon / C$. Then there exists a neighborhood $U\left(\alpha_{0}^{\prime}\right)$ in which

$$
P_{u_{0}}\left(\alpha^{\prime}\right)>\frac{\varepsilon}{2 C}
$$

Let $u \in X_{p, \alpha^{\prime}} \backslash B_{1}\left(u_{0}, \varepsilon\right)$. Then

$$
\begin{aligned}
& \left\|f_{p, m, r, \alpha^{\prime}}(u)-w_{0}\right\|_{2} \\
& \quad=\left\|f_{p, m, r, \alpha^{\prime}}(u)-f_{p, m, r, \alpha_{0}^{\prime}}\left(u_{0}\right)\right\|_{2} \\
& \quad=\left\|\left(f_{p, m, r, \alpha^{\prime}}(u)-f_{p, m, r, \alpha^{\prime}}\left(u_{0}\right)\right)+\left(f_{p, m, r, \alpha^{\prime}}\left(u_{0}\right)-f_{p, m, r, \alpha_{0}^{\prime}}\left(u_{0}\right)\right)\right\|_{2} \\
& \quad \geq\left\|f_{p, m, r, \alpha^{\prime}}(u)-f_{p, m, r, \alpha^{\prime}}\left(u_{0}\right)\right\|_{2}-\left\|f_{p, m, r, \alpha^{\prime}}\left(u_{0}\right)-f_{p, m, r, \alpha_{0}^{\prime}}\left(u_{0}\right)\right\|_{2} \\
& \quad \geq\left\|f_{p, m, r, \alpha^{\prime}}\left(u-u_{0}\right)\right\|_{2}-\left\|\left(f_{p, m, r, \alpha^{\prime}}-f_{p, m, r, \alpha_{0}^{\prime}}\right)\left(u_{0}\right)\right\|_{2} \\
& \quad \geq \frac{\varepsilon}{C}-\left\|f_{p, m, r, \alpha^{\prime}}-f_{p, m, r, \alpha_{0}^{\prime}}\right\| \cdot\left\|u_{0}\right\|_{1} .
\end{aligned}
$$

Let us denote the last difference by A. As the family $\left\{f_{p, m, r, \alpha^{\prime}}\right\}$ of affine mappings is uniformly continuous in α^{\prime},

$$
\exists \lambda>0, \quad\left\|f_{p, m, r, \alpha^{\prime}}-f_{p, m, r, \alpha_{0}^{\prime}}\right\|<\frac{\varepsilon}{2 C \cdot \max \left\{\left\|u_{\tau}\right\|_{1}\right\}} \quad \text { if } \rho_{r}\left(\alpha^{\prime}, \alpha_{0}^{\prime}\right)<\lambda
$$

where $u_{\tau} \in N_{r}$, and $\rho_{r}\left(\alpha^{\prime}, \alpha_{0}^{\prime}\right)$ is a metric on $V_{p, r}$. Then

$$
A>\frac{\varepsilon}{C}-\frac{\varepsilon}{2 C \cdot \max \left\{\left\|u_{\tau}\right\|_{1}\right\}} \cdot \max \left\{\left\|u_{\tau}\right\|_{1}\right\}=\frac{\varepsilon}{2 C}\left(^{10}\right)
$$

So, the neighborhood $U\left(\alpha_{0}^{\prime}\right)$ contains a ball $W\left(\alpha_{l}^{\prime}\right)=\left\{\alpha^{\prime} \mid \rho_{r}\left(\alpha^{\prime}, \alpha_{l}^{\prime}\right)<\lambda\right\}$ of some radius λ, where λ depends only on ε. Therefore there exists a finite covering of the bounded finite-dimensional set $\varphi_{p, r}\left(N_{r}\right)$ by balls $W\left(\alpha_{l}^{\prime}\right)$: $\varphi_{p, r}\left(N_{r}\right) \subset \bigcup W\left(\alpha_{l}^{\prime}\right)$. Then the balls $B_{1}\left(u_{l}, \varepsilon\right)$ form an ε-covering of the set N_{r}, as for $u \notin \bigcup B_{1}\left(u_{l}, \varepsilon\right), u \notin N_{r}$ because of (6.5).

Now we will prove that N is compact. Let

$$
N_{r}^{\varepsilon}=\left\{u \in \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right) \mid\left\|f_{p, m, r}(u)-w_{0}\right\|_{2}<\varepsilon\right\} .
$$

By the definition of $F S Q L$-mapping for each $\varepsilon>0$ there exists μ such that

$$
\begin{equation*}
\left\|f_{p, m, r}(u)-f_{p, m}(u)\right\|_{2}<\frac{\varepsilon}{8 C} \quad \text { for } r \geq \mu \text { and } u \in \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right) \tag{6.6}
\end{equation*}
$$

Let $u \in N_{r}$, i.e. $f_{p, m, r}(u)=w_{0}$, and $r \geq \mu$. Then taking into account 6.6 we have

$$
\begin{aligned}
\left\|f_{p, m, \mu}(u)-w_{0}\right\|_{2} \leq & \left\|f_{p, m, \mu}(u)-f_{p, m}(u)\right\|_{2}+\left\|f_{p, m}(u)-f_{p, m, r}(u)\right\|_{2} \\
& +\left\|f_{p, m, r}(u)-w_{0}\right\|_{2} \leq \frac{\varepsilon}{4 C}
\end{aligned}
$$

Hence $N_{r} \subset N_{\mu}^{\varepsilon / 4 C}$ at $r \geq \mu$. Therefore $N \subset N_{r_{0}} \cup \cdots \cup N_{\mu-1} \cup N_{\mu}^{\varepsilon / 4 C}$. Now we shall construct a finite ε-covering for N. It is already constructed for each $N_{r_{0}}, \ldots, N_{\mu-1}$; therefore it is sufficient to construct a finite covering only for $N_{\mu}^{\varepsilon / 4 C}$. Let $\varphi_{p, \mu}$ be the projection of $\xi_{p, \mu}=\left(X_{p}, \varphi_{p, \mu}, V_{p, \mu}\right)$, on which $f_{p, m, \mu}$ is defined. Let us consider a ball $B_{1}\left(u_{0}, \varepsilon\right)$, where $u_{0} \in N_{\mu}^{\varepsilon / 4 C}$. The intersection of $N_{\mu}^{\varepsilon / 4 C}$ with the plane $X_{p, \alpha_{0}^{\prime \prime}}$, where $\alpha_{0}^{\prime \prime}=\varphi_{p, \mu}\left(u_{0}\right)$, is contained in $B_{1}\left(u_{0}, \varepsilon / 2\right)$. Indeed, if $u \notin B_{1}\left(u_{0}, \varepsilon / 2\right)$, then $\left\|u-u_{0}\right\|_{1}>\varepsilon / 2$, hence

$$
\begin{aligned}
\| f_{p, m, \mu, \alpha_{0}^{\prime \prime}}(u) & -w_{0} \|_{2} \\
& \geq\left\|f_{p, m, \mu, \alpha_{0}^{\prime \prime}}(u)-f_{p, m, \mu, \alpha_{0}^{\prime \prime}}\left(u_{0}\right)\right\|_{2}-\left\|f_{p, m, \mu, \alpha_{0}^{\prime \prime}}\left(u_{0}\right)-w_{0}\right\|_{2} \\
& \geq\left\|\left(f_{p, m, \mu, \alpha_{0}^{\prime \prime}}\right)^{-1}\right\| \cdot\left\|u-u_{0}\right\|_{1}-\left\|f_{p, m, \mu, \alpha_{0}^{\prime \prime}}\left(u_{0}\right)-w_{0}\right\|_{2} \\
& \geq \frac{1}{C} \cdot\left\|u-u_{0}\right\|_{1}-\frac{\varepsilon}{4 C} \geq \frac{1}{C} \cdot \frac{\varepsilon}{2}-\frac{\varepsilon}{4 C}=\frac{\varepsilon}{4 C}
\end{aligned}
$$

i.e. $u \notin N_{\mu}^{\varepsilon / 4 C}$. This contradicts the assumption. From this it follows that for the continuous function

$$
P_{u_{0}}^{\prime}\left(\alpha^{\prime \prime}\right)=\inf _{u}\left\{\left\|f_{p, m, \mu, \alpha^{\prime \prime}}(u)-w_{0}\right\|_{2} \mid u \in X_{p, \alpha^{\prime \prime}}^{\mu} \backslash B_{1}\left(u_{0}, \varepsilon\right)\right\},
$$

$\left({ }^{10}\right)$ The set N_{r} is bounded, therefore $\max \left\{\left\|u_{\tau}\right\|_{1}\right\}<\infty$.
we have

$$
P_{u_{0}}^{\prime}\left(\alpha_{0}^{\prime \prime}\right)>\varepsilon / 4 C .
$$

Hence, as above, from the covering $N_{\mu}^{\varepsilon / 4 C}$ by balls $B_{1}(u, \varepsilon)$, one can select a finite subcovering. As ε is arbitrary, it is proved that N is compact.

Now let $\left\{u_{r}\right\} \subset \tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right)$ be some sequence of solutions of 6.3 . As $\left\{u_{r}\right\} \subset N$, there exists a subsequence converging to some $u_{0} \in N$. As $\left\{f_{p, m, r}\right\}$ uniformly converges to $f_{p, m}$ in $\tilde{\varphi}_{p}\left(\tilde{X}_{R_{0}^{\prime}}\right), f_{p, m}\left(u_{0}\right)=w_{0}$. Therefore, $\tilde{f}\left(x_{0}\right)=y_{0}$, where $x_{0}=\tilde{\varphi}_{p}^{-1}\left(u_{0}\right)$, i.e. x_{0} is a solution of equation 6.2.
7. Appendix. The proof of stabilization of $\left\{\left|\operatorname{deg}_{H}\left(f_{p, m, r}\right)\right|\right\}$. First we recall that η_{m} is embedded in the Banach space E_{2}. Let $f_{p, m, r^{\prime}}: \xi_{p, r^{\prime}} \rightarrow$ $\eta_{m, r^{\prime}}$ and $f_{p, m, r^{\prime \prime}}: \xi_{p, r^{\prime \prime}} \rightarrow \eta_{m, r^{\prime \prime}}$ be two $F S L$-mappings which are close enough to each other in $\Delta_{p} \subset X_{p}$. Without restriction of generality one can suppose that $f_{p, m, r^{\prime}}: \xi_{p, \nu} \rightarrow \eta_{m, \nu, 1}$ and $f_{p, m, r^{\prime \prime}}: \xi_{p, \nu} \rightarrow \eta_{m, \nu, 2}$ are bimorphisms between the aforesaid bundles, where $\xi_{p, \nu}=\left(X_{p}, \varphi_{p, \nu}, V_{p, \nu}\right)$, $\nu \geq r^{\prime}, r^{\prime \prime}$, is a common division of $\xi_{p, r^{\prime}}, \xi_{p, r^{\prime \prime}}$ and $\eta_{m, \nu, 1}, \eta_{m, \nu, 2}$ are divisions of η_{m} of the same codimension ν. Let us introduce the following notations:

We denote the mappings $f_{p, m, r^{\prime}}$ and $f_{p, m, r^{\prime \prime}}$ by $f_{p, m, \nu, 1}$ and $f_{p, m, \nu, 2}$, respectively. We denote the fibers of $\xi_{p, \nu}=\left(X_{p}, \varphi_{p, \nu}, V_{p, \nu}\right)$ by $X_{p, \alpha}$:

$$
X_{p, \alpha}=\varphi_{p, \nu}^{-1}(\alpha), \quad \alpha \in V_{p, \nu}
$$

We denote the fibers of $\eta_{m}=\left(Y_{m}, \psi_{m}, B_{m}\right)$ by $Y_{m, \beta}$:

$$
Y_{m, \beta}=\psi_{m}^{-1}(\beta), \quad \beta \in B_{m}
$$

We denote the fibers of $\eta_{m, \nu, 1}=\left(Y_{m}, \psi_{m, \nu, 1}, B_{m, \nu, 1}\right)$ by $Y_{m, \nu, \beta_{1}, 1}$:

$$
Y_{m, \nu, \beta_{1}, 1}=\psi_{m, \nu, 1}^{-1}\left(\beta_{1}\right), \quad \beta_{1} \in B_{m, \nu, 1}
$$

We denote the fibers of $\eta_{m, \nu, 2}=\left(Y_{m}, \psi_{m, \nu, 2}, B_{m, \nu, 2}\right)$ by $Y_{m, \nu, \beta_{2}, 2}$:

$$
Y_{m, \nu, \beta_{2}, 2}=\psi_{m, \nu, 2}^{-1}\left(\beta_{2}\right), \quad \beta_{2} \in B_{m, \nu, 2}
$$

Finally

$$
f_{p, m, \nu, 1}\left(X_{p, \alpha}\right)=Y_{m, \nu, \beta_{1}(\alpha), 1}, \quad f_{p, m, \nu, 2}\left(X_{p, \alpha}\right)=Y_{m, \nu, \beta_{2}(\alpha), 2}
$$

As $f_{p, m, \nu, 1}$ and $f_{p, m, \nu, 2}$ are close to each other in Δ_{p}, the fibers $Y_{m, \nu, \beta_{1}(\alpha), 1}$ and $Y_{m, \nu, \beta_{2}(\alpha), 2}$ are also close to each other for any $\alpha \in V_{p, \nu}$, i.e.

$$
\begin{aligned}
& \operatorname{dist}\left(Y_{m, \nu, \beta_{1}(\alpha), 1}, Y_{m, \nu, \beta_{2}(\alpha), 2}\right) \\
& \left.\quad=\sup \left\{\rho\left(w, Y_{m, \nu, \beta_{1}(\alpha), 1}^{\prime}\right) \mid w \in Y_{m, \nu, \beta_{2}(\alpha), 2}^{\prime} \cap B_{2}(1)\right)\right\}<\varepsilon, \quad \varepsilon>0 \quad\left({ }^{11}\right)
\end{aligned}
$$

[^5]Therefore $Y_{m, \nu, \beta_{2}(\alpha), 2}$ is close to $Y_{m, \beta(\alpha)}$, which contains $Y_{m, \nu, \beta_{1}(\alpha), 1}$. Then it is possible to take the orthogonal projection of each fiber $Y_{m, \nu, \beta_{2}(\alpha), 2}$ onto $Y_{m, \beta(\alpha)}$. Let us denote this projection by $\pi_{\beta(\alpha)}, \alpha \in V_{p, \nu}$. By construction:

1) $\pi_{\beta(\alpha)}$ is an affine isomorphism between $Y_{m, \nu, \beta_{2}(\alpha), 2}$ and its image.
2) $\pi=\left\{\pi_{\beta(\alpha)} \mid \alpha \in V_{p, \nu}\right\}$ is an isomorphism between $\left\{Y_{m, \nu, \beta_{2}(\alpha), 2}\right\}$ and its image.
3) $f_{p, m, \nu, 3}=\pi \circ f_{p, m, \nu, 2}$ is an FSL-mapping.
4) The mappings $f_{p, m, \nu, 3}$ and $f_{p, m, \nu, 2}$ are close to each other in Δ_{p}, hence $f_{p, m, \nu, 3}$ is close to $f_{p, m, \nu, 1}$ in Δ_{p}.
Remark. The difference between the mappings $f_{p, m, \nu, 3}$ and $f_{p, m, \nu, 2}$ is that $f_{p, m, \nu, 1}\left(X_{p, \alpha}\right)$ and $f_{p, m, \nu, 3}\left(X_{p, \alpha}\right)$ are contained in the same $Y_{m, \beta(\alpha)}$ for each $\alpha \in V_{p, \nu}$.

As all the mappings obeying $f_{p, m, \nu, 3}=\pi \circ f_{p, m, \nu, 2}$ are $F S L$-mappings and π is an isomorphism,

$$
\begin{aligned}
\operatorname{deg}_{H} f_{p, m, \nu, 3} & =\operatorname{deg}_{H}\left(\pi \circ f_{p, m, \nu, 2}\right) \\
& =\left(\operatorname{deg}_{H} \pi\right) \cdot\left(\operatorname{deg}_{H} f_{p, m, \nu, 2}\right)=\operatorname{deg}_{H} f_{p, m, \nu, 2} .
\end{aligned}
$$

Now let us prove that

$$
\operatorname{deg}_{H} f_{p, m, \nu, 3}=\operatorname{deg}_{H} f_{p, m, \nu, 1}
$$

For this purpose we take an $(\nu+1, k)$-prism $\sigma_{\nu+1}^{k}=\sigma_{\nu}^{k} \times I_{1}$, where I_{1} is a 1 -cube, that is, a line segment. We will consider the singular $(\nu+1, k)$-chain

$$
\tilde{\sigma}_{\nu+1}^{k}=\sum g_{i} \cdot\left[t \cdot f_{p, m, \nu, 1} \circ f_{\nu, i}^{k}(u)+(1-t) \circ f_{p, m, \nu, 3} \circ f_{\nu, i}^{k}(u)\right]\left({ }^{12}\right)
$$

One can show that $\tilde{\partial}_{\nu+1}^{k} \tilde{\sigma}_{\nu+1}^{k} \in \tilde{C}_{\nu}^{k}\left(X_{p} \backslash \Delta_{p}\right)$, i.e. the relative cycles $\sigma_{\nu, 1}^{k}=$ $\sum g_{i} \cdot f_{p, m, \nu, 1} \circ f_{\nu, i}^{k}$ and $\tilde{\sigma}_{\nu, 3}^{k}=\sum g_{i} \cdot f_{p, m, \nu, 3} \circ f_{\nu, i}^{k}$ are homologous to each other relative to $X_{p} \backslash \Delta_{p}$. Hence

$$
\operatorname{deg}_{H} f_{p, m, \nu, 3}=\operatorname{deg}_{H} f_{p, m, \nu, 1} .
$$

Therefore

$$
\operatorname{deg}_{H} f_{p, m, \nu, 2}=\operatorname{deg}_{H} f_{p, m, \nu, 1}
$$

Thus,

$$
\operatorname{deg}_{H} f_{p, m, r^{\prime}}=\operatorname{deg}_{H} f_{p, m, r^{\prime \prime}}
$$

for sufficiently large r^{\prime} and $r^{\prime \prime}$.
Acknowledgments. I would like to thank Dr. Ibrahim Turkyilmaz, Nazmi Yaganoglu and Yavuz Yildirim for their assistance in preparing this manuscript. I am also grateful to an anonymous referee for extremely helpful comments and suggestions.

[^6]
References

[1] A. Abbasov, A special quasi-linear mapping and its degree, Turkish J. Math. 24 (2000), 1-14.
[2] —, Quasi-linear manifolds and quasi-linear mapping between them, ibid. 28 (2004), 1-11.
[3] -, The homological theory of degree of FQL-mappings, ibid. 30 (2006), 129-138.
[4] Yu. G. Borisovich, V. G. Zvyagin and Yu. I. Sapronov, Nonlinear Fredholm mappings and Leray-Schauder theory, Uspekhi Mat. Nauk 32 (1977), no. 4, 3-54 (in Russian).
[5] D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. 92 (1970), 102-163.
[6] J. Eells, Fredholm structures, in: Proc. Sympos. Pure Math. 18, Amer. Math. Soc. Providence, RI, 1970, 62-85.
[7] M. A. Efendiev, The degree of a Fredholm quasilinear mapping of quasicylindrical domains and the nonlinear Hilbert problem in an annulus, Izv. Akad. Nauk Azerbă̆dzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk 1979, no. 5, 18-23 (in Russian).
[8] Yu. E. Gliklikh, Analysis on Riemannian Manifolds and Problems of Mathematical Physics, Univ. of Voronezh, 1989 (in Russian).
[9] M. W. Hirsch, Differential Topology, Springer, 1976.
[10] A. I. Shnirelman, The degree of quasi-linear mapping and the nonlinear Hilbert problem, Mat. Sb. 89 (1972), 336-389 (in Russian).
A. Abbasov

Faculty of Economics and Administrative Sciences
Çanakkale Onsekiz Mart University
Biga, Çanakkale, Turkey
E-mail: abakif@hotmail.com

[^0]: 2010 Mathematics Subject Classification: Primary 46-XX; Secondary 58-XX.
 Key words and phrases: Fredholm Special Quasi Linear manifold, Fredholm Special Quasi Linear mapping, linear homology.
 ${ }^{1}$) See 1 for the proof that every $F Q L$-mapping is an $F S Q L$-mapping.

[^1]: $\left(^{2}\right)$ For example, in the case of $n=1$ and $k^{\prime}-k=1$ the base space $\sigma_{n^{\prime}}, n^{\prime}=2$, can be represented in the form of an infinite band. The line segment which defines the width of this band is σ_{n}. Having divided this band into segments, we will obtain rectangles-prisms $\sigma_{n^{\prime}, j}, j=0, \pm 1, \pm 2, \ldots$, with bases σ_{n}.

 One can represent each prism $\sigma_{n^{\prime}, j}, j=0, \pm 1, \pm 2, \ldots$, in the form of $\sigma_{n} \times I_{k^{\prime}-k}$, where $I_{k^{\prime}-k}$ is a $\left(k^{\prime}-k\right)$-cube.

[^2]: ${ }^{3}$) Here and in the following, $k^{\prime}=k+l, n^{\prime}=n+l$.
 $\left({ }^{4}\right) \tilde{c}_{n}^{k} \sim 0\left(X_{p}, X_{p} \backslash \Delta_{p}\right)$ means that $\tilde{c}_{n}^{k} \sim 0$ relative to $X_{p} \backslash \Delta_{p}$.

[^3]: $\left({ }^{7}\right)$ Recall that $\tilde{\psi}_{m}\left(\tilde{Y}_{m}\right)=\Omega_{m}$, where $\left(\tilde{\psi}_{m}, \tilde{Y}_{m} t\right)$ is the L-chart on \tilde{Y}.

[^4]: $\left({ }^{9}\right)$ A similar theorem, for a simple case, is proved in 10.

[^5]: $\left({ }^{11}\right)$ Here $Y_{m, \nu, \beta_{1}(\alpha), 1}^{\prime}, Y_{m, \nu, \beta_{2}(\alpha), 2}^{\prime}$ are the subspaces of E_{2} which are parallel translates of $Y_{m, \nu, \beta_{1}(\alpha), 1}, Y_{m, \nu, \beta_{2}(\alpha), 2}$ respectively through the origin of $E_{2}, B_{2}(1)$ is the ball of radius one in E_{2} with center at zero, and $\rho\left(w, Y_{m, \nu, \beta_{1}(\alpha), 1}^{\prime}\right)$ is the distance between w and $Y_{m, \nu, \beta_{1}(\alpha), 1}^{\prime}$.

[^6]: $\left({ }^{12}\right)$ Because of the note mentioned above, $\tilde{\sigma}_{\nu+1}^{k}$ is a chain in X_{p}.

