L-homology theory of FSQL-manifolds and the degree of FSQL-mappings

by A. ABBASOV (Biga)

Abstract. A homology theory of Banach manifolds of a special form, called *FSQL*-manifolds, is developed, and also a homological degree of *FSQL*-mappings between *FSQL*-manifolds is introduced.

1. Introduction. In this article the results of the article [3] are generalized to Banach manifolds of a special form, namely to Fredholm Special Quasi Linear (FSQL) manifolds. In other words, a homology theory of such manifolds is devised and also the homological degree of FSQL-mappings between them is introduced. Every FSQL-mapping is an FQL-mapping [10] (¹), and vice versa. However, FSQL-mappings are more convenient for the structure of FSQL-manifolds.

It is known that the degree of a mapping is a strong tool for proving the existence of solutions of various mathematical problems. For instance, various variants of the nonlinear Hilbert problem ([7], [10], etc.) have been solved with the help of the degree of FQL-mappings. Moreover, the homological degree of mappings transforms topological problems into algebraic ones. In this case, the problem of finding the degree of a mapping will be reduced to a combinatorial problem.

2. Definition of FSQL-manifolds and FSQL-mappings. Let $\xi_p = (X_p, \varphi_p, V_p)$ and $\xi_{p,r} = (X_p, \varphi_{p,r}, V_{p,r})$ be affine bundles with identical total space X_p and with base spaces V_p , $V_{p,r}$ which are p- and r-manifolds $(r \ge p)$, respectively.

²⁰¹⁰ Mathematics Subject Classification: Primary 46-XX; Secondary 58-XX.

Key words and phrases: Fredholm Special Quasi Linear manifold, Fredholm Special Quasi Linear mapping, linear homology.

 $^(^{1})$ See [1] for the proof that every *FQL*-mapping is an *FSQL*-mapping.

DEFINITION 2.1. $\xi_{p,r}$ is called an (r-p)-division of ξ_p if

$$\forall \alpha' \in V_{p,r} \ \exists \alpha \in V_p, \quad \varphi_{p,r}^{-1}(\alpha') \subset \varphi_p^{-1}(\alpha) \text{ and} \\ \operatorname{codim}(\varphi_{p,r}^{-1}(\alpha')) = r - p \text{ in } \varphi_p^{-1}(\alpha)$$

Obviously, in this case $V_{p,r}$ is an affine bundle with the base space V_p and with fibers of dimension r - p.

Let $\eta_m = (Y_m, \psi_m, B_m)$ also be an affine bundle, the base space of which is an *m*-manifold.

DEFINITION 2.2. A continuous mapping $f_{p,m}: X_p \to Y_m$ is called a *Fred*holm Special Linear (FSL) mapping between the affine bundles ξ_p and η_m if for some r there exists an (r-p)-division $\xi_{p,r} = (X_p, \varphi_{p,r}, V_{p,r})$ of ξ_p and an (r-m)-division $\eta_{m,r} = (Y_m, \psi_{m,r}, B_{m,r})$ of η_m with the same dimension r of the base spaces, such that $f_{p,m}$ induces a bimorphism between $\xi_{p,r}$ and $\eta_{m,r}$.

From this point on, we will denote such $f_{p,m}$ as $f_{p,m,r}$. We will also call the restriction of an *FSL*-mapping to any subset of X_p an *FSL*-mapping.

Obviously, if $f_{p,m,r}$ is a bimorphism between $\xi_{p,r}$ and $\eta_{m,r}$, then it is also a bimorphism between some $(\nu - r)$ -divisions $\xi_{p,\nu} = (X_p, \varphi_{p,\nu}, V_{p,\nu})$ and $\eta_{m,\nu} = (Y_m, \psi_{m,\nu}, B_{m,\nu})$ of $\xi_{p,r}$ and $\eta_{m,r}$ for any $\nu > r$.

For simplicity, let us assume that ξ_p and η_m are embedded in Banach spaces E_1 and E_2 with norms $\|\cdot\|_1$ and $\|\cdot\|_2$, respectively. Let $f_{p,m,r}: X_p \to Y_m$ be a bimorphism between ξ_p and η_m , and Δ_p be a bounded domain in X_p . Let

$$\begin{aligned} \|\|f_{p,m,r}\|\|_{\mathcal{\Delta}_p} &= \sup \inf\{C \mid \|f_{p,m,r,\alpha'}(u)\|_2 \le C(1+\|u\|_1), \\ \|u\|_1 \le C(1+\|f_{p,m,r,\alpha'}(u)\|_2), \ \forall u \in X_{p,\alpha'}\}, \end{aligned}$$

where $X_{p,\alpha'}$ is the fiber of $\xi_{p,r}$ over $\alpha' \in V_{p,r}$, $f_{p,m,r,\alpha'}$ is the restriction of $f_{p,m,r}$ onto $X_{p,\alpha'}$, and the supremum is taken over all $X_{p,\alpha'}$ for which $X_{p,\alpha'} \cap \Delta_p \neq \emptyset$.

DEFINITION 2.3. A continuous mapping $f_{p,m} : X_p \to Y_m$ is called an *FSQL-mapping* between the affine bundles ξ_p and η_m if it can be uniformly approximated in each bounded domain Δ_p of X_p by *FSL*-mappings $f_{p,m,r}$ so that

 $|||f_{p,m,r}|||_{\Delta_p} \le C(\Delta_p), \quad \forall r > r(\Delta_p),$

where $C(\Delta_p)$ is independent of r for $r > r(\Delta_p)$.

Now we shall give definitions of FSQL-manifolds and of FSQL-mappings between FSQL-manifolds. Let \tilde{X} be a Banach manifold and $\{\tilde{X}_p\}, \tilde{X}_{p-1} \subset \tilde{X}_p, p = 1, 2, \ldots$, be a system of open sets covering \tilde{X} , i.e. $\tilde{X} = \bigcup \tilde{X}_p$. Let $\xi_p = (X_p, \varphi_p, V_p)$ be an affine bundle, Δ_p be a bounded domain in X_p and $\tilde{\varphi}_p : \tilde{X}_p \to \Delta_p$ be a homeomorphism. In this case, $(\tilde{\varphi}_p, \tilde{X}_p)$ is called a *linear chart* (*L*-chart) on \tilde{X} . We shall say that a *linear structure* (*L*-structure) is introduced on \tilde{X}_p if the conditions above are satisfied. If an *L*-structure is defined on \tilde{X}_{p+1} , then obviously it is also defined on \tilde{X}_p (as an induced structure). If $\tilde{\varphi}_{p'} : \tilde{X}_{p'} \to \Delta_{p'}, \tilde{\varphi}_{p''} : \tilde{X}_{p''} \to \Delta_{p''}, p', p'' \ge p$, are two *L*structures on \tilde{X}_p , then the transition functions $\tilde{\varphi}_{p''} \circ \tilde{\varphi}_{p'}^{-1} : \Delta_{p'} \to \Delta_{p'}$ and $\tilde{\varphi}_{p'} \circ \tilde{\varphi}_{p'}^{-1} : \Delta_{p''} \to \Delta_{p'}$ arise. Let us suppose that they are *FSQL*-mappings between $\xi_{p'} = (X_{p'}, \varphi_{p'}, V_{p'})$ and $\xi_{p''} = (X_{p''}, \varphi_{p''}, V_{p''})$. In that case, we shall say that the two *L*-structures on \tilde{X}_p are *equivalent*.

DEFINITION 2.4. A class of equivalent *L*-structures on X_p is called an *FSQL-structure* on \tilde{X}_p .

Obviously, an *FSQL*-structure on \tilde{X}_{p+1} induces an *FSQL*-structure on \tilde{X}_p . An *FSQL*-structure on \tilde{X}_p is said to be *coordinated* with an *FSQL*-structure on \tilde{X}_{p+1} if it coincides with the induced structure.

DEFINITION 2.5. A collection of FSQL-structures on \tilde{X}_p , $p = 1, 2, ..., \tilde{X}_p$, which are coordinated with each other is called an FSQL-structure on \tilde{X} . A Banach manifold \tilde{X} with an FSQL-structure is called an FSQL-manifold.

Let \tilde{X} , \tilde{Y} be *FSQL*-manifolds,

$$\tilde{X} = \bigcup \tilde{X}_p, \ \tilde{X}_p \subset \tilde{X}_{p+1} \ \forall p, \quad \tilde{Y} = \bigcup \tilde{Y}_m, \ \tilde{Y}_m \subset \tilde{Y}_{m+1} \ \forall m,$$

 $(\tilde{\varphi}_p, \tilde{X}_p), (\tilde{\psi}_m, \tilde{Y}_m)$ be *L*-charts on \tilde{X}, \tilde{Y} and $\tilde{\varphi}_p(\tilde{X}_p) = \Delta_p, \tilde{\psi}_m(\tilde{Y}_m) = \Omega_m$ be bounded domains in $\xi_p = (X_p, \varphi_p, V_p), \eta_m = (Y_m, \psi_m, B_m)$, respectively.

DEFINITION 2.6. A continuous mapping $\tilde{f} : \tilde{X} \to \tilde{Y}$ between *FSQL*-manifolds \tilde{X} and \tilde{Y} is called an *FSQL*-mapping if

- (a) $\forall p \exists m, \tilde{f}(\tilde{X}_p) \subset \tilde{Y}_m$,
- (b) $f_{p,m} \equiv \tilde{\psi}_m \circ \tilde{f} \circ \tilde{\varphi}_p^{-1} : \Delta_p \to \Omega_m$ is an *FSQL*-mapping between the domains of the affine bundles ξ_p and η_m .

3. *L*-homology theory of affine bundles. Singular theory. First, note that the simplicial theory of (n, k)-simplexes is available in [3], it is similar to the finite-dimensional case.

Let H be a real Hilbert space, H^k be a linear subspace of codimension $k \ (k \ge 0)$ and σ_n be a Euclidean *n*-simplex. We will name the Cartesian product $\sigma_n \times H^k$ a Hilbertian simplex of bi-dimension (n, k) and we will denote it by σ_n^k , that is, $\sigma_n^k = \sigma_n \times H^k$. We will consider σ_n^k to be oriented if σ_n is oriented. In this case, the orientation on σ_n is taken to be the orientation on σ_n^k . From this point on, we will consider σ_n^k to be oriented.

DEFINITION 3.1. A continuous mapping $f_n^k : \sigma_n^k \to X_p$ is called a *singular* (n,k)-simplex in ξ_p if there exists a k-division $(\xi_{p'})$ of ξ_p such that f_n^k induces a bimorphism between $\sigma_n \times H^k$ and $\xi_{p'}$.

It follows from this definition that each singular (n, k)-simplex f_n^k induces some finite-dimensional mapping between the base spaces σ_n and $V_{p'}$ (p' = p + k) of these bundles.

DEFINITION 3.2. A finite formal linear combination $\tilde{c}_n^k = \sum_i g_i \cdot f_{n,i}^k$ of singular (n, k)-simplexes in ξ_p with coefficients $g_i \in \mathbb{Z}$, where \mathbb{Z} is the ring of integers, is called a *singular* (n, k)-chain in ξ_p .

We will denote by $\tilde{C}_n^k(X_p)$ the set of all singular chains in ξ_p of bidimension (n, k). Obviously, it is an Abelian group under addition of chains. It is a free group.

DEFINITION 3.3. We define the differential

$$\tilde{\partial}_n^k : \tilde{C}_n^k(X_p) \to \tilde{C}_{n-1}^k(X_p) \quad \forall n \ge 1, \forall k \ge 0$$

as follows:

$$\tilde{\partial}_n^k f_n^k = \sum \left(-1\right)^i (f_n^k|_{\sigma_{n-1,i}^k})$$

and we extend it to $\tilde{C}_n^k(X_p)$ by additivity. Moreover,

$$\tilde{\partial}_0^k : \tilde{C}_0^k(X_p) \to 0 \quad \forall k \ge 0.$$

REMARK. Here $\sigma_{n-1,i}^k$ is the (n-1,k)-boundary of the simplex σ_n^k , which is located opposite vertex *i*.

THEOREM 3.4. The equality

$$\tilde{\partial}_{n-1}^k \circ \tilde{\partial}_n^k = 0$$

is true for each $n \ge 1$ and k.

The proof is similar to the finite-dimensional case.

Analogously to the finite-dimensional case, one can define the groups Ker $\tilde{\partial}_n^k$, Im $\tilde{\partial}_{n+1}^k$ and \tilde{H}_n^k , i.e. the groups of (n, k)-cycles, (n, k)-boundaries and the (n, k)-homology group (see [3]). However the theory of relative homology of ξ_p , which is introduced in the following section, is more interesting.

4. The relative *L*-homology of an affine bundle

DEFINITION 4.1. An (n, k)-chain $\tilde{c}_n^k \in \tilde{C}_n^k(X_p)$ is called a *relative cycle* of bi-dimension (n, k) if $\tilde{\partial}_n^k \tilde{c}_n^k \in \tilde{C}_{n-1}^k(X_p \setminus \Delta_p)$.

DEFINITION 4.2. A relative cycle \tilde{c}_n^k is called *homologous to zero* if

 $\exists \tilde{c}_{n+1}^k \in \tilde{C}_{n+1}^k(X_p), \quad \tilde{\partial}_{n+1}^k \tilde{c}_{n+1}^k = \tilde{c}_n^k \oplus \tilde{d}_n^k, \quad \tilde{d}_n^k \in \tilde{C}_n^k(X_p \setminus \Delta_p).$

It follows from this definition that the sum of relative (n, k)-cycles homologous to zero is also homologous to zero. Therefore the set of relative (n, k)-cycles homologous to zero forms a subgroup of the group of relative (n, k)-cycles. Now we define the concept of "support" of a singular simplex.

Let f_n^k be a singular simplex in X_p . By definition, it induces a bimorphism between $\sigma_n \times H^k$ and some k-division $\xi_{p'} = (X_p, \varphi_{p'}, V_{p'})$ of ξ_p . Then $(f_n^k)^{-1}(\xi_{p'})$ induces an affine bundle $(\sigma_{n'}^{k'})$, which is a (k'-k)-division of σ_n^k : its base space $\sigma_{n'}$ is itself an affine bundle with base space σ_n and fiber $H_{k'-k}$, n' = n + (k'-k), which is the Euclidean (k'-k)-space. As σ_n is convex, one can represent $\sigma_{n'}$ in the form of a Cartesian product; $\sigma_{n'} = \sigma_n \times H_{k'-k}$. Therefore the bundle $\sigma_{n'}^{k'}$ is also a Cartesian product; i.e. $\sigma_{n'}^{k'} = \sigma_{n'} \times H^{k'}$, where $H^{k'}$ is a subspace of H of codimension k'. Now we divide $\sigma_{n'}$ into n'-prisms $\sigma_{n',j}$, $j = 0, \pm 1, \pm 2, \ldots$, with bases σ_n (²). Let us choose the orientation of one (n', k')-prism $\sigma_{n',j}^{k'} = \sigma_{n',j} \times H^{k'}$ arbitrarily and coordinate orientations of other (n', k')-prisms with it. Then any two neighboring prisms will induce opposite orientations on the common edge. Obviously, it is possible to divide $\sigma_{n'}$ into n'-prisms so that the restriction of each of the mappings f_n^k to a unique $\sigma_{n',j} \times H^{k'}$ contains the intersection of $f_n^k(\sigma_n^k)$ with Δ_p ; this is possible because of the linearity of each f_n^k on H_{α}^k , the uniform continuity of f_n^k in α , and the boundedness of Δ_p . In this case all the other analogous restrictions will be outside of Δ_p . Thus, we can give the following

DEFINITION 4.3. The restriction of a singular simplex f_n^k to an (n', k')-prism $\sigma_{n'}^{k'}$ is called an (n', k')-support of f_n^k if

(a) n' - n = k' - k, (b) $f_n^k(\sigma_{n'}^{k'}) \cap \Delta_p = f_n^k(\sigma_n^k) \cap \Delta_p$.

Let us denote the (n', k')-support of f_n^k by $f_{n'}^{k'}$. From Definition 4.3 it follows that there can be different (n', k')-supports of a singular (n, k)-simplex. But obviously, the difference of two (n', k')-supports of f_n^k is homologous to zero relative to $X_p \setminus \Delta_p$.

Analogously, we shall say that a chain $\tilde{c}_{n'}^{k'} = \sum g_i \cdot f_{n',i}^{k'}$ is an (n',k')-support of the chain $\tilde{c}_n^k = \sum g_i \cdot f_{n,i}^k$ if for each *i* the simplex $f_{n',i}^{k'}$ is an (n',k')-support of $f_{n,i}^k$.

Obviously with the help of the above construction one can construct an (n'', k'')-support of the chain \tilde{c}_n^k for any n'' > n', k'' > k', where n'' - n = k'' - k.

^{(&}lt;sup>2</sup>) For example, in the case of n = 1 and k' - k = 1 the base space $\sigma_{n'}$, n' = 2, can be represented in the form of an infinite band. The line segment which defines the width of this band is σ_n . Having divided this band into segments, we will obtain rectangles-prisms $\sigma_{n',j}$, $j = 0, \pm 1, \pm 2, \ldots$, with bases σ_n .

One can represent each prism $\sigma_{n',j}$, $j = 0, \pm 1, \pm 2, \ldots$, in the form of $\sigma_n \times I_{k'-k}$, where $I_{k'-k}$ is a (k'-k)-cube.

REMARK. In view of the aforementioned construction, from this point on we will suppose that all simplexes $f_{n',i}^{k'}$ of $\tilde{c}_{n'}^{k'}$ are bimorphisms between $\sigma_n \times H^k$ and $\xi_{p''} = (X_p, \varphi_{p''}, V_{p''})$.

Let \tilde{c}_n^k be a singular cycle relative to $X_p \setminus \Delta_p$ and $\tilde{c}_{n'}^{k'}$ be its (n', k')support. Let us orient each simplex of $\tilde{c}_{n'}^{k'}$ so that two simplexes which have
a common edge induce opposite orientations on this common edge. Then $\tilde{c}_{n'}^{k'}$ is also a singular cycle relative to $X_p \setminus \Delta_p$. Thus the relative cycle $\tilde{c}_{n'}^{k'}$ is
oriented (in two possible ways).

Obviously, two supports of a relative cycle \tilde{c}_n^k of the same bi-dimension are homologous to each other relative to $X_p \setminus \Delta_p$.

LEMMA 4.4. If \tilde{c}_n^k is a singular cycle relative to $X_p \setminus \Delta_p$, then for every l > 0 its (n+l,k+l)-support \tilde{c}_{n+l}^{k+l} is also a singular cycle relative to $X_p \setminus \Delta_p$, and if an (n+l,k+l)-support \tilde{c}_{n+l}^{k+l} of \tilde{c}_n^k is a singular cycle relative to two $X_p \setminus \Delta_p$ for some l > 0, then \tilde{c}_n^k is also a singular cycle relative to $X_p \setminus \Delta_p$ (³).

Indeed, as \tilde{c}_n^k is a singular cycle relative to $X_p \setminus \Delta_p$, $\tilde{\partial}_n^k \tilde{c}_n^k \in \tilde{C}_{n-1}^k (X_p \setminus \Delta_p)$. Because of the definition of a support of a chain and the construction of the prism, the boundary of the (n + l, k + l)-support \tilde{c}_{n+l}^{k+l} also belongs to $X_p \setminus \Delta_p$ for every l > 0. For the proof of the second statement of this lemma, it is enough to apply the construction from the definition of the support of a function in reverse order.

LEMMA 4.5. If $\tilde{c}_n^k \sim 0$ $(X_p, X_p \setminus \Delta_p)$, then $\tilde{c}_{n+l}^{k+l} \sim 0$ $(X_p, X_p \setminus \Delta_p)$ for all l > 0, and if $\tilde{c}_{n+l}^{k+l} \sim 0$ $(X_p, X_p \setminus \Delta_p)$ for some l > 0, then $\tilde{c}_n^k \sim 0$ $(X_p, X_p \setminus \Delta_p)$ (⁴).

Indeed, if $\tilde{c}_n^k \sim 0 \ (X_p, X_p \setminus \Delta_p)$, then

$$\exists \tilde{c}_{n+1}^k \in \tilde{C}_{n+1}^k(X_p), \quad \tilde{\partial}_{n+1}^k \tilde{c}_{n+1}^k = \tilde{c}_n^k \oplus \tilde{d}_n^k, \quad \tilde{d}_n^k \in \tilde{C}_n^k(X_p \setminus \Delta_p).$$

In this case one can construct an (n+l+1,k+l)-support \tilde{c}_{n+l+1}^{k+l} of \tilde{c}_{n+1}^k such that

$$\tilde{\partial}_{n+l+1}^{k+l}\tilde{c}_{n+l+1}^{k+l} = \tilde{c}_{n+l}^{k+l} \oplus \tilde{d}_{n+l}^{k+l}, \quad \tilde{d}_{n+l}^{k+l} \in \tilde{C}_{n+l}^{k+l}(X_p \setminus \Delta_p).$$

where \tilde{c}_{n+l}^{k+l} and \tilde{d}_{n+l}^{k+l} are (n+l,k+l)-supports of \tilde{c}_n^k and \tilde{d}_n^k , respectively. For the proof of the second statement of this lemma it is enough to apply the construction from the definition of support of a function in reverse order.

In view of Lemmas 4.4 and 4.5 we can give a new definition of homology to zero, which is equivalent to the previous one.

^{(&}lt;sup>3</sup>) Here and in the following, k' = k + l, n' = n + l.

^{(&}lt;sup>4</sup>) $\tilde{c}_n^k \sim 0 \ (X_p, X_p \setminus \Delta_p)$ means that $\tilde{c}_n^k \sim 0$ relative to $X_p \setminus \Delta_p$.

DEFINITION 4.6 (equivalent to Definition 4.2). A relative cycle \tilde{c}_n^k is called *homologous to zero* if for some l > 0 its (n + l, k + l)-support \tilde{c}_{n+l}^{k+l} is homologous to zero (in the sense of Definition 4.2).

5. Calculation of relative *L*-homology of an affine bundle. In this section we will assume that the base space V_{p_0} of the affine bundle $\xi_{p_0} = (X_{p_0}, \varphi_{p_0}, V_{p_0})$ does not have boundary, and the bounded domain Δ_{p_0} is of the form $X_{p_0} \cap B_1(R)$, where $B_1(R)$ is the open ball in E_1 of radius Rwith center at zero (⁵).

THEOREM 5.1. For any p_0 and $k \ge 0$,

$$\tilde{H}_n^k(X_{p_0}, X_{p_0} \setminus \Delta_{p_0}) \cong \begin{cases} 0, & n \neq p_0 + k, \\ \mathbb{Z}, & n = p_0 + k. \end{cases}$$

The proof reduces to calculating $\tilde{H}_n(V_{p_0,p_0+k}, V_{p_0,p_0+k} \setminus W_{p_0,p_0+k})$ where $W_{p_0,p_0+k} = \varphi_{p_0,p_0+k}(\Delta_{p_0}), \ \varphi_{p_0,p_0+k}$ is the projection of the k-division $(X_{p_0}, \varphi_{p_0,p_0+k}, V_{p_0,p_0+k})$ of $(X_{p_0}, \varphi_{p_0}, V_{p_0})$.

Before proving the theorem we state two relevant lemmas.

Let $\tilde{c}_n^k = \sum g_i \cdot f_{n,i}^k$ be an (n,k)-chain in $\tilde{C}_n^k(X_{p_0})$, $\sigma_n^k = \sigma_n \times H^k$ be a Hilbertian (n,k)-simplex and $s : \sigma_n \to \sigma_n^k$ be a continuous section of $\sigma_n \times H^k$. Let us consider the *n*-chain $\tilde{c}_n = \sum g_i \cdot f_{n,i}$ in V_{p_0,p_0+k} , where

$$f_{n,i} = \varphi_{p_0,p_0+k} \circ f_{n,i}^k \circ s : \sigma_n \to V_{p_0,p_0+k}.$$

In other words, \tilde{c}_n is the projection (by means of φ_{p_0,p_0+k}) of the chain \tilde{c}_n^k onto V_{p_0,p_0+k} .

LEMMA 5.2. \tilde{c}_n^k is a cycle relative to $X_{p_0} \setminus \Delta_{p_0}$ if and only if \tilde{c}_n is a cycle relative to $V_{p_0,p_0+k} \setminus W_{p_0,p_0+k}$.

Indeed, if \tilde{c}_n^k is a cycle relative to $X_{p_0} \setminus \Delta_{p_0}$, then $\tilde{\partial}_n^k \tilde{c}_n^k \in \tilde{C}_{n-1}^k(X_{p_0} \setminus \Delta_{p_0})$. As \tilde{c}_n is the projection (by means of φ_{p_0,p_0+k}) of \tilde{c}_n^k onto V_{p_0,p_0+k} , then $\tilde{\partial}_n \tilde{c}_n \in \tilde{C}_{n-1}(V_{p_0,p_0+k} \setminus W_{p_0,p_0+k})$. The converse implication is self-evident.

LEMMA 5.3.
$$\tilde{c}_n^k \sim 0 \ (X_{p_0}, X_{p_0} \setminus \Delta_{p_0})$$
 if and only if
 $\tilde{c}_n \sim 0 \ (V_{p_0, p_0+k}, V_{p_0, p_0+k} \setminus W_{p_0, p_0+k}).$

Indeed, if $\tilde{c}_n^k \sim 0$ $(X_{p_0}, X_{p_0} \setminus \Delta_{p_0})$, it follows that

$$\exists \tilde{c}_{n+1}^k \in \tilde{C}_{n+1}^k(X_{p_0}), \quad \tilde{\partial}_{n+1}^k \tilde{c}_{n+1}^k = \tilde{c}_n^k \oplus \tilde{d}_n^k, \quad \tilde{d}_n^k \in \tilde{C}_n^k(X_{p_0} \setminus \Delta_{p_0}).$$

^{(&}lt;sup>5</sup>) Recall that the affine bundle ξ_{p_0} is embedded in a Banach space E_1 .

Therefore

$$\tilde{\partial}_{n+1}\tilde{c}_{n+1} = \tilde{c}_n \oplus \tilde{d}_n, \quad \tilde{d}_n \in \tilde{C}_n(V_{p_0,p_0+k} \setminus W_{p_0,p_0+k}),$$

where \tilde{c}_{n+1} , \tilde{c}_n and \tilde{d}_n are the projections (by means of φ_{p_0,p_0+k}) of the chains \tilde{c}_{n+1}^k , \tilde{c}_n^k and \tilde{d}_n^k onto V_{p_0,p_0+k} , respectively. The converse implication is self-evident.

Proof of Theorem 5.1. Let $\tilde{c}_n^k \in [\tilde{c}_n^k] \in \tilde{H}_n^k(X_{p_0}, X_{p_0} \setminus \Delta_{p_0})$, and \tilde{c}_n be the projection of \tilde{c}_n^k onto V_{p_0,p_0+k} . By Lemma 5.2, \tilde{c}_n is a cycle relative to $V_{p_0,p_0+k} \setminus W_{p_0,p_0+k}$.

1) Let $n \neq p_0 + k$. Then, as is known from the theory of finite-dimensional homology,

$$\tilde{c}_n \sim 0 \ (V_{p_0, p_0+k}, V_{p_0, p_0+k} \setminus W_{p_0, p_0+k}),$$

i.e. the *n*-dimensional singular cycle \tilde{c}_n in V_{p_0,p_0+k} is homologous to zero relative to $V_{p_0,p_0+k} \setminus W_{p_0,p_0+k}$. By Lemma 5.3,

$$\tilde{c}_n^k \sim 0 \ (X_{p_0}, \ X_{p_0} \setminus \Delta_{p_0}).$$

Hence,

$$\tilde{H}_n^k(X_{p_0}, X_{p_0} \setminus \Delta_{p_0}) \cong 0 \text{ for } n \neq p_0 + k.$$

2) Let $n = p_0 + k$. If \tilde{c}_{p_0+k} is a cycle relative to $V_{p_0,p_0+k} \setminus W_{p_0,p_0+k}$, then

$$[\tilde{c}_{p_0+k}] \in \tilde{H}_{p_0+k}(V_{p_0,p_0+k}, V_{p_0,p_0+k} \setminus W_{p_0,p_0+k}).$$

Therefore

$$\exists d \in \mathbb{Z}, \quad [\tilde{c}_{p_0+k}] = d \cdot [\tilde{1}_{p_0+k}],$$

where $[\tilde{1}_{p_0+k}]$ is the unit element of $\tilde{H}_{p_0+k}(V_{p_0,p_0+k}, V_{p_0,p_0+k} \setminus W_{p_0,p_0+k})$. By Lemma 5.3,

$$[\tilde{c}_{p_0+k}^k] = d \cdot [\tilde{1}_{p_0+k}^k],$$

where $[\tilde{1}_{p_0+k}^k]$ is the unit element of $\tilde{H}_{p_0+k}^k(X_{p_0}, X_{p_0} \setminus \Delta_{p_0})$. By the abovementioned construction, the mapping

$$[\tilde{c}_{p_0+k}^k]\mapsto d\in\mathbb{Z}$$

is an isomorphism. Thus,

$$\tilde{H}^k_{p_0+k}(X_{p_0}, X_{p_0} \setminus \Delta_{p_0}) \cong \mathbb{Z}. \blacksquare$$

REMARK. Actually we proved that

$$\tilde{H}_{n}^{k}(X_{p_{0}}, X_{p_{0}} \setminus \Delta_{p_{0}}) \cong \tilde{H}_{n}(V_{p_{0}, p_{0}+k}, V_{p_{0}, p_{0}+k} \setminus W_{p_{0}, p_{0}+k}) \cong \begin{cases} 0, & n \neq p_{0}+k, \\ \mathbb{Z}, & n = p_{0}+k. \end{cases}$$

136

As $\tilde{\varphi}_{p_0}(\tilde{X}_{p_0}) = \Delta_{p_0}$ and $\Delta_{p_0} \subset X_{p_0}$, the spaces $(\tilde{X}, \tilde{X} \setminus \tilde{X}_{p_0})$ and $(X_{p_0}, X_{p_0} \setminus \Delta_{p_0})$ are homeomorphic to each other. Therefore

$$\tilde{H}_n^k(\tilde{X}, \tilde{X} \setminus \tilde{X}_{p_0}) \cong \begin{cases} 0, & n \neq p_0 + k, \\ \mathbb{Z}, & n = p_0 + k. \end{cases}$$

for every integer $k \ge 0$ (⁶).

6. L-homological degree of an FSQL-mapping between FSQLmanifolds. We shall consider a simpler case for the definition of L-homological degree of FSQL-mappings between FSQL-manifolds.

We will suppose that

1) The *FSQL*-manifolds \tilde{X} , \tilde{Y} are embedded in the Banach spaces E_x , E_y with the norms $\|\cdot\|_x$, $\|\cdot\|_y$, respectively.

- 2) The mappings $\tilde{\varphi}_p, \tilde{\varphi}_p^{-1}, \tilde{\psi}_m, \tilde{\psi}_m^{-1}$ are uniformly continuous.
- 3) $\tilde{f}: \tilde{X} \to \tilde{Y}$ is an *FSQL*-mapping which satisfies an a priori estimate

(6.1)
$$||x||_x \le \Phi(||f(x)||_y),$$

where Φ is some positive monotone function.

For simplicity, suppose that Φ is the identity mapping. Let us consider the equation

(6.2)
$$\tilde{f}(x) = y_0, \quad y_0 \in \tilde{Y}.$$

Under condition (6.1), all the solutions of (6.2) belong to $\tilde{X}_{R_0} = \tilde{X} \cap B_x(R_0)$, where $B_x(R_0)$ is the open ball in E_x of radius $R_0 = ||y_0||_y$ with center at zero. According to the definition of an *FSQL*-manifold,

$$\exists p_0, \, \forall p \ge p_0: \quad \tilde{X}_{R_0} \tilde{X}_p,$$

and according to the definition of FSQL-mappings between FSQL-manifolds,

$$\exists m_0, \, \forall m \ge m_0: \quad \tilde{f}(\tilde{X}_p) \subset \tilde{Y}_m$$

Let p and m be numbers for which all the above mentioned conditions are satisfied. Then to define the degree of \tilde{f} at the point $y_0 \in \tilde{Y}$ we can consider the restriction of \tilde{f} to \tilde{X}_p . As $\tilde{\varphi}_p$ and $\tilde{\psi}_m$ are homeomorphisms, equation (6.2) holds in \tilde{X}_{R_0} if and only if the equation

$$f_{p,m}(u) = w_0, \quad w_0 = \psi_m(y_0)$$

holds in $\tilde{\varphi}_p(\tilde{X}_{R_0})$, where $f_{p,m} \equiv \tilde{\psi}_m \circ \tilde{f} \circ \tilde{\varphi}_p^{-1} : \Delta_p \to \Omega_m, \, \tilde{\varphi}_p(\tilde{X}_{R_0}) \subset \Delta_p$.

According to the definition of FSQL-manifolds, $f_{p,m}$ is an FSQL-mapping between the affine bundles ξ_p and η_m . Let $\{f_{p,m,r}\}$ be a sequence of FSLmappings which is uniformly convergent to $f_{p,m}$ on Δ_p . Let us consider the

^{(&}lt;sup>6</sup>) Recall that p_0 is the dimension of the base space V_{p_0} of the affine bundle ξ_{p_0} .

equation

$$(6.3) f_{p,m,r}(u) = w_0$$

We will search for its solutions in $\tilde{\varphi}_p(\tilde{X}_{R'_0})$, where $\tilde{X}_{R'_0} = \tilde{X} \cap B_x(R'_0)$, $R'_0 = ||y_0||_y + 2\delta, \, \delta > 0.$

REMARK. $\tilde{X}_{R'_0} \subset \tilde{X}_p$ for large enough p, therefore $\tilde{\varphi}_p(\tilde{X}_{R'_0}) \subset \Delta_p$.

Obviously, $\tilde{f}(x) \in \tilde{Y} \setminus B_y(R_0)$ at $x \in \tilde{X} \setminus B_x(R_0)$, where $B_y(R_0)$ is the open ball in E_y of radius R_0 with center at zero. Therefore \tilde{f} is a mapping of pairs $(\tilde{X}, \tilde{X} \setminus B_x(R_0))$ and $(\tilde{Y}, \tilde{Y} \setminus B_y(R_0))$, and $f_{p,m}$ is a mapping of pairs $(\Delta_p, \Delta_p \setminus \tilde{\varphi}_p(\tilde{X}_{R_0})t)$ and $(\Omega_m, \Omega_m \setminus \tilde{\psi}_m(\tilde{Y}_{R_0}))$ (⁷).

By the definition of *FSQL*-mapping,

$$\forall u \in \Delta_p : \|f_{p,m}(u) - f_{p,m,r}(u)\|_2 < \delta_1, \quad \delta_1 > 0.$$

for sufficiently large r. As the L-charts $\tilde{\varphi}_p$, $\tilde{\varphi}_p^{-1}$, $\tilde{\psi}_m$, $\tilde{\psi}_m^{-1}$ are uniformly continuous,

$$\forall x \in \tilde{X}_p: \quad \|\tilde{f}(x) - \tilde{\psi}_m^{-1} \circ f_{p,m,r} \circ \tilde{\varphi}_p(x)\|_y < \delta, \quad \delta > 0.$$

for a proper choice of δ_1 . Therefore $f_{p,m,r}$ will be a mapping of pairs $(\Delta_p, \Delta_p \setminus \tilde{\varphi}_p(\tilde{X}_{R'_0}))$ and $(\Omega_m, \Omega_m \setminus \tilde{\psi}_m(\tilde{Y}_{R_0-\delta}))$ for sufficiently large r, where $\tilde{Y}_{R_0-\delta} = \tilde{Y} \cap B_y(R_0-\delta)$, $B_y(R_0-\delta)$ is the open ball in E_y of radius $R_0-\delta$ with center at zero.

Let $[\tilde{\omega}_{r+k}^k] \in \tilde{H}_{r+k}^k(\Delta_p, \Delta_p \setminus \tilde{\varphi}_p(\tilde{X}_{R'_0})), \tilde{\omega}_{r+k}^k \in [\tilde{\omega}_{r+k}^k], \tilde{\omega}_{r+k}^k = \sum g_i \cdot f_{r+k,i}^k$ and for any $i, f_{r+k,i}^k : \sigma_{r+k} \times H^k \to \xi_{p''}$ where $\xi_{p''} = (X_p, \varphi_{p''}, V_{p''})$, and $f_{p,m,r} : \Delta_p \to \Omega_m$ is an *FSL*-mapping which satisfies the above mentioned conditions. One can construct an affine bundle $\xi_{p,\nu}, \nu \geq r$, which is a common division of $\xi_{p,r}$ and $\xi_{p''}$. Let us take an $(r + \nu, \nu)$ -support $\tilde{\omega}_{r+\nu}^{\nu} = \sum g_i \cdot f_{r+\nu,i}^{\nu}$ of $\tilde{\omega}_{r+k}^k$. Then there exists a singular chain $\tilde{c}_{r+\nu}^{\nu} = \sum g_i \cdot (f_{p,m,r} \circ f_{r+\nu,i}^{\nu})$. By Lemma 4.4, $\tilde{\omega}_{r+\nu}^{\nu}$ is a relative cycle. As $f_{p,m,r}$ is a mapping of the above-mentioned pairs, $\tilde{c}_{r+\nu}^{\nu}$ is also a relative cycle, i.e. $[\tilde{c}_{r+\nu}^{\nu}] \in \tilde{H}_{r+\nu}^{\nu}(\Omega_m, \Omega_m \setminus \tilde{\psi}_m(\tilde{Y}_{R_0-\delta}))$. Obviously, the class $[\tilde{\omega}_{r+k}^k]$ corresponds to $[\tilde{\omega}_{r+\nu}^{\nu}]$ under the natural isomorphism $\tilde{H}_{r+\nu}^{\nu}(\Delta_p, \Delta_p \setminus \tilde{\varphi}_p(\tilde{X}_{R'_0}))$, and the class $[\tilde{c}_{r+k}^k]$ corresponds to $[\tilde{c}_{r+\nu}^{\nu}]$ under the natural isomorphism

$$\tilde{H}_{r+\nu}^{\nu}(\Omega_m, \Omega_m \setminus \tilde{\psi}_m(\tilde{Y}_{R_0} - \delta)) \to \tilde{H}_{r+k}^k(\Omega_m, \Omega_m \setminus \tilde{\psi}_m(\tilde{Y}_{R_0} - \delta)).$$

Therefore $f_{p,m,r}$ induces a homomorphism

$$f_{p,m,r,*}: \tilde{H}^k_{r+k}(\Delta_p, \Delta_p \setminus \tilde{\varphi}_p(\tilde{X}_{R'_0})) \to \tilde{H}^k_{r+k}(\Omega_m, \Omega_m \setminus \tilde{\psi}_m(\tilde{Y}_{R_0-\delta})).$$

(⁷) Recall that $\tilde{\psi}_m(\tilde{Y}_m) = \Omega_m$, where $(\tilde{\psi}_m, \tilde{Y}_m t)$ is the *L*-chart on \tilde{Y} .

Let $[\tilde{1}_{r+k}^k]$ be the generator of the group $\tilde{H}_{r+k}^k(\Delta_p, \Delta_p \setminus \tilde{\varphi}_p(\tilde{X}_{R'_1}))$ and $[\tilde{c}_{r+k}^k] = f_{p,m,r,*}[\tilde{1}_{r+k}^k]$. As $\tilde{H}_{r+k}^k(\Omega_m, \Omega_m \setminus \tilde{\psi}_m(\tilde{Y}_{R_0-\delta})) \cong \mathbb{Z}$, some number in \mathbb{Z} corresponds to the element $[\tilde{c}_{r+k}^k]$. Let us denote that number by $\deg_H(f_{p,m,r})$.

DEFINITION 6.1. The number $\deg_H(f_{p,m,r})$ is called an *L*-homological degree of the FSL-mapping $f_{p,m,r}$.

The sign of deg_H($f_{p,m,r}$) depends on the choice of the generators of the groups $\tilde{H}^k_{r+k}(\Delta_p, \Delta_p \setminus \tilde{\varphi}_p(\tilde{X}_{R'_0}))$ and $\tilde{H}^k_{r+k}(\Omega_m, \Omega_m \setminus \tilde{\psi}_m(\tilde{Y}_{R_0-\delta}))$, but its absolute value is invariable. The latter fact is not important for the proof of the existence of a solution of equation (6.2) (see Theorem 6.6). One can prove that the degree of $f_{p,m,r}$ is well defined by Definition 6.1.

One can prove that $\{|\deg_H(f_{p,m,r})|\}$ stabilizes for sufficiently large r (⁸). Therefore we can give the following

DEFINITION 6.2. $\deg_H(f_{p,m}) = \lim_{r \to \infty} |\deg_H(f_{p,m,r})|.$

DEFINITION 6.3. $\deg_H(\tilde{f}) = \deg_H(f_{p,m}).$

As $f_{p,m} \equiv \tilde{\psi}_m \circ \tilde{f} \circ \tilde{\varphi}_p^{-1} \tilde{\psi}_m$, and $\tilde{\varphi}_p$ are homeomorphisms, the degree of \tilde{f} is well defined by Definition 6.3.

LEMMA 6.4. Let $\deg_H(f_{p,m,r}) \neq 0$. Then the equation (6.3) has a solution in $\tilde{\varphi}_p(\tilde{X}_{R'_0})$.

Proof. As $f_{p,m,r}$ is a bimorphism, it induces some finite-dimensional continuous mapping $g_{p,m,r}: V_{p,r} \to B_{m,r}$. The commutativity of the diagram

$$\begin{array}{cccc} (\Delta_p, \Delta_p \setminus \tilde{\varphi}_p(\tilde{X}_{R'_0})) & \xrightarrow{f_{p,m,r}} & (\Omega_m, \Omega_m \setminus \tilde{\psi}_m(\tilde{Y}_{R_0-\delta})) \\ & & & \downarrow \psi_{m,r} \\ (V_{p,r}, V_{p,r} \setminus \varphi_{p,r}(\tilde{\varphi}_p(\tilde{X}_{R'_0}))) & \xrightarrow{g_{p,m,r}} & (B_{m,r}, B_{m,r} \setminus \psi_{m,r}(\tilde{\psi}_m(\tilde{Y}_{R_0-\delta}))) \end{array}$$

yields the commutativity of

As $\varphi_{p,r,*}$ and $\psi_{m,r,*}$ are isomorphisms (see Theorem 5.1),

$$\deg_H(f_{p,m,r}) = \deg_H(g_{p,m,r,*})$$

^{(&}lt;sup>8</sup>) Because of its length, the proof of this statement is given in the appendix.

Here $\deg_H(g_{p,m,r})$ is the homological degree of $g_{p,m,r}$. Thus, $\deg_H(g_{p,m,r}) \neq 0$ as $\deg_H(f_{p,m,r}) \neq 0$. Then, as is known from finite-dimensional analysis,

$$\exists \alpha'_0 \in V_{p,r}, \quad g_{p,m,r}(\alpha'_0) = \beta'_0, \quad \beta'_0 = \psi_{m,r}(w_0).$$

As f_{p,m,r,α'_0} is an isomorphism between the fibers X_{p,α'_0} $(X_{p,\alpha'_0} = \varphi_{p,r}^{-1}(\alpha'_0))$ and Y_{m,β'_0} $(Y_{m,\beta'_0} = \psi_{m,r}^{-1}(\beta'_0))$ of the affine bundles $\xi_{p,r}$ and $\eta_{m,r}$, there exists a unique point $u_0 \in \varphi_{p,r}^{-1}(\alpha'_0)$ such that

(6.4)
$$f_{p,m,r}(u_0) = w_0.$$

However, in this case, it could happen that $u_0 \notin \tilde{\varphi}_p(X_{R'_0})$. Let us show that this is not the case. Obviously,

$$\forall u \in \Delta_p: \quad \|f_{p,m}(u) - f_{p,m,r}(u)\|_2 < \delta_1, \quad \delta_1 > 0,$$

for sufficiently large r. As the L-charts $\tilde{\varphi}_p$, $\tilde{\varphi}_p^{-1}$, $\tilde{\psi}_m$, $\tilde{\psi}_m^{-1}$ are uniformly continuous,

$$\forall x \in \tilde{X}_p: \quad \|\tilde{f}(x) - \tilde{\psi}_m^{-1} \circ f_{p,m,r} \circ \tilde{\varphi}_p(x)\|_y < \delta, \quad \delta > 0.$$

If $u_0 \notin \tilde{\varphi}_p(\tilde{X}_{R'_0})$, then $x_0 = \tilde{\varphi}_p^{-1}(u_0) \notin X_{R'_0}$, i.e. $||x_0||_x > R'_0$. Then it follows from the estimate (6.1) that $||\tilde{f}(x_0)||_y > R'_0$. As $R'_0 = R_0 + 2\delta$, $R_0 = ||y_0||_y$, we have

$$\begin{split} \|\tilde{\psi}_m^{-1} \circ f_{p,m,r} \circ \tilde{\varphi}_p(x_0)\|_y &\geq \|\tilde{f}(x_0)\|_y - \|\tilde{f}(x_0) - \tilde{\psi}_m^{-1} \circ f_{p,m,r} \circ \tilde{\varphi}_p(x_0)\|_y \\ &\geq (\|y_0\|_y + 2\delta) - \delta > \|y_0\|_y, \end{split}$$

i.e. $\tilde{\psi}_m^{-1} \circ f_{p,m,r} \circ \tilde{\varphi}_p(x_0) \neq y_0$, hence $f_{p,m,r}(u_0) \neq w_0$, which contradicts the equality (6.4). Thus $u_0 \in \tilde{\varphi}_p(\tilde{X}_{R'_0})$.

Using the local stability of $|\deg_H(f_{p,m,r})|$ it is not difficult to prove the following:

THEOREM 6.5. Let $\{\tilde{f}_t\}$ be a family of FSQL-mappings between \tilde{X} and \tilde{Y} , which continuously depends on $t \in [0, 1]$ (uniformly in each ball) and for each $t \in [0, 1]$ an a priori estimate (6.1) is satisfied, where the function Φ does not depend on t. Then

$$\deg_H(\tilde{f}_1) = \deg_H(\tilde{f}_0).$$

THEOREM 6.6 (9). Let $\tilde{f}: \tilde{X} \to \tilde{Y}$ be an FSQL-mapping which satisfies an a priori estimate (6.1) and $\deg_H(\tilde{f}) \neq 0$. Then equation (6.2) has a solution for each $y_0 \in \tilde{Y}$.

Proof. Because of Definition 6.3,

$$\deg_H(f_{p,m}) \neq 0,$$

 $^(^9)$ A similar theorem, for a simple case, is proved in [10].

and because of Definition 6.2,

$$\deg_H(f_{p,m,r}) \neq 0$$

for sufficiently large r. By Lemma 6.4, in this case equation (6.3) has a solution in $\tilde{\varphi}_p(\tilde{X}_{R'_0})$. Let

$$N_r = \{ u \in \tilde{\varphi}_p(\tilde{X}_{R'_0}) \mid f_{p,m,r}(u) = w_0 \}, \quad N = \bigcup_{r \ge r_0} N_r.$$

Let us prove that N is compact. First, we shall prove that N_r is compact. For this purpose we will construct its finite ε -covering. Let $u_0 \in N_r$ and $B_1(u_0, \varepsilon)$ the ball in E_1 of radius ε with center at u_0 . Let us consider the function

$$P_{u_0}(\alpha') = \inf_{u} \{ \|f_{p,m,r,\alpha'}(u) - w_0\|_2 \mid u \in X_{p,\alpha'} \setminus B_1(u_0,\varepsilon) \},\$$

where $X_{p,\alpha'}$ is the fiber of the subbundle $\xi_{p,r} = (X_p, \varphi_{p,r}, V_{p,r})$ above $\alpha' \in V_{p,r}$ and $f_{p,m,r,\alpha'}$ is the restriction of $f_{p,m,r}$ to $X_{p,\alpha'}$. It is continuous in $\varphi_{p,r}(\tilde{\varphi}_p(\tilde{X}_{R'_0}))$. Let C be the constant from Definition 2.3. Then for $u \in X_{p,\alpha'_0} \setminus B_1(u_0,\varepsilon)$,

(6.5)
$$||f_{p,m,r,\alpha'_0}(u) - w_0||_2 = ||f_{p,m,r,\alpha'_0}(u) - f_{p,m,r,\alpha'_0}(u_0)||_2$$

= $||f_{p,m,r,\alpha'_0}(u - u_0)||_2 \ge \frac{1}{C} \cdot ||u - u_l||_1 > \frac{\varepsilon}{C}.$

As $||u - u_0||_1 > \varepsilon$ we have $P_{u_0}(\alpha'_0) > \varepsilon/C$. Then there exists a neighborhood $U(\alpha'_0)$ in which

$$P_{u_0}(\alpha') > \frac{\varepsilon}{2C}.$$

Let $u \in X_{p,\alpha'} \setminus B_1(u_0,\varepsilon)$. Then

$$\begin{split} \|f_{p,m,r,\alpha'}(u) - w_0\|_2 \\ &= \|f_{p,m,r,\alpha'}(u) - f_{p,m,r,\alpha'_0}(u_0)\|_2 \\ &= \|(f_{p,m,r,\alpha'}(u) - f_{p,m,r,\alpha'}(u_0)) + (f_{p,m,r,\alpha'}(u_0) - f_{p,m,r,\alpha'_0}(u_0))\|_2 \\ &\geq \|f_{p,m,r,\alpha'}(u) - f_{p,m,r,\alpha'}(u_0)\|_2 - \|f_{p,m,r,\alpha'}(u_0) - f_{p,m,r,\alpha'_0}(u_0)\|_2 \\ &\geq \|f_{p,m,r,\alpha'}(u - u_0)\|_2 - \|(f_{p,m,r,\alpha'} - f_{p,m,r,\alpha'_0})(u_0)\|_2 \\ &\geq \frac{\varepsilon}{C} - \|f_{p,m,r,\alpha'} - f_{p,m,r,\alpha'_0}\| \cdot \|u_0\|_1. \end{split}$$

Let us denote the last difference by A. As the family $\{f_{p,m,r,\alpha'}\}$ of affine mappings is uniformly continuous in α' ,

$$\exists \lambda > 0, \quad \|f_{p,m,r,\alpha'} - f_{p,m,r,\alpha'_0}\| < \frac{\varepsilon}{2C \cdot \max\{\|u_\tau\|_1\}} \quad \text{if } \rho_r(\alpha',\alpha'_0) < \lambda,$$

where $u_{\tau} \in N_r$, and $\rho_r(\alpha', \alpha'_0)$ is a metric on $V_{p,r}$. Then

$$A > \frac{\varepsilon}{C} - \frac{\varepsilon}{2C \cdot \max\{\|u_{\tau}\|_1\}} \cdot \max\{\|u_{\tau}\|_1\} = \frac{\varepsilon}{2C} \ (^{10}).$$

So, the neighborhood $U(\alpha'_0)$ contains a ball $W(\alpha'_l) = \{\alpha' \mid \rho_r(\alpha', \alpha'_l) < \lambda\}$ of some radius λ , where λ depends only on ε . Therefore there exists a finite covering of the bounded finite-dimensional set $\varphi_{p,r}(N_r)$ by balls $W(\alpha'_l)$: $\varphi_{p,r}(N_r) \subset \bigcup W(\alpha'_l)$. Then the balls $B_1(u_l, \varepsilon)$ form an ε -covering of the set N_r , as for $u \notin \bigcup B_1(u_l, \varepsilon)$, $u \notin N_r$ because of (6.5).

Now we will prove that N is compact. Let

$$N_r^{\varepsilon} = \{ u \in \tilde{\varphi}_p(\tilde{X}_{R'_0}) \mid ||f_{p,m,r}(u) - w_0||_2 < \varepsilon \}.$$

By the definition of *FSQL*-mapping for each $\varepsilon > 0$ there exists μ such that

(6.6)
$$||f_{p,m,r}(u) - f_{p,m}(u)||_2 < \frac{\varepsilon}{8C} \quad \text{for } r \ge \mu \text{ and } u \in \tilde{\varphi}_p(\tilde{X}_{R'_0}).$$

Let $u \in N_r$, i.e. $f_{p,m,r}(u) = w_0$, and $r \ge \mu$. Then taking into account (6.6) we have

$$||f_{p,m,\mu}(u) - w_0||_2 \le ||f_{p,m,\mu}(u) - f_{p,m}(u)||_2 + ||f_{p,m}(u) - f_{p,m,r}(u)||_2 + ||f_{p,m,r}(u) - w_0||_2 \le \frac{\varepsilon}{4C}.$$

Hence $N_r \,\subset N_{\mu}^{\varepsilon/4C}$ at $r \geq \mu$. Therefore $N \subset N_{r_0} \cup \cdots \cup N_{\mu-1} \cup N_{\mu}^{\varepsilon/4C}$. Now we shall construct a finite ε -covering for N. It is already constructed for each $N_{r_0}, \ldots, N_{\mu-1}$; therefore it is sufficient to construct a finite covering only for $N_{\mu}^{\varepsilon/4C}$. Let $\varphi_{p,\mu}$ be the projection of $\xi_{p,\mu} = (X_p, \varphi_{p,\mu}, V_{p,\mu})$, on which $f_{p,m,\mu}$ is defined. Let us consider a ball $B_1(u_0, \varepsilon)$, where $u_0 \in N_{\mu}^{\varepsilon/4C}$. The intersection of $N_{\mu}^{\varepsilon/4C}$ with the plane $X_{p,\alpha_0''}$, where $\alpha_0'' = \varphi_{p,\mu}(u_0)$, is contained in $B_1(u_0, \varepsilon/2)$. Indeed, if $u \notin B_1(u_0, \varepsilon/2)$, then $||u - u_0||_1 > \varepsilon/2$, hence

$$\begin{split} \|f_{p,m,\mu,\alpha_{0}^{\prime\prime}}(u) - w_{0}\|_{2} \\ &\geq \|f_{p,m,\mu,\alpha_{0}^{\prime\prime}}(u) - f_{p,m,\mu,\alpha_{0}^{\prime\prime}}(u_{0})\|_{2} - \|f_{p,m,\mu,\alpha_{0}^{\prime\prime}}(u_{0}) - w_{0}\|_{2} \\ &\geq \|(f_{p,m,\mu,\alpha_{0}^{\prime\prime}})^{-1}\| \cdot \|u - u_{0}\|_{1} - \|f_{p,m,\mu,\alpha_{0}^{\prime\prime}}(u_{0}) - w_{0}\|_{2} \\ &\geq \frac{1}{C} \cdot \|u - u_{0}\|_{1} - \frac{\varepsilon}{4C} \geq \frac{1}{C} \cdot \frac{\varepsilon}{2} - \frac{\varepsilon}{4C} = \frac{\varepsilon}{4C}, \end{split}$$

i.e. $u \notin N_{\mu}^{\varepsilon/4C}$. This contradicts the assumption. From this it follows that for the continuous function

$$P'_{u_0}(\alpha'') = \inf_{u} \{ \|f_{p,m,\mu,\alpha''}(u) - w_0\|_2 \mid u \in X^{\mu}_{p,\alpha''} \setminus B_1(u_0,\varepsilon) \},\$$

142

 $^(^{10})$ The set N_r is bounded, therefore $\max\{||u_\tau||_1\} < \infty$.

we have

$$P_{u_0}'(\alpha_0'') > \varepsilon/4C.$$

Hence, as above, from the covering $N_{\mu}^{\varepsilon/4C}$ by balls $B_1(u,\varepsilon)$, one can select a finite subcovering. As ε is arbitrary, it is proved that N is compact.

Now let $\{u_r\} \subset \tilde{\varphi}_p(X_{R'_0})$ be some sequence of solutions of (6.3). As $\{u_r\} \subset N$, there exists a subsequence converging to some $u_0 \in N$. As $\{f_{p,m,r}\}$ uniformly converges to $f_{p,m}$ in $\tilde{\varphi}_p(\tilde{X}_{R'_0})$, $f_{p,m}(u_0) = w_0$. Therefore, $\tilde{f}(x_0) = y_0$, where $x_0 = \tilde{\varphi}_p^{-1}(u_0)$, i.e. x_0 is a solution of equation (6.2).

7. Appendix. The proof of stabilization of $\{|\deg_H(f_{p,m,r})|\}$. First we recall that η_m is embedded in the Banach space E_2 . Let $f_{p,m,r'}:\xi_{p,r'} \rightarrow \eta_{m,r'}$ and $f_{p,m,r''}:\xi_{p,r''} \rightarrow \eta_{m,r''}$ be two *FSL*-mappings which are close enough to each other in $\Delta_p \subset X_p$. Without restriction of generality one can suppose that $f_{p,m,r'}:\xi_{p,\nu} \rightarrow \eta_{m,\nu,1}$ and $f_{p,m,r''}:\xi_{p,\nu} \rightarrow \eta_{m,\nu,2}$ are bimorphisms between the aforesaid bundles, where $\xi_{p,\nu} = (X_p, \varphi_{p,\nu}, V_{p,\nu}),$ $\nu \geq r', r''$, is a common division of $\xi_{p,r'}, \xi_{p,r''}$ and $\eta_{m,\nu,1}, \eta_{m,\nu,2}$ are divisions of η_m of the same codimension ν . Let us introduce the following notations:

We denote the mappings $f_{p,m,r'}$ and $f_{p,m,r''}$ by $f_{p,m,\nu,1}$ and $f_{p,m,\nu,2}$, respectively. We denote the fibers of $\xi_{p,\nu} = (X_p, \varphi_{p,\nu}, V_{p,\nu})$ by $X_{p,\alpha}$:

$$X_{p,\alpha} = \varphi_{p,\nu}^{-1}(\alpha), \quad \alpha \in V_{p,\nu}.$$

We denote the fibers of $\eta_m = (Y_m, \psi_m, B_m)$ by $Y_{m,\beta}$:

$$Y_{m,\beta} = \psi_m^{-1}(\beta), \quad \beta \in B_m$$

We denote the fibers of $\eta_{m,\nu,1} = (Y_m, \psi_{m,\nu,1}, B_{m,\nu,1})$ by $Y_{m,\nu,\beta_{1,1}}$:

$$Y_{m,\nu,\beta_1,1} = \psi_{m,\nu,1}^{-1}(\beta_1), \quad \beta_1 \in B_{m,\nu,1}$$

We denote the fibers of $\eta_{m,\nu,2} = (Y_m, \psi_{m,\nu,2}, B_{m,\nu,2})$ by $Y_{m,\nu,\beta_2,2}$:

$$Y_{m,\nu,\beta_2,2} = \psi_{m,\nu,2}^{-1}(\beta_2), \quad \beta_2 \in B_{m,\nu,2}.$$

Finally

$$f_{p,m,\nu,1}(X_{p,\alpha}) = Y_{m,\nu,\beta_1(\alpha),1}, \quad f_{p,m,\nu,2}(X_{p,\alpha}) = Y_{m,\nu,\beta_2(\alpha),2}.$$

As $f_{p,m,\nu,1}$ and $f_{p,m,\nu,2}$ are close to each other in Δ_p , the fibers $Y_{m,\nu,\beta_1(\alpha),1}$ and $Y_{m,\nu,\beta_2(\alpha),2}$ are also close to each other for any $\alpha \in V_{p,\nu}$, i.e.

$$dist(Y_{m,\nu,\beta_1(\alpha),1}, Y_{m,\nu,\beta_2(\alpha),2})$$

= sup{ $\rho(w, Y'_{m,\nu,\beta_1(\alpha),1}) \mid w \in Y'_{m,\nu,\beta_2(\alpha),2} \cap B_2(1))$ } < ε , $\varepsilon > 0$ (¹¹).

 $^(^{11})$ Here $Y'_{m,\nu,\beta_1(\alpha),1}, Y'_{m,\nu,\beta_2(\alpha),2}$ are the subspaces of E_2 which are parallel translates of $Y_{m,\nu,\beta_1(\alpha),1}, Y_{m,\nu,\beta_2(\alpha),2}$ respectively through the origin of $E_2, B_2(1)$ is the ball of radius one in E_2 with center at zero, and $\rho(w,Y'_{m,\nu,\beta_1(\alpha),1})$ is the distance between w and $Y'_{m,\nu,\beta_1(\alpha),1}$.

Therefore $Y_{m,\nu,\beta_2(\alpha),2}$ is close to $Y_{m,\beta(\alpha)}$, which contains $Y_{m,\nu,\beta_1(\alpha),1}$. Then it is possible to take the orthogonal projection of each fiber $Y_{m,\nu,\beta_2(\alpha),2}$ onto $Y_{m,\beta(\alpha)}$. Let us denote this projection by $\pi_{\beta(\alpha)}$, $\alpha \in V_{p,\nu}$. By construction:

- 1) $\pi_{\beta(\alpha)}$ is an affine isomorphism between $Y_{m,\nu,\beta_2(\alpha),2}$ and its image.
- 2) $\pi = \{\pi_{\beta(\alpha)} \mid \alpha \in V_{p,\nu}\}\$ is an isomorphism between $\{Y_{m,\nu,\beta_2(\alpha),2}\}\$ and its image.
- 3) $f_{p,m,\nu,3} = \pi \circ f_{p,m,\nu,2}$ is an *FSL*-mapping.
- 4) The mappings $f_{p,m,\nu,3}$ and $f_{p,m,\nu,2}$ are close to each other in Δ_p , hence $f_{p,m,\nu,3}$ is close to $f_{p,m,\nu,1}$ in Δ_p .

REMARK. The difference between the mappings $f_{p,m,\nu,3}$ and $f_{p,m,\nu,2}$ is that $f_{p,m,\nu,1}(X_{p,\alpha})$ and $f_{p,m,\nu,3}(X_{p,\alpha})$ are contained in the same $Y_{m,\beta(\alpha)}$ for each $\alpha \in V_{p,\nu}$.

As all the mappings obeying $f_{p,m,\nu,3} = \pi \circ f_{p,m,\nu,2}$ are *FSL*-mappings and π is an isomorphism,

$$\deg_H f_{p,m,\nu,3} = \deg_H (\pi \circ f_{p,m,\nu,2})$$

= $(\deg_H \pi) \cdot (\deg_H f_{p,m,\nu,2}) = \deg_H f_{p,m,\nu,2}.$

Now let us prove that

$$\deg_H f_{p,m,\nu,3} = \deg_H f_{p,m,\nu,1}.$$

For this purpose we take an $(\nu + 1, k)$ -prism $\sigma_{\nu+1}^k = \sigma_{\nu}^k \times I_1$, where I_1 is a 1-cube, that is, a line segment. We will consider the singular $(\nu + 1, k)$ -chain

$$\tilde{\sigma}_{\nu+1}^k = \sum g_i \cdot [t \cdot f_{p,m,\nu,1} \circ f_{\nu,i}^k(u) + (1-t) \circ f_{p,m,\nu,3} \circ f_{\nu,i}^k(u)] \ (^{12}).$$

One can show that $\tilde{\partial}_{\nu+1}^k \tilde{\sigma}_{\nu+1}^k \in \tilde{C}_{\nu}^k(X_p \setminus \Delta_p)$, i.e. the relative cycles $\sigma_{\nu,1}^k = \sum g_i \cdot f_{p,m,\nu,1} \circ f_{\nu,i}^k$ and $\tilde{\sigma}_{\nu,3}^k = \sum g_i \cdot f_{p,m,\nu,3} \circ f_{\nu,i}^k$ are homologous to each other relative to $X_p \setminus \Delta_p$. Hence

$$\deg_H f_{p,m,\nu,3} = \deg_H f_{p,m,\nu,1}.$$

Therefore

$$\deg_H f_{p,m,\nu,2} = \deg_H f_{p,m,\nu,1}.$$

Thus,

 $\deg_H f_{p,m,r'} = \deg_H f_{p,m,r''}$

for sufficiently large r' and r''.

Acknowledgments. I would like to thank Dr. Ibrahim Turkyilmaz, Nazmi Yaganoglu and Yavuz Yildirim for their assistance in preparing this manuscript. I am also grateful to an anonymous referee for extremely helpful comments and suggestions.

 $^(^{12})$ Because of the note mentioned above, $\tilde{\sigma}^k_{\nu+1}$ is a chain in $X_p.$

References

- A. Abbasov, A special quasi-linear mapping and its degree, Turkish J. Math. 24 (2000), 1–14.
- [2] —, Quasi-linear manifolds and quasi-linear mapping between them, ibid. 28 (2004), 1–11.
- [3] —, The homological theory of degree of FQL-mappings, ibid. 30 (2006), 129–138.
- [4] Yu. G. Borisovich, V. G. Zvyagin and Yu. I. Sapronov, Nonlinear Fredholm mappings and Leray–Schauder theory, Uspekhi Mat. Nauk 32 (1977), no. 4, 3–54 (in Russian).
- [5] D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. 92 (1970), 102–163.
- [6] J. Eells, Fredholm structures, in: Proc. Sympos. Pure Math. 18, Amer. Math. Soc. Providence, RI, 1970, 62–85.
- [7] M. A. Efendiev, The degree of a Fredholm quasilinear mapping of quasicylindrical domains and the nonlinear Hilbert problem in an annulus, Izv. Akad. Nauk Azerbaĭdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk 1979, no. 5, 18–23 (in Russian).
- Yu. E. Gliklikh, Analysis on Riemannian Manifolds and Problems of Mathematical Physics, Univ. of Voronezh, 1989 (in Russian).
- [9] M. W. Hirsch, *Differential Topology*, Springer, 1976.
- [10] A. I. Shnirelman, The degree of quasi-linear mapping and the nonlinear Hilbert problem, Mat. Sb. 89 (1972), 336–389 (in Russian).

A. Abbasov Faculty of Economics and Administrative Sciences Çanakkale Onsekiz Mart University Biga, Çanakkale, Turkey E-mail: abakif@hotmail.com

> Received 8.6.2009 and in final form 25.3.2010

(2026)