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An example for the holomorphic sectional curvature
of the Bergman metric

by Żywomir Dinew (Kraków)

Abstract. We study the behaviour of the holomorphic sectional curvature (or Gaus-
sian curvature) of the Bergman metric of planar annuli. The results are then utilized to
construct a domain for which the curvature is divergent at one of its boundary points and
moreover the upper limit of the curvature at that point is maximal possible, equal to 2,
whereas the lower limit is −∞.

0. Introduction. Recall that the holomorphic sectional curvature of the
Bergman metric of a bounded pseudoconvex domain U ⊂ Cn at the point
z ∈ U in direction X ∈ Cn is defined as follows:

(0.1) RU (z,X) :=
( n∑
p,q=1

gpqXpXq

)−2
n∑

i,j,k,l=1

RijklXiXjXkXl;

here

Rijkl := −
∂2gji
∂zk∂zl

+
n∑

r,s=1

grs
∂gjr
∂zk

∂gsi
∂zl

,

where grs stands for the (r, s)th entry of the inverse matrix of gpq. The term in
brackets in the definition of RU is introduced for the sake of normalization.
Finally gpq stands for ∂2

∂zp∂zq
log KU (z, z), where KU (z, z) is the Bergman

kernel (on the diagonal) of the domain U .
One can show that

(0.2) RU (z0, X) = 2−
J0,U (z0;X)J2,U (z0;X)

J1,U (z0;X)2
,
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where

J0,U (z0;X) := sup
{
|f(z0)|2 : f ∈ O(U) ∩ L2(U),

�

U

|f |2 ≤ 1
}
,(0.3)

J1,U (z0;X) := sup
{∣∣∣∣ n∑

j=1

∂f(z0)
∂zj

Xj

∣∣∣∣2 : f ∈ O(U) ∩ L2(U),(0.4)

�

U

|f |2 ≤ 1, f(z0) = 0
}
,

J2,U (z0;X) := sup
{∣∣∣∣ n∑

i,j=1

∂2f(z0)
∂zj∂zi

XjXi

∣∣∣∣2 : f ∈ O(U) ∩ L2(U),(0.5)

�

U

|f |2 ≤ 1, f(z0) = 0,
∂f(z0)
∂zj

= 0, j = 1, . . . , n
}
.

We see that J0,U (z0;X) = KU (z0, z0), which is independent of X, and
that the holomorphic sectional curvature of the Bergman metric is invariant
under biholomorphic mappings.

From (0.2) it follows immediately that

(0.6) RU (z,X) < 2, z ∈ U.

This was already established by Bergman. It was shown by Lebed′ (see [12])
that when n ≥ 2 this estimate is optimal in the following weak sense: For
each ε > 0 there exists a domain Uε for which there exist z ∈ Uε and X ∈ Cn

such that RUε(z,X) > 2− ε. In a very recent paper Chen and Lee ([5]) have
shown that the estimate is optimal in the strong sense, i.e., there exists a
domain U and z0 ∈ ∂U such that limν→∞RU (zν , X(zν)) = 2 for suitably
chosen zν ∈ U with zν → z0 and X(zν). The question of the existence of a
lower bound is also answered (in the negative) in higher dimensions in the
paper of Herbort (see [9], where even an example with smooth boundary is
provided).

In dimension 1 the formula (0.1) becomes

(0.7) RU (z,X) =
−g1111 + g111g111

g11

(g11)2
=
−(log g11)11

g11

,

which is independent of X, and therefore we will use the shorter form RU (z).
In fact this is exactly the Gaussian curvature of g.

Little is known about the holomorphic sectional curvature of the Bergman
metric in dimension one. This is mainly because for most of the planar do-
mains one cannot compute the Bergman kernel explicitly. The first nontrivial
(i.e., not biholomorphic to the unit disc) domain for which one can say more
is the circular annulus.
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The Bergman kernel of the annulus Pr = {z ∈ C : r < |z| < 1} is

KPr(z, z) = − 1
π|z|2 log(r2)

+ π−1
∞∑
j=0

(
r2+2j

(−r2+2j + |z|2)2
+

r2j

(1− r2j |z|2)2

)
(see e.g. [10]). This will be denoted as K for short.

Because the annulus has smooth boundary, it follows by a theorem of
Klembeck (see [11]) that

lim
Pr3z→∂Pr

RPr(z) = −1.

When r → 0, the domains Pr will exhaust the punctured unit disc and
therefore one can expect the corresponding holomorphic sectional curvatures
of the Bergman metric to be convergent to the curvature of the punctured
disc which is the same as for the whole disc (the constant −1). (In the case of
the Bergman kernel this is Ramadanov’s theorem.) This is indeed the case,
but the convergence is only locally uniform. Moreover, numerical experiments
of the author have shown that when r gets smaller, the global maximum of
the holomorphic sectional curvature of the Bergman metric becomes closer
to 2, and the global minimum tends to be unbounded.

The figures below present the behaviour of the curvature, when restricted
to the line segment (r, 1) ⊂ R, for different choices of r. (Figures 3 and 4 are
for the same r = 0.001, but Figure 4 is scaled in order to focus on the global
maximum).

0.2 0.4 0.6 0.8 1.0

-1.10

-1.08

-1.06

-1.04

-1.02

-1.00

-0.98

-0.96

Fig. 1. The curvature of P0.1 restricted to (0.1, 1)
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Fig. 2. The curvature of P0.01 restricted to (0.01, 1)
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Fig. 3. The curvature of P0.001 restricted to (0.001, 1)

0.05 0.10 0.15 0.20 0.25

-0.5

0.0

0.5

1.0

1.5

2.0

Fig. 4. The curvature of P0.001 restricted to (0.001, 1)

We will confirm these numerical experiments by analytically proving the
following result:

Theorem 0.1. For the circular annuli Pr one has

lim
r→0

RPr(
√
r) = −∞, lim

r→0
RPr(r

3/10) = 2.

Section 1 is entirely devoted to the very technical but rigorous proof of
this theorem (1).

This shows that Lebed’s result can be extended to n = 1 and that one
cannot find a universal constant that would be a lower bound for any planar
domain.

In Section 2 the result of Section 1 is utilized to construct a planar
domain for which the holomorphic sectional curvature of the Bergman metric
is divergent at one of the boundary points of the domain. Namely one has

Theorem 0.2. There exists a bounded planar domain Ω and a point
ζ ∈ ∂Ω such that

lim sup
Ω3z→ζ

RΩ(z) = 2 and lim inf
Ω3z→ζ

RΩ(z) = −∞.

(1) W. Zwonek obtained a considerably easier proof (see [15]). He moreover obtained
a full characterization of the boundary behaviour of RPr , for all exponents of r (not only
1/2 and 3/10 as above).
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This is done by using the known localization technique (in the style of
[4] or [8]) which heavily depends on the geometry of the domain.

This proves that the constant 2 is optimal in the strong sense even in
dimension 1 and that planar domains with unbounded holomorphic sectional
curvature of the Bergman metric do exist. Here of course the domain cannot
have smooth boundary (because of the aforementioned theorem of Klem-
beck), nor can it be finitely connected (because of the uniformization theo-
rem which essentially reduces the problem to the first case). On the other
hand the theory of Bergman invariants on nonsmooth domains is far less
clear, compared to the smooth case.

In the whole paper GΩ(z, z0) will stand for the (negative) Green function
i.e.,

GΩ(z, z0) := sup{u(z) : u ∈ SH(Ω), u ≤ 0, lim
w→z0

(u(w)− log |w−z0|) <∞},

where SH stands for subharmonic. Note that it is more common to call
−G(z, z0) “Green function”, but we will stick to the above definition.

1. Behaviour of the curvature of circular annuli. Let

S := −K1̄ K1

K2 +
K11̄

K
.

Using (0.7) we expand explicitly RPr by means of consecutive derivatives of
the Bergman kernel K as RPr =

∑24
j=1Aj , where

A1 =
4 K1̄

3 K1
3

K6 S3 , A2 = −2 K1̄ K1̄1̄ K1
3

K5 S3 , A3 = −8 K1̄
2 K1

2 K11̄

K5 S3 ,

A4 =
2 K1̄1̄ K1

2 K11̄

K4 S3 , A5 =
4 K1̄ K1 K11̄

2

K4 S3 , A6 =
6 K1̄

2 K1
2

K4 S2 ,

A7 = −2 K1̄1̄ K1
2

K3 S2 , A8 = −8 K1̄ K1 K11̄

K3 S2 , A9 =
2 K11̄

2

K2 S2 ,

A10 =
2 K1̄ K1

2 K11̄1̄

K4 S3 , A11 = −2 K1 K11̄ K11̄1̄

K3 S3 , A12 =
2 K1 K11̄1̄

K2 S2

A13 = −2 K1̄
3 K1 K11

K5 S3 , A14 =
K1̄ K1̄1̄ K1 K11

K4 S3 , A15 =
2 K1̄

2 K11̄ K11

K4 S3 ,

A16 = −2 K1̄
2 K11

K3 S2 , A17 =
K11 K1̄1̄

K2 S2 , A18 = −K1̄ K11̄1̄ K11

K3 S3 ,

A19 =
2 K1̄

2 K1 K111̄

K4 S3 , A20 = −K1̄1̄ K1 K111̄

K3 S3 , A21 = −2 K1̄ K11̄ K111̄

K3 S3 ,

A22 =
2 K1̄ K111̄

K2 S2 , A23 = K11̄1̄ K111̄

K2 S3 , A24 = −K111̄1̄

K S2 .
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By direct computation one obtains

K = − 1
π|z|2 log(r2)

+ π−1
∞∑
j=0

(
r2+2j

(−r2+2j + |z|2)2
+

r2j

(1− r2j |z|2)2

)
,

K1 =
1

πz|z|2 log(r2)
+ π−1

∞∑
j=0

(
− 2r2+2jz

(−r2+2j + |z|2)3
+

2r4jz

(1− r2j |z|2)3

)
,

K1̄ = K1,

K11 = − 2
πz2|z|2 log(r2)

+ π−1
∞∑
j=0

(
6r2+2jz2

(−r2+2j + |z|2)4
+

6r6jz2

(1− r2j |z|2)4

)
,

K1̄1̄ = K11,

K11̄ = − 1
π|z|4 log(r2)

+ π−1
∞∑
j=0

(
6r2+2j |z|2

(−r2+2j + |z|2)4
− 2r2+2j

(−r2+2j + |z|2)3

+
6r6j |z|2

(1− r2j |z|2)4
+

2r4j

(1− r2j |z|2)3

)
,

K111̄ =
2

πz|z|4 log(r2)
+ π−1

∞∑
j=0

(
− 24r2+2j |z|2z

(−r2+2j + |z|2)5
+

12r2+2jz

(−r2+2j + |z|2)4

+
24r8j |z|2z

(1− r2j |z|2)5
+

12r6jz

(1− r2j |z|2)4

)
,

K11̄1̄ = K111̄,

K111̄1̄ = − 4
π|z|6 log(r2)

+ π−1
∞∑
j=0

[
6r2+2j

(
20|z|4

(−r2+2j + |z|2)6

− 16|z|2

(−r2+2j + |z|2)5
+

2
(−r2+2j + |z|2)4

)
+ 6r6j

(
20r4j |z|4

(1− r2j |z|2)6
+

16r2j |z|2

(1− r2j |z|2)5
+

2
(1− r2j |z|2)4

)]
.

For the special choice z =
√
r ∈ R+ one obtains

K = − 1
πr log(r2)

+ π−1
∞∑
j=0

(
r2j

(−r1+2j + 1)2
+

r2j

(1− r2j+1)2

)
,

K1 = K1̄ =
1

πr3/2 log(r2)
+ π−1

∞∑
j=0

(
2r1/2+4j

(−r1+2j + 1)3
− 2r−1/2+2j

(1− r2j+1)3

)

K11 = K1̄1̄ = − 2
πr2 log(r2)

+ π−1
∞∑
j=0

(
6r1+2j

(−r1+2j + 1)4
+

6r2j−1

(1− r2j+1)4

)
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K11̄ = − 1
πr2 log(r2)

+ π−1
∞∑
j=0

(
6r1+6j

(−r1+2j + 1)4
+

2r4j

(−r1+2j + 1)3

+
6r2j−1

(1− r1+2j)4
− 2r2j−1

(1− r2j+1)3

)
,

K111̄ = K11̄1̄ =
2

πr5/2 log(r2)
+ π−1

∞∑
j=0

(
24r3/2+8j

(−r1+2j + 1)5
+

12r1/2+6j

(−r1+2j + 1)4

− 24r2j−3/2

(1− r1+2j)5
+

12r2j−3/2

(1− r2j+1)4

)
,

K111̄1̄ = − 4
πr3 log(r2)

+ π−1
∞∑
j=0

(
120r10j+2

(−r1+2j + 1)6
+

96r1+8j

(−r1+2j + 1)5

+
12r6j

(−r1+2j + 1)4

)
+
(

120r2j−2

(1− r2j+1)6
− 96r2j−2

(1− r2j+1)5
+

12r2j−2

(1− r2j+1)4

)
.

All of the above series are locally uniformly convergent in the unit disc
and the summands are of the form f(

√
r) with f real-analytic (with excep-

tion of the very first summands which may contribute some singular terms).
Therefore each of the above expressions is of the form F (

√
r)+singular part,

with F real-analytic, hence one can write:

K = − 1
πr log(r2)

+ π−1(2 + 4r + 8r2 +O(r3)),

K1 = K1̄ =
1

πr3/2 log(r2)
+ π−1

(
−2√
r
− 4
√
r − 8r3/2 +O(r5/2)

)
,

K11 = K1̄1̄ = − 2
πr2 log(r2)

+ π−1

(
6
r

+ 24 +O(r)
)
,

K11̄ = − 1
πr2 log(r2)

+ π−1

(
4
r

+ 20 + 64r +O(r2)
)
,

K111̄ = K11̄1̄ =
2

πr5/2 log(r2)
+ π−1

(
− 12
r3/2

− 72√
r

+O(r1/2)
)
,

K111̄1̄ = − 4
πr3 log(r2)

+ π−1

(
36
r2

+
288
r

+O(C)
)
,

where as usual O(rα) is a substitute for an expression which divided by rα
is bounded when r tends to 0, r > 0. Note that in each representation above
the powers of r in the terms 1

πrα log(r2)
and O(rβ) satisfy

(†) α+ β ≥ 3.
Our first task is to show that one can get rid of the O’s in the expressions

representing Aj(r), j = 1, . . . , 24, in the above notation. Let A∗j (r) be Aj(r)
with the O’s deleted.
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One has to show that limr→0+(Aj(r)−A∗j (r)) = 0, j = 1, . . . , 24.
After some elementary algebraic manipulations one obtains

Aj(r) =

±1
(r log(r2))pj

∏mj
i=1(aij0 + aij1 r

αij1 log(r2) + · · ·+ aijk(ij)r
αij
k(ij) log(r2)O(rγ

ij
k(ij)))∏nj

i=1(bij0 + bij1 r
βij1 log(r2) + · · ·+ bijs(ij)r

βij
s(ij) log(r2)O(rδ

ij
s(ij)))

.

Here pj = 2 for j = 6, 7, 8, 9, 12, 16, 17, 22, 24, otherwise pj = 3, and the
numbers αijl and βijl form ascending (with respect to l) sequences of k(ij),
respectively s(ij) positive rational numbers. The notation k(ij) and s(ij) is
to stress the fact that the length of each sequence depends on both i and j.
The aijl and bijl are some (rational) constants. Finally αijk(ij) + γijk(ij) ≥ 3 and

βijs(ij) + δijs(ij) ≥ 3 (by (†), the reason why α+ β is 4, not 3 in the expansions
of K, K1, K11̄ is that the lowest power of r disappears when one manipulates
−K1̄ K1

K2 + K11̄
K ). In what follows we shorten k(ij) and s(ij) to just k and s

but keep in mind that they depend on both i and j.
The numerator of Aj(r)−A∗j (r) is

mj∏
i=1

(
aij0 +

k−1∑
l=1

aijl r
αijl log(r2) + aijk r

αijk log(r2)O(rγ
ij
k )
)

×
nj∏
i=1

(
bij0 +

s−1∑
l=1

bijl r
βijl log(r2)

)
−

nj∏
i=1

(
bij0 +

s−1∑
l=1

bijl r
βijl log(r2) + bijs r

βijs log(r2)O(rδ
ij
s )
)

×
mj∏
i=1

(
aij0 +

k−1∑
l=1

aijl r
αijl log(r2)

)
and we see that all the terms not containing an O kill each other. What
remains is O(r3 log(r)) (by (†)).

The denominator is

(r log(r2))pj
nj∏
i=1

(
bij0 +

s−1∑
l=1

bijl r
βijl log(r2) + bijs r

βijs log(r2)O(rδ
ij
s )
)

×
nj∏
i=1

(
bij0 +

s−1∑
l=1

bijl r
βijl log(r2)

)
,

which is O((r log(r2))pj ) (no bij0 is zero), and hence the ratio tends to 0.
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The terms A∗j can be asymptotically evaluated as follows:

A∗23(r) ≈ − 1
2r3(log(r2))3

+
7

r2(log(r2))2
+

12
r2(log(r2))3

− 30
r log(r2)

,

A∗21(r) ≈ 1
2r3(log(r2))3

− 6
r2(log(r2))2

− 12
r2(log(r2))3

+
22

r log(r2)
,

A∗20(r) ≈ 1
2r3(log(r2))3

− 11
2r2(log(r2))2

− 12
r2(log(r2))3

+
18

r log(r2)
,

A∗19(r) ≈ − 1
2r3(log(r2))3

+
5

r2(log(r2))2
+

12
r2(log(r2))3

− 14
r log(r2)

,

A∗18(r) ≈ 1
2r3(log(r2))3

− 11
2r2(log(r2))2

− 12
r2(log(r2))3

+
18

r log(r2)
,

A∗15(r) ≈ − 1
2r3(log(r2))3

+
9

2r2(log(r2))2
+

12
r2(log(r2))3

− 13
r log(r2)

,

A∗14(r) ≈ − 1
2r3(log(r2))3

+
4

r2(log(r2))2
+

12
r2(log(r2))3

− 21
2r log(r2)

,

A∗13(r) ≈ 1
2r3(log(r2))3

− 7
2r2(log(r2))2

− 12
r2(log(r2))3

+
8

r log(r2)
,

A∗11(r) ≈ 1
2r3(log(r2))3

− 6
r2(log(r2))2

− 12
r2(log(r2))3

+
22

r log(r2)
,

A∗10(r) ≈ − 1
2r3(log(r2))3

+
5

r2(log(r2))2
+

12
r2(log(r2))3

− 14
r log(r2)

,

A∗5(r) ≈ − 1
2r3(log(r2))3

+
5

r2(log(r2))2
+

12
r2(log(r2))3

− 16
r log(r2)

,

A∗4(r) ≈ − 1
2r3(log(r2))3

+
9

2r2(log(r2))2
+

12
r2(log(r2))3

− 13
r log(r2)

,

A∗3(r) ≈ 1
r3(log(r2))3

− 8
r2(log(r2))2

− 24
r2(log(r2))3

+
20

r log(r2)
,

A∗2(r) ≈ 1
2r3(log(r2))3

− 7
2r2(log(r2))2

− 12
r2(log(r2))3

+
8

r log(r2)
,

A∗1(r) ≈ − 1
2r3(log(r2))3

+
3

r2(log(r2))2
+

12
r2(log(r2))3

− 6
r log(r2)

,

where

A∗j (r) ≈
aj

r3(log(r2))3
+

bj
r2(log(r2))2

+
cj

r2(log(r2))3
+

dj
r log(r2)

should be read as

lim
r→0+

A∗j (r)r
3(log(r2))3 = aj , lim

r→0+

(
A∗j (r)−

aj
r3(log(r2))3

)
r2(log(r2))2 = bj ,
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lim
r→0+

(
A∗j (r)−

aj
r3(log(r2))3

− bj
r2(log(r2))2

)
r2(log(r2))3 = cj ,

lim
r→0+

(
A∗j (r)−

aj
r3(log(r2))3

− bj
r2(log(r2))2

− cj
r2(log(r2))3

)
r log(r2) = dj ,

and

A∗24(r) ≈ 1
r2(log(r2))2

+
11

r log(r2)
,

A∗22(r) ≈ − 1
r2(log(r2))2

− 8
r log(r2)

,

A∗17(r) ≈ − 1
2r2(log(r2))2

− 6
r log(r2)

,

A∗16(r) ≈ 1
2r2(log(r2))2

+
5

r log(r2)
,

A∗12(r) ≈ − 1
2r2(log(r2))2

− 8
r log(r2)

,

A∗9(r) ≈ − 1
2r2(log(r2))2

− 4
r log(r2)

,

A∗8(r) ≈ 2
r2(log(r2))2

+
12

r log(r2)
,

A∗7(r) ≈ 1
2r2(log(r2))2

+
5

r log(r2)
,

A∗6(r) ≈ − 3
2r2(log(r2))2

− 6
r log(r2)

,

where

A∗j (r) ≈
aj

r2(log(r2))2
+

bj
r log(r2)

should be read as

lim
r→0+

A∗j (r)r
2(log(r2))2 = aj , lim

r→0+

(
A∗j (r)−

aj
r2(log(r2))2

)
r log(r2) = bj .

Hence
24∑
j=1

A∗j (r) ≈
0

r3(log(r2))3
+

0
r2(log(r2))2

+
0

r2(log(r2))3
+

1
2r log(r2)

,

lim
r→0+

24∑
j=1

Aj(r) = lim
r→0+

24∑
j=1

A∗j (r) = −∞.

This proves the first part of Theorem 0.1.
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For the special choice z = r3/10 ∈ R+ one has

K = − 1
πr3/5 log(r2)

+ π−1
∞∑
j=0

(
r2j

(−r3/5+2j + 1)2
+

r2j+4/5

(1− r2j+7/5)2

)
,

K1 =
1

πr9/10 log(r2)
+ π−1

∞∑
j=0

(
2r3/10+4j

(−r3/5+2j + 1)3
− 2r1/2+2j

(1− r2j+7/5)3

)
,

K1̄ = K1,

K11 = − 2
πr6/5 log(r2)

+ π−1
∞∑
j=0

(
6r3/5+6j

(−r3/5+2j + 1)4
+

6r1/5+2j

(1− r2j+7/5)4

)
,

K1̄1̄ = K11,

K11̄ = − 1
πr6/5 log(r2)

+ π−1
∞∑
j=0

[
6r3/5+6j

(−r3/5+2j + 1)4
+

2r4j

(−r3/5+2j + 1)3

+
6r2j+1/5

(1− r7/5+2j)4
− 2r2j+1/5

(1− r2j+7/5)3

]
,

K111̄ =
2

πr3/2 log(r2)
+ π−1

∞∑
j=0

[
24r9/10+8j

(−r3/5+2j + 1)5
+

12r3/10+6j

(−r3/5+2j + 1)4

− 24r2j−1/10

(1− r7/5+2j)5
+

12r2j−1/10

(1− r2j+7/5)4

]
,

K11̄1̄ = K111̄,

K111̄1̄ = − 4
πr9/5 log(r2)

+ π−1
∞∑
j=0

[
120r10j+6/5

(−r3/5+2j + 1)6
+

96r3/5+8j

(−r3/5+2j + 1)5

+
12r6j

(−r3/5+2j + 1)4
+

120r2j−2/5

(1− r2j+7/5)6
− 96r2j−2/5

(1− r2j+7/5)5
+

12r2j−2/5

(1− r2j+7/5)4

]
.

As above each sum is of the form G(r1/10) + singular part, with G real-
analytic. Now

K = − 1
πr3/5 log(r2)

+ π−1(1 + 2r3/5 + r4/5 + 3r6/5 +O(r9/5)),

K1 = K1̄ =
1

πr9/10 log(r2)
+ π−1(2r3/10 − 2r1/2 + 6r9/10 +O(r3/2)),

K11 = K1̄1̄ = − 2
πr6/5 log(r2)

+ π−1(6r1/5 +O(r3/5)),

K11̄ = − 1
πr6/5 log(r2)

+ π−1(2 + 4r1/5 + 12r3/5 +O(r6/5)),
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K111̄ = K11̄1̄ =
2

πr3/2 log(r2)
+ π−1

(
− 12
r1/10

+O(r3/10)
)
,

K111̄1̄ = − 4
πr9/5 log(r2)

+ π−1

(
36
r2/5

+O(C)
)
.

This time the goal is to have

(††) α+ β ≥ 9/5

for α and β being the powers of r in 1/(πrα log(r2)) and O(rβ) respectively.
The argument with passing from Aj(r) to A∗j (r) is almost the same, one only
has to adjust the terms (r log(r2))pj (the correct ones are now rpj log(r2)

5
3
pj )

and consider new pj ’s, namely pj = 6/5, for j = 6, 7, 8, 9, 12, 16, 17, 22, 24
and pj = 9/5 otherwise.

Now the asymptotic expansions of A∗j (r) are:

A∗23(r) ≈ − 4
r9/5(log(r2))3

+
16

r6/5(log(r2))2
+

96
r6/5(log(r2))3

+
12

r(log(r2))3

− 24
r3/5 log(r2)

− 376
r3/5(log(r2))2

− 1212
r3/5(log(r2))3

− 32
r2/5(log(r2))2

− 384
r2/5(log(r2))3

− 24
r1/5(log(r2))3

+ 16,

A∗21(r) ≈ 4
r9/5(log(r2))3

− 12
r6/5(log(r2))2

− 96
r6/5(log(r2))3

− 12
r(log(r2))3

+
12

r3/5 log(r2)
+

288
r3/5(log(r2))2

+
1212

r3/5(log(r2))3
+

24
r2/5(log(r2))2

+
384

r2/5(log(r2))3
+

24
r1/5(log(r2))3

− 4,

A∗20(r) ≈ 4
r9/5(log(r2))3

− 12
r6/5(log(r2))2

− 96
r6/5(log(r2))3

− 12
r(log(r2))3

+
12

r3/5 log(r2)
+

296
r3/5(log(r2))2

+
1212

r3/5(log(r2))3
+

28
r2/5(log(r2))2

+
384

r2/5(log(r2))3
+

24
r1/5(log(r2))3

− 4,

A∗19(r) ≈ − 4
r9/5(log(r2))3

+
8

r6/5(log(r2))2
+

96
r6/5(log(r2))3

+
12

r(log(r2))3

− 4
r3/5 log(r2)

− 224
r3/5(log(r2))2

− 1212
r3/5(log(r2))3

− 16
r2/5(log(r2))2

− 384
r2/5(log(r2))3

− 24
r1/5(log(r2))3

,
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A∗18(r) ≈ 4
r9/5(log(r2))3

− 12
r6/5(log(r2))2

− 96
r6/5(log(r2))3

− 12
r(log(r2))3

+
12

r3/5 log(r2)
+

296
r3/5(log(r2))2

+
1212

r3/5(log(r2))3
+

28
r2/5(log(r2))2

+
384

r2/5(log(r2))3
+

24
r1/5(log(r2))3

− 4,

A∗15(r) ≈ − 4
r9/5(log(r2))3

+
8

r6/5(log(r2))2
+

96
r6/5(log(r2))3

+
12

r(log(r2))3

− 4
r3/5 log(r2)

− 208
r3/5(log(r2))2

− 1212
r3/5(log(r2))3

− 20
r2/5(log(r2))2

− 384
r2/5(log(r2))3

− 24
r1/5(log(r2))3

,

A∗14(r) ≈ − 4
r9/5(log(r2))3

+
8

r6/5(log(r2))2
+

96
r6/5(log(r2))3

+
12

r(log(r2))3

− 4
r3/5 log(r2)

− 216
r3/5(log(r2))2

− 1212
r3/5(log(r2))3

− 24
r2/5(log(r2))2

− 384
r2/5(log(r2))3

− 24
r1/5(log(r2))3

,

A∗13(r) ≈ 4
r9/5(log(r2))3

− 4
r6/5(log(r2))2

− 96
r6/5(log(r2))3

− 12
r(log(r2))3

+
144

r3/5(log(r2))2
+

1212
r3/5(log(r2))3

+
12

r2/5(log(r2))2

+
384

r2/5(log(r2))3
+

24
r1/5(log(r2))3

,

A∗11(r) ≈ 4
r9/5(log(r2))3

− 12
r6/5(log(r2))2

− 96
r6/5(log(r2))3

− 12
r(log(r2))3

+
12

r3/5 log(r2)
+

288
r3/5(log(r2))2

+
1212

r3/5(log(r2))3
+

24
r2/5(log(r2))2

+
384

r2/5(log(r2))3
+

24
r1/5(log(r2))3

− 4,

A∗10(r) ≈ − 4
r9/5(log(r2))3

+
8

r6/5(log(r2))2
+

96
r6/5(log(r2))3

+
12

r(log(r2))3

− 4
r3/5 log(r2)

− 224
r3/5(log(r2))2

− 1212
r3/5(log(r2))3

− 16
r2/5(log(r2))2

− 384
r2/5(log(r2))3

− 24
r1/5(log(r2))3

,
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A∗5(r) ≈ − 4
r9/5(log(r2))3

+
8

r6/5(log(r2))2
+

96
r6/5(log(r2))3

+
12

r(log(r2))3

− 4
r3/5 log(r2)

− 200
r3/5(log(r2))2

− 1212
r3/5(log(r2))3

− 16
r2/5(log(r2))2

− 384
r2/5(log(r2))3

− 24
r1/5(log(r2))3

,

A∗4(r) ≈ − 4
r9/5(log(r2))3

+
8

r6/5(log(r2))2
+

96
r6/5(log(r2))3

+
12

r(log(r2))3

− 4
r3/5 log(r2)

− 208
r3/5(log(r2))2

− 1212
r3/5(log(r2))3

− 20
r2/5(log(r2))2

− 384
r2/5(log(r2))3

− 24
r1/5(log(r2))3

,

A∗3(r) ≈ 8
r9/5(log(r2))3

− 8
r6/5(log(r2))2

− 192
r6/5(log(r2))3

− 24
r(log(r2))3

+
272

r3/5(log(r2))2
+

2424
r3/5(log(r2))3

+
16

r2/5(log(r2))2

+
768

r2/5(log(r2))3
+

48
r1/5(log(r2))3

,

A∗2(r) ≈ 4
r9/5(log(r2))3

− 4
r6/5(log(r2))2

− 96
r6/5(log(r2))3

− 12
r(log(r2))3

+
144

r3/5(log(r2))2
+

1212
r3/5(log(r2))3

+
12

r2/5(log(r2))2

+
384

r2/5(log(r2))3
+

24
r1/5(log(r2))3

,

A∗1(r) ≈ − 4
r9/5(log(r2))3

+
96

r6/5(log(r2))3

+
12

r(log(r2))3
− 72
r3/5(log(r2))2

− 1212
r3/5(log(r2))3

− 384
r2/5(log(r2))3

− 24
r1/5(log(r2))3

.

Again

A∗j (r) ≈
aj

r9/5(log(r2))3
+

bj

r6/5(log(r2))2
+

cj

r6/5(log(r2))3
+

dj
r(log(r2))3

ej

r3/5 log(r2)
+

fj

r3/5(log(r2))2
+

gj

r3/5(log(r2))3
+

hj

r2/5(log(r2))2

+
ij

r2/5(log(r2))3
+

kj

r1/5(log(r2))3
+ lj

means that
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lim
r→0+

A∗j (r)r
9/5(log(r2))3 = aj ,

lim
r→0+

(
A∗j (r)−

aj

r9/5(log(r2))3

)
r6/5(log(r2))2 = bj ,

. . .

lim
r→0+

(
A∗j (r)−

aj

r9/5(log(r2))3
− bj

r6/5(log(r2))2
− cj

r6/5(log(r2))3

− dj
r(log(r2))3

− ej

r3/5 log(r2)
− fj

r3/5(log(r2))2
− gj

r3/5(log(r2))3

− hj

r2/5(log(r2))2
− ij

r2/5(log(r2))3
− kj

r1/5(log(r2))3

)
= lj

(to simplify the calculations one can put r = q10 and then find limq→0 . . . ).
The expansions of the other terms are:

A∗24(r) ≈ − 4
r6/5(log(r2))2

+
12

r3/5 log(r2)
+

64
r3/5(log(r2))2

+
8

r2/5(log(r2))2
−12,

A∗22(r) ≈ 4
r6/5(log(r2))2

− 8
r3/5 log(r2)

− 64
r3/5(log(r2))2

− 8
r2/5(log(r2))2

+4,

A∗17(r) ≈ 4
r6/5(log(r2))2

− 8
r3/5 log(r2)

− 64
r3/5(log(r2))2

− 8
r2/5(log(r2))2

+4,

A∗16(r) ≈ − 4
r6/5(log(r2))2

+
4

r3/5 log(r2)
+

64
r3/5(log(r2))2

+
8

r2/5(log(r2))2
,

A∗12(r) ≈ 4
r6/5(log(r2))2

− 8
r3/5 log(r2)

− 64
r3/5(log(r2))2

− 8
r2/5(log(r2))2

+4,

A∗9(r) ≈ 2
r6/5(log(r2))2

− 4
r3/5 log(r2)

− 32
r3/5(log(r2))2

− 4
r2/5(log(r2))2

+2,

A∗8(r) ≈ − 8
r6/5(log(r2))2

+
8

r3/5 log(r2)
+

128
r3/5(log(r2))2

+
16

r2/5(log(r2))2
,

A∗7(r) ≈ − 4
r6/5(log(r2))2

+
4

r3/5 log(r2)
+

64
r3/5(log(r2))2

+
8

r2/5(log(r2))2
,

A∗6(r) ≈ 6
r6/5(log(r2))2

− 96
r3/5(log(r2))2

− 12
r2/5(log(r2))2

.

Finally one obtains
24∑
j=1

A∗j (r) ≈ 2.

Therefore
lim
r→0+

Aj(r) = 2.
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Observation 1. One has

RPr(e
iθz) = RPr(z) for all θ ∈ (0, 2π],

RPr(z) = RPr(r/z).

One easily checks that both z 7→ eiθz and z 7→ r/z are holomorphic
automorphisms of Pr. Now everything follows from the invariance property
of the holomorphic sectional curvature of the Bergman metric. One moreover
sees that for the choice z = r7/10 = r

r3/10 the equality

lim
r→0+

RPr(r
7/10) = 2

is also true, which is also revealed by the figures.

Observation 2. One has

R{ρ1<|w−z0|<ρ2}(z) = RPρ1/ρ2

(
z − z0

ρ2

)
.

This is also a simple consequence of the fact that z 7→ (z − z0)/ρ2 is
biholomorphic between the two domains.

2. An example. Let {Rj}∞j=1, {rj}∞j=1, {sj}∞j=1 be three sequences of
positive real numbers that obey the following conditions:

(i)
∞∑
j=1

Rj <∞,

(ii) r1 < R1/2, rj/Rj is decreasing and lim
j→∞

rj/Rj = 0,

(iii) sj < min{2Rj sin(0.07π), 2Rj+1 sin(0.07π),

Rj − (rj/Rj)3/10, Rj+1 − (rj+1/Rj+1)3/10}.
Consider the domain Ω =

⋃∞
j=1Ωj , where Ω1 = {z : r1 < |z| < R1}, and

each Ωj is an annulus with inner radius rj and outer radius Rj which is
centred on the positive real axis, to the right of Ωj−1 and overlaps with
Ωj−1 in such a way that the segment joining the two intersection points
of the circles with radii Rj and Rj−1 has length sj−1. There are now two
possible choices for Ωj : one for which most of Ωj lies inside Ωj−1, and one
when most of it lies outside. We consider the latter one. The choice of sj
ensures that the discs with radii rj and rj−1 do not overlap.

By (i), Ω is bounded.
Let Ω′j = Ωj \ (K1 ∪K2), where K1 is a disc of radius sj−1/2, centred at

the midpoint of the segment joining the intersection points of the circles with
radii Rj and Rj−1 (the outer boundaries of the annuli Ωj and Ωj−1), while
K2 has radius sj/2 and is centred at the midpoint of the segment joining
the intersection points of the circles with radii Rj and Rj+1.
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U1 U2

W j-1
W j

W j+1

K1

Fig. 5. Part of the domain Ω

We begin with a lemma:

Lemma 2.1. Let z0 ∈ Ω′j. Then the sublevel set of the Green function
GΩ(z, z0),

{GΩ(z, z0) < −1},

is entirely contained in Ωj (2).

Proof. The Green function is obviously decreasing with respect to do-
main inclusions. Therefore it is enough to show that {GU (z, z0) < −1} ⊂ Ωj
for some U ⊃ Ω.

For simplicity one can translate Ω so that the upper intersection point
of the circles with radii Rj−1 and Rj is 0. Choose two discs U1 and U2,
with radii ρ1 and ρ2, whose boundaries intersect at 0 and −isj−1 such that
Ω ⊂ U1 ∪ U2. Clearly ρ1 ≥ Rj−1 and ρ2 > Rj . The function GU1∪U2(z, z0)
can be explicitly calculated as h ◦ f , where

h(w) := log
∣∣∣∣ w − f(z0)
1− w f(z0)

∣∣∣∣
(2) Informally: the sublevel set cannot “escape” through the very narrow passage

between the annuli.
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and

f(z) :=

((
1
z −

i
sj−1

)
e−i

π
2 ei

β−α
2

) π
2π−α−β − 1((

1
z −

i
sj−1

)
e−i

π
2 ei

β−α
2

) π
2π−α−β + 1

is the mapping that transforms U1 ∪U2 conformally into the unit disc. Here
α = arcsin sj−1

2ρ2
, β = arcsin sj−1

2ρ1
.

The image of U2 under f is the intersection of the unit disc with a disc
centred at the negative imaginary axis, passing through {1} and {−1} and
such that the angle between its tangent line at {−1} and the line −1 + it

is exactly π
2π−β−α

β+α
2 . The image of U1 is exactly the conjugate of this set.

Now
f({GU1∪U2(z, z0) < −1}) =

{
w :
∣∣∣∣ w − f(z0)
1− wf(z0)

∣∣∣∣ < e−1

}
,

which is the disc∣∣∣∣w − f(z0)
1− e−2

1− e−2|f(z0)|2

∣∣∣∣ < e−1(1− |f(z0)|2)
1− e−2|f(z0)|2

.

Now if

z0 ∈ U2, |Im f(z0)| 1− e−2

1− e−2|f(z0)|2
≥ e−1(1− |f(z0)|2)

1− e−2|f(z0)|2

then this disc will stay in the lower halfdisc (and hence in f(U2)).
This inequality transforms easily into

(2.1)
∣∣∣∣f(z0)− i 1− e−2

2e−1

∣∣∣∣ ≥ 1 + e−2

2e−1
, Im f(z0) < 0.

So this is the set enclosed by the arcs of the unit circle and a circle that
passes through {−1} and {1}, and the angle between the real axis and the
tangent line at {−1} is (in absolute value) arccos 1−e−2

1+e−2 ≈ 0.22π < 0.23π.
On the other hand the image of the disc

∣∣z + i
sj−1

2

∣∣ < sj−1

2 (K1) is the
set enclosed by two circular arcs joining {−1} with {1} characterized by the
angle between the real axis and the tangent line at {−1} (π−β+α

2
π

2π−β−α and
(−)π+β−α

2
π

2π−β−α respectively) and we see that if both α and β are smaller
than 0.07π then the slope of the lower arc is greater than 0.23π and hence
lies in the region defined by (2.1). Since z0 /∈ K1, f(z0) must lie below the
arc in question and hence in the desired region.

It remains to observe that the condition α, β < 0.07π is fulfilled by the
choice of sj−1 and that one can carry out the same argument for K2.

Let ζ be the rightmost boundary point of Ω (the accumulation point of
the annuli). Now one can give the proof of the main theorem.

Proof. It is clear that Ji,Ω(z) ≤ Ji,Ωj (z) for all z ∈ Ωj , i = 0, 1, 2 and for
all j (see (0.3)–(0.5)).
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Let z0 ∈ Ω′j and let fi(z) be the corresponding function that realizes the
supremum in the definition of Ji,Ωj . We have

fi(z) ∈ O(Ωj) ∩ L2(Ωj),
�

Ωj

|fi|2 ≤ 1, f
(k)
i (z0) = 0, k = 0, . . . , i− 1.

Let χ be a real smooth function of a real variable such that χ(x) = 0
for x > −1, χ(x) = 1 for x < −2, 0 ≤ χ(x) ≤ 1 for −2 ≤ x ≤ −1, and
|χ′(x)| < C globally for some positive constant C.

By Lemma 2.1 the (0, 1)-form ∂̄(χ ◦ GΩ(z, z0))fi(z) can be extended
(trivially) to a smooth (∂̄-closed) form on the whole Ω.

Note that eGΩ(z,z0) is a subharmonic function that satisfies
∂2

∂z∂z̄
eGΩ(z,z0) ≥

∣∣∣∣ ∂∂z eGΩ(z,z0)

∣∣∣∣2
in the weak sense. Therefore by the Donnelly–Fefferman estimate (see [1] and
especially [2], where the passing from smooth to nonsmooth data is presented
very clearly) one can find a solution v of the ∂̄ problem

∂̄vi = ∂̄(χ ◦GΩ(z, z0))fi(z)

in Ω, with
�

Ω

|vi|2e−2(i+1)GΩ(z,z0) ≤ C ′
�

Ω

|∂̄(χ ◦GΩ(z, z0))fi(z)|2
∂2

∂z∂z̄ e
GΩ(z,z0)

e−2(i+1)GΩ(z,z0)

≤ C ′
�

{−2<GΩ(z,z0)<−1}

C2|fi|2

e(2i+3)GΩ(z,z0)
≤ C ′C2e2(2i+3),

where C ′ is a universal constant.
Moreover vi is holomorphic in a neighbourhood of z0, and the above

inequality ensures that v(k)
i (z0) = 0, k = 0, . . . , i.

The function gi = (χ ◦ GΩ(z, z0))fi(z) − vi is holomorphic in Ω, agrees
to the ith order with fi at z0 and( �

Ω

|gi|2
)1/2

≤
( �
Ω

|vi|2
)1/2

+
( �
Ω

|(χ ◦GΩ(z, z0))fi(z)|2
)1/2

≤
( �
Ω

|vi|2e−2(i+1)GΩ(z,z0)
)1/2

+ 1 ≤ 1 +
√
C ′C2e2(2i+3).

The choice of the function gi(z)

1+
√
C′C2e2(2i+3)

shows that

Ji,Ω(z) ≥
Ji,Ωj (z)

1 +
√
C ′C2e2(2i+3)

for all z ∈ Ω′j . We note that this gives us a lower bound for the expression
Ji,Ω(z)/Ji,Ωj (z) which is independent of j.



166 Ż. Dinew

Hence for every z ∈ Ω that lies in Ω′j for some j,

2−RΩ(z) =
J0,Ω(z)J2,Ω(z)

J1,Ω(z)2
≤

(1 +
√
C ′C2e10)2J0,Ωj (z)J2,Ωj (z)

J1,Ωj (z)2

= C ′′(2−RΩj (z))
and

2−RΩ(z) ≥
J0,Ωj (z)J2,Ωj (z)

J1,Ωj (z)2(1 +
√
C ′C2e14)(1 +

√
C ′C2e6)

= C ′′′(2−RΩj (z)).

Let z′j be the point in Ωj (and in Ω′j , by (iii)) that corresponds to the
point Rj

√
rj/Rj + 0i in the annulus {rj < |z| < Rj}. By analogy we define

z′′j to be the point that corresponds to Rj(rj/RJ)3/10. Then

lim sup
Ω3z→ζ

RΩ(z) = lim sup
j→∞

RΩ(z′′j ) = 2,

lim inf
Ω3z→ζ

RΩ(z) = lim inf
j→∞

RΩ(z′j) = −∞,

by Theorem 0.1 and Observation 2.

Observation 3. Ω defined as above is hyperconvex.

Hyperconvexity is the same as regularity (with respect to the Dirichlet
problem) in dimension 1. One easily constructs barrier functions at each
boundary point of Ω and by Perron’s method Ω is regular.

This is quite unexpected since it is known that both the Bergman kernel
in arbitrary dimension (see [13]) and the Bergman metric in dimension 1
behave in a quite predictable way in hyperconvex domains (see [14]; in higher
dimensions it is rather B-regularity than hyperconvexity that one has to have
in mind, but the problems are not completely settled; see [3], [7], [6]).
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